Florent BOUCHARD
Researcher
florent.bouchard@l2s.centralesupelec.fr
L2S, CentraleSupélec
3 rue Joliot Curie
91190 Gif-sur-Yvette, France
Online change detection in SAR time-series with Kronecker product structured scaled Gaussian models
Probabilistic PCA From Heteroscedastic Signals: Geometric Framework and Application to Clustering
A Riemannian Framework for Low-Rank Structured Elliptical Models
On Riemannian and non-Riemannian Optimisation, and Optimisation Geometry
Random matrix improved covariance estimation for a large class of metrics
Riemannian geometry for compound Gaussian distributions: Application to recursive change detection
Approximate joint diagonalization with Riemannian optimization on the general linear group
Intrinsic Cramér–Rao bounds for scatter and shape matrices estimation in CES distributions
Riemannian Optimization and Approximate Joint Diagonalization for Blind Source Separation
Random matrix theory improved Fréchet mean of symmetric positive definite matrices
Robust Low-Rank Correlation Fitting
Learning Graphical Factor Models with Riemannian Optimization
t-WDA: A novel Discriminant Analysis applied to EEG classification
Distribution matricielle t-Wishart : géométrie d’information, estimation et application pour la classification de signaux EEG
Estimation de barycentres sur variétés de Stiefel : une approche par projection
Optimisation Riemannienne pour l’apprentissage de graphes structurés
Elliptical Wishart Distribution: Maximum Likelihood Estimator from Information Geometry
Riemannian classification of EEG signals with missing values
ON THE USE OF GEODESIC TRIANGLES BETWEEN GAUSSIAN DISTRIBUTIONS FOR CLASSIFICATION PROBLEMS
On-line Kronecker Product Structured Covariance Estimation with Riemannian geometry for t-distributed data
A Tyler-type estimator of location and scatter leveraging Riemannian optimization
A Riemannian approach to blind separation of t-distributed sources
Riemannian framework for robust covariance matrix estimation in spiked models
Riemannian geometry and Cramér-Rao bound for blind separation of Gaussian sources
Bornes de Cramér-Rao Intrinsèques pour l’estimation de la matrice de dispersion normalisée dans les distributions elliptiques
Random Matrix Improved Covariance Estimation for a Large Class of Metrics
Dimensionality Reduction for BCI classification using Riemannian geometry
Géométrie Riemannienne appliquée à la réduction de la dimension de signaux EEG pour les interfaces cerveau-machine
Borne de Cramér-Rao intrinsèque pour la matrice de covariance des distributions elliptiques complexes
Réduction de dimension pour la Séparation Aveugle de Sources
A Closed-Form Unsupervised Geometry-Aware Dimensionality Reduction Method in the Riemannian Manifold of SPD Matrices
Approximate Joint Diagonalization According to the Natural Riemannian Distance
Mining the Bilinear Structure of Data with Approximate Joint Diagonalization
Approximate Joint Diagonalization within the Riemannian Geometry Framework
CentraleSupélec,
3, rue Joliot Curie,
91190 Gif-sur-Yvette
Supporting institutes
©2024 L2S - All rights reserved, reproduction prohibited.