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This paper deals with surrogate modeling of a computer code output in a hierarchical multi-fidelity context, i.e., when
the output can be evaluated at different levels of accuracy and computational cost. Using observations of the output at
low- and high-fidelity levels, we propose a method that combines Gaussian process (GP) regression and the Bayesian
neural network (BNN), called the GPBNN method. The low-fidelity output is treated as a single-fidelity code using
classical GP regression. The high-fidelity output is approximated by a BNN that incorporates, in addition to the high-
fidelity observations, well-chosen realizations of the low-fidelity output emulator. The predictive uncertainty of the
final surrogate model is then quantified by a complete characterization of the uncertainties of the different models and
their interaction. The GPBNN is compared to most of the multi-fidelity regression methods allowing one to quantify
the prediction uncertainty.
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1. INTRODUCTION

We consider the situation in which two levels of code that simulate the same system have different costs and accu-
racies. This framework is called hierarchical multi-fidelity. We want to build a surrogate model of the most accurate
and most costly code level, also called the high-fidelity code. The underlying motivation is to carry out an uncertainty
propagation study or a sensitivity analysis that require many calls; therefore, the substitution of the high-fidelity code
by a surrogate model with quantified prediction uncertainty is necessary. To build the surrogate, a small number NH

of high-fidelity code outputs and a large number NL of low-fidelity code outputs are given. In some applications we
may have NL � NH , but this paper will focus on NL > NH and the context of small data. Then, the low-fidelity
surrogate model uncertainty must be taken into account.

A well-known method to build a surrogate model with uncertainty quantification is Gaussian process (GP) regres-
sion, GP 1F in this paper. This method has become popular in computer experiments [1,2] and now allows scaling up
in the number of learning points [3]. The emergence of multi-fidelity codes (codes that can be run at different levels
of accuracy and cost) has motivated the introduction of new GP regression approaches. The first one was the Gaussian
process auto-regressive or AR(1) scheme proposed by [4]. The form of the AR(1) model expresses a simple and linear
relationship between the codes and it follows from a Markov property [5]. This method is used in [6] for optimization.
This approach has been improved by [7] with the decoupling of the recursive estimation of the hyper-parameters of
the different code levels. In the following, the recursive AR(1) model is called the AR(1) model because the results
do not change and only the computation time is reduced. The Deep GP method introduced in [8] makes it possible
to adapt the approach to cases in which the relationships between the code levels are nonlinear. An improvement has
been further made by adding to the covariance function of the high-fidelity GP proposed by [8] a linear kernel in
[9]. Multi-fidelity GP regression has been used in several fields, as illustrated in [10,11]. Multi-fidelity polynomial
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Motivation of surrogate modeling

Megajoule laser experiment [CEA DAM, 2021]

� Physical system (Inertial confinement fusion)

� Manufacture of targets ∼ 1 year
� Set up of the installation ∼ 2 months
� Performing an experiment ∼ 1 day

� Computer code

� Computation of a numerical experiment ∼ 1 week

→ Uncertainty quantification requires "many" simulations, intractable
with this computer code.

� Surrogate model
� Computing a surrogate experiment ∼ 1 second
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Motivation of surrogate modeling
Input parameters x

Computer codePhysical system Surrogate model

+

+
+

+ +

+

≈ ≈zexp(x) z(x) z̃(x)

PredictSimulateExperimental
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Multi-fidelity surrogate model
- Two versions of the code are available:

Low Fidelity Code (Cheap)

x zL(x)
High Fidelity Code (Expensive)

x zH(x)

Low Fidelity

Surrogate Model

Enriched

Goal: Construct a surrogate from
(
zL(x (i))

)NL

i=1 and
(
zH(x (i))

)NH

i=1 NH < NL
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Hierarchical 2 levels multi-fidelity

2 versions of the same code
� Low-fidelity : cheap and approximation
� High-fidelity : expensive and very accurate

ZH(x) = ρ (x , ZL(x) ) + δ(x)

� The interaction between code depends on the model.
� Low-fidelity is learn with an independant surrogate model.
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Goal

Method for surrogate modeling in a multi-fidelity framework

Stat-of-the-art methods:

� Multi-fidelity surrogate modeling with simple interactions and uncertainties quantification,

� Multi-fidelity surrogate modeling with complexe interactions and without uncertainties
quantification.

