fr
|
en

Florent BOUCHARD

Researcher

L2S, CentraleSupélec
3 rue Joliot Curie
91190 Gif-sur-Yvette, France

Publications

Journals

2024

Online change detection in SAR time-series with Kronecker product structured scaled Gaussian models

Mian, Ginolhac, Bouchard, Breloy
Signal process., 224, Elsevier, p. 109589, 2024
2021

Probabilistic PCA From Heteroscedastic Signals: Geometric Framework and Application to Clustering

Collas, Bouchard, Breloy, Ginolhac, Ren, Ovarlez
IEEE Transactions on Signal Processing, 69, p. 6546-6560, 2021

A Riemannian Framework for Low-Rank Structured Elliptical Models

Bouchard, Breloy, Ginolhac, Renaux, Pascal
IEEE Transactions on Signal Processing, 69, p. 1185-1199, 2021

On Riemannian and non-Riemannian Optimisation, and Optimisation Geometry

Lefevre, Bouchard, Said, Le Bihan, Manton
IFAC-PapersOnLine, 54 (9), p. 578-583, 2021
2020

Random matrix improved covariance estimation for a large class of metrics

Tiomoko, Bouchard, Ginolhac, Couillet
J. stat. mech., 2020 (12), IOP Publishing, p. 124011, 2020

Riemannian geometry for compound Gaussian distributions: Application to recursive change detection

Bouchard, Mian, Zhou, Said, Ginolhac, Berthoumieu
Signal process., 176, Elsevier, p. 107716, 2020

Approximate joint diagonalization with Riemannian optimization on the general linear group

Bouchard, Afsari, Malick, Congedo
SIAM j. matrix anal. appl., 41 (1), Society for Industrial and Applied Mathematics, p. 152-170, 2020
2019

Intrinsic Cramér–Rao bounds for scatter and shape matrices estimation in CES distributions

Breloy, Ginolhac, Renaux, Bouchard
IEEE signal process. lett., 26 (2), Institute of Electrical and Electronics Engineers, p. 262-266, 2019
2018

Riemannian Optimization and Approximate Joint Diagonalization for Blind Source Separation

Bouchard, Malick, Congedo
IEEE Transactions on Signal Processing, 66 (8), p. 2041-2054, 2018

Conferences

2024

Random matrix theory improved Fréchet mean of symmetric positive definite matrices

Bouchard, Mian, Tiomoko, Ginolhac, Pascal
International Conference on Machine Learning (ICML), Vienna, Autriche, 2024

Robust Low-Rank Correlation Fitting

Phi, Hippert-Ferrer, Bouchard, Breloy
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024), Séoul, Corée du Sud, 2024
2023

Learning Graphical Factor Models with Riemannian Optimization

Hippert-Ferrer, Bouchard, Mian, Vayer, Breloy
Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2023), Torino, Italie, 2023

t-WDA: A novel Discriminant Analysis applied to EEG classification

Ayadi, Bouchard, Pascal
2023 31st European Signal Processing Conference (EUSIPCO), Helsinki, Finlande, 2023

Distribution matricielle t-Wishart : géométrie d’information, estimation et application pour la classification de signaux EEG

Ayadi, Bouchard, Pascal
GRETSI 2023 – XXIXème Colloque Francophone de Traitement du Signal et des Images, Grenoble, France, 2023

Estimation de barycentres sur variétés de Stiefel : une approche par projection

Laurent, Bouchard, Said, Le Bihan
GRETSI 2023 – XXIXème Colloque Francophone de Traitement du Signal et des Images, Grenoble, France, 2023

Optimisation Riemannienne pour l’apprentissage de graphes structurés

Hippert-Ferrer, Bouchard, Mian, Vayer, Breloy
GRETSI 2023 – XXIXème Colloque Francophone de Traitement du Signal et des Images, Grenoble, France, 2023

Elliptical Wishart Distribution: Maximum Likelihood Estimator from Information Geometry

Ayadi, Bouchard, Pascal
ICASSP 2023 – 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Grèce, 2023
2022

