Évènements

Avis de Soutenance Monsieur Tiago ROCHA GONCALVES

Date : 23/11/2021
Catégorie(s) :
Lieu : Amphi V, Bâtiment Eiffel

Soutiendra publiquement ses travaux de thèse intitulés

Contrôle robuste de pelotons de véhicules sur un canal radio avec imperfections

dirigés par Monsieur Salah Eddine ELAYOUBI

Soutenance prévue le mardi 23 novembre 2021 à 14h00
Lieu: En présentiel  Amphi V, Bâtiment Eiffel, Campus CentraleSupélec, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette 

  

Composition du jury proposé 

M. Salah E. ELAYOUBICentraleSupeléc Directeur de thèse
M. Loutfi NUAYMI Télécom Bretagne Rapporteur
M. Francesco De PELLEGRINI  Université d’AvignonRapporteur
Mme. Houda LABIOD Télécom ParisExaminatrice
M. Irinel-Constantin MORARESCU Université de LorraineExaminateur
M. Fawzi NASHASHIBIINRIA Paris-Rocquencourt Examinateur
M. Chung Shue Calvin SHEN  Nokia Bell Labs Examinateur
M. Vineeth S. VARMA      CNRS/CRANEncadrant

Abstract:  
Transportation systems are critical for society, as the persistent pace of economic growth and increase of demands are closely related to more transportation activity. In this framework, the field of Intelligent Transportation Systems (\ac{ITS}) has emerged as a research trending topic to enhance and address new traffic-system challenges. Platooning systems represent a relatively simple approach in terms of deployment towards fuel efficient solutions, traffic congestion reduction, and road safety improvements. In particular, vehicle platoon is a specific formation by a group of coordinated vehicles, in which a short inter-vehicle distance is maintained by virtue of automation and vehicular communication technologies. The deployment of such systems are closely related to a careful evaluation of the synergy between both core technologies. In this thesis, we formulate and analyze a class of platooning problems by addressing communication and control aspects with the related challenges introduced by the overlap of both areas. We first evaluate the robustness of the platoon performance under severe conditions for Vehicle-to-Vehicle (V2V) communications, expressed in long bursts of losses and in difficult traffic jamming conditions on the road. We propose a dynamic control mechanism where the parameters of the well-known Predicted Cooperative Adaptive Cruise Control (PCACC) are adapted based on the observed network link quality. The network reliability is of utmost importance as it limits the control system operation. In order to overcome the impact of dropped and delayed messages, we propose an analytical modeling of a novel V2V relaying scheme and a study of the impact of Roadside Unit (RSU) relaying as alternatives to extend the coverage range of the leader message. We start by developing a Markov model for the different communication links, and we carefully evaluate the impact of network parameters (errors and delays) on the controller performance (inter-vehicle distance). This is done by integrating the resulting packet error rate with the delay distribution and evaluating its impact on the platoon performance. The analysis formulated so far is narrowed to improve the performance of the platoon system while carefully considering the presence of a large number of point-to-point V2V links. Despite significant, we lack an explicit evaluation to quantify such developments in terms of fuel consumption, which is the most important aspect from the economical perspective and feasibility of platooning for commercial purposes. In this context, the last objective in this thesis is to address explicitly the fuel consumption problem in platooning systems. We reduce the fuel consumption attainable by the switching of two control policies, Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC), in platooning systems. Among the propositions, we adopt Deep Reinforcement Learning (DRL) techniques as an alternative solution to indirectly control the system. The carried out simulations demonstrate the feasibility of our scheme even under strong traffic congestion.Keywords: Vehicle platoons, wireless communication, cooperative adaptive cruise control (CACC).

Résumé:
Les systèmes de transport sont essentiels pour la société, car le rythme soutenu de la croissance économique est étroitement lié à l’accroissement des activités de transport. Dans ce contexte, le domaine des systèmes de transport intelligents (ITS) est apparu comme un sujet de recherche d’actualité pour améliorer et relever les nouveaux défis des systèmes de circulation. Les systèmes de pelotons représentent une approche relativement simple en termes de déploiement vers des solutions économes en carburant, la réduction de la congestion du trafic et l’amélioration de la sécurité routière. En particulier, le peloton de véhicules est une formation spécifique par un groupe de véhicules coordonnés, dans laquelle une courte distance inter-véhicules est maintenue grâce à l’automatisation et aux technologies de communication entre véhicules. Le déploiement de tels systèmes est étroitement lié à une évaluation minutieuse de la synergie entre les deux technologies de base. Dans cette thèse, nous formulons et analysons une classe de problèmes de platooning en abordant les aspects de communication et de contrôle avec les défis connexes introduits par le chevauchement de ces deux domaines. Nous évaluons d’abord la robustesse de la performance du platoon dans des conditions sévères pour les communications Véhicule-à-Véhicule (V2V), exprimées par de longues rafales de pertes et dans des conditions difficiles de brouillage sur la route. Nous proposons un mécanisme de contrôle dynamique dans lequel les paramètres du schéma de contrôle le plus avancé, le Predicted Cooperative Adaptive Cruise Control (PCACC), sont adaptés en fonction de la qualité observée de l’interface radio. La fiabilité du réseau est de la plus haute importance car elle limite le fonctionnement du système de contrôle. Afin de surmonter l’impact des messages abandonnés et retardés, nous proposons une modélisation analytique d’un nouveau schéma de relais V2V et une étude de l’impact du relais des unités de bord de route (RSU) comme alternatives pour étendre la couverture du message du véhicule en tête du peloton. Nous commençons par développer un modèle de Markov pour les différents liens de communication, et nous évaluons soigneusement l’impact des paramètres du réseau (erreurs et retards) sur la performance du contrôleur (distance inter-véhicules). Pour ce faire, nous intégrons le taux d’erreurs de paquets résultant à la distribution des retards et évaluons son impact sur les performances du peloton. L’analyse formulée jusqu’à présent est limitée à l’amélioration des performances du système de peloton tout en considérant soigneusement la présence d’un grand nombre de liaisons V2V point à point. Malgré cette importance, nous manquons d’une évaluation explicite pour quantifier ces développements en termes de consommation de carburant, qui est l’aspect le plus important du point de vue économique et de la faisabilité du platooning à des fins commerciales. Dans ce contexte, le dernier objectif de cette thèse est d’aborder explicitement le problème de la consommation de carburant dans les systèmes de platooning. Nous réduisons la consommation de carburant atteignable par la commutation de deux politiques de contrôle, le contrôle de vitesse adaptatif (ACC) et le contrôle de vitesse adaptatif coopératif (CACC), dans les systèmes de platooning. Parmi d’autres propositions, nous adoptons des techniques d’apprentissage par renforcement profond (DRL) comme solution alternative pour contrôler indirectement le système. Les simulations effectuées démontrent la faisabilité de notre système, même en cas de forte congestion du trafic.Mots-clés: Pelotons de véhicules, communication sans fil, contrôle de vitesse adaptatif coopératif (CACC).