Challenges:

� Take into-account non-linear interactions and non-given interactions between fidelities.
� Quantify the prediction uncertainties associated with the surrogate model.
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Simple fidelity Gaussian process regression
� Hypothesis: z(x) is a realization of a Gaussian process (GP) Z (x)
� We have N observations z(x (i)) = y (i), i = 1, · · · ,N.
� The conditional GP gives a prediction of z(x), with analytical expressions for mean and

variance.
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This framework is presented in [Williams and Rasmussen, 2006].
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Multi-fidelity with scalar outputs

Problem: We want to predict a costly code outputs aH(x) ∈ R, with x ∈ Rd . We
also have access to a cheaper code aL(x) with more observations available.

State-of-the-art GP-based methods:
� Multi-fidelity AR(1) Gaussian process regression [Kennedy and O’Hagan, 2000].
� Multi-fidelity with Deep Gaussian processes [Perdikaris et al., 2017].
� Neural network for multi-fidelity [Meng et al., 2020].

Proposed approach:
� Gaussian process and Bayesian Neural network combined (GP-BNN) [Kerleguer, et al., 2024].

A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 9



Multi-fidelity with scalar outputs

Problem: We want to predict a costly code outputs aH(x) ∈ R, with x ∈ Rd . We
also have access to a cheaper code aL(x) with more observations available.

State-of-the-art GP-based methods:
� Multi-fidelity AR(1) Gaussian process regression [Kennedy and O’Hagan, 2000].
� Multi-fidelity with Deep Gaussian processes [Perdikaris et al., 2017].
� Neural network for multi-fidelity [Meng et al., 2020].

Proposed approach:
� Gaussian process and Bayesian Neural network combined (GP-BNN) [Kerleguer, et al., 2024].

A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 9



Multi-fidelity AR(1) Gaussian process regression

� Hypothesis: The emulator is a Gaussian process (AH(x),AL(x)).

� Autoregressive CoKriging model from [Kennedy and O’Hagan, 2000] :

AH(x) = ρ(x)AL(x) + δ(x),

where δ(x) GP independent of AL(x) and ρ(x) adjustment linear form.

� Estimation of hyperparameters: Maximum likelihood [Le Gratiet and Garnier, 2014], [Ma, 2020].

� Prediction: We have

[AH(x)|data, hyperparameters] ∼ GP(mAH (x), σ
2
AH (x)),

the quantities mAH (x) and σ2
AH
(x) have analytical expressions.
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Illustration AR(1) surrogate model
Academic 1D illutration
The "cheap" code (in red) : z1(x) = 0.5(6x − 2)2sin(12x − 4) + 10(x − 0.5) − 5
The expensive code (in black) : z2(x) = 2z1(x) − 20x + 20
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Same DOE : we learn nothing more about z2(x).

AR(1) model with 2 levels of code

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling 63

Academic 1D illutration
The "cheap" code (in red) : z1(x) = 0.5(6x − 2)2sin(12x − 4) + 10(x − 0.5) − 5
The expensive code (in black) : z2(x) = 2z1(x) − 20x + 20
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Nested DOE : knowledge of z1(x) gives us information about z2(x).

AR(1) model with 2 levels of code

Numerical analysis Summer school 2021 - CEA EDF INRIA Multi-Fidelity surrogate modeling 63

Linear interactions between low- and high-fidelity:
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AR(1) multi-fidelity → for linear interactions
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If the interaction between fidelities is non-linear ?

Deep Gaussian process for multi-fidelity [Perdikaris et al., 2017]

� Hypotheses :
� There is a known relation between fidelity
� The output of the code is a realization of a Gaussian process

fL(x) = hL(x),

fL(x) = hH(x, fL(x)) + δ(x),

with hL,H two GPs and δ a GP.
The GP prior fL with the GP posterior from the previous inference level f ?L (x). Then, using
the additive structure , along with the independence assumption between the GPs fL and
δ, we can summarize the autoregressive scheme as

fL(x) = gL(x, f ?L (x)),

where gL ∼