Riemannian classification of EEG signals with missing values

Hippert-Ferrer, Mian, Bouchard, Pascal
30th European Signal Processing Conference (EUSIPCO 2022), Belgrade, Serbie, 2022

ON THE USE OF GEODESIC TRIANGLES BETWEEN GAUSSIAN DISTRIBUTIONS FOR CLASSIFICATION PROBLEMS

Collas, Bouchard, Ginolhac, Breloy, Ren, Ovarlez
2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2022), Singapour, Singapour, 2022
2021

On-line Kronecker Product Structured Covariance Estimation with Riemannian geometry for t-distributed data

Bouchard, Breloy, Mian, Ginolhac
The 29th European Signal Processing Conference (EUSIPCO 2021), Dublin, Irlande, 2021

A Tyler-type estimator of location and scatter leveraging Riemannian optimization

Collas, Bouchard, Breloy, Ren, Ginolhac, Ovarlez
2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021

A Riemannian approach to blind separation of t-distributed sources

Bouchard, Breloy, Ginolhac, Renaux
2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Pays-Bas, 2021
2020

Riemannian framework for robust covariance matrix estimation in spiked models

Bouchard, Breloy, Ginolhac, Pascal
ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Espagne, 2020

Riemannian geometry and Cramér-Rao bound for blind separation of Gaussian sources

Bouchard, Breloy, Renaux, Ginolhac
ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Espagne, 2020
2019

Bornes de Cramér-Rao Intrinsèques pour l’estimation de la matrice de dispersion normalisée dans les distributions elliptiques

Bouchard, Breloy, Renaux, Ginolhac
GRETSI 2019 – XXVIIème Colloque francophone de traitement du signal et des images, Lille, France, 2019

Random Matrix Improved Covariance Estimation for a Large Class of Metrics

Tiomoko, Bouchard, Ginolhac, Couillet
ICML 2019 – 36th International Conference on Machine Learning, Long Beach, États-Unis, 2019
2017

Dimensionality Reduction for BCI classification using Riemannian geometry

Coelho Rodrigues, Bouchard, Congedo, Jutten
BCI 2017 – 7th International Brain-Computer Interface Conference, Graz, Autriche, 2017

Géométrie Riemannienne appliquée à la réduction de la dimension de signaux EEG pour les interfaces cerveau-machine

Coelho Rodrigues, Bouchard, Congedo, Jutten
GRETSI 2017 – XXVIème Colloque francophone de traitement du signal et des images, Juan-Les-Pins, France, 2017

Borne de Cramér-Rao intrinsèque pour la matrice de covariance des distributions elliptiques complexes

Breloy, Renaux, Ginolhac, Bouchard
GRETSI 2017 – XXVIème Colloque francophone de traitement du signal et des images, Juan-Les-Pins, France, 2017

Réduction de dimension pour la Séparation Aveugle de Sources

Bouchard, Coelho Rodrigues, Malick, Congedo
GRETSI 2017 – XXVIème Colloque francophone de traitement du signal et des images, Juan-Les-Pins, France, 2017

A Closed-Form Unsupervised Geometry-Aware Dimensionality Reduction Method in the Riemannian Manifold of SPD Matrices

Congedo, Coelho Rodrigues, Bouchard, Barachant, Jutten
EMBC 2017 – 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Jeju Island, Corée du Sud, 2017

Approximate Joint Diagonalization According to the Natural Riemannian Distance

Bouchard, Malick, Congedo
LVA/ICA 2017 – 13th International Conference on Latent Variable Analysis and Signal Separation, Grenoble, France, 2017
2016

Mining the Bilinear Structure of Data with Approximate Joint Diagonalization

Korczowski, Bouchard, Jutten, Congedo
EUSIPCO 2016 – 24th European Signal Processing Conference, Budapest, Hongrie, 2016

Approximate Joint Diagonalization within the Riemannian Geometry Framework

Bouchard, Korczowski, Malick, Congedo
EUSIPCO 2016 – 24th European Signal Processing Conference, Budapest, Hongrie, 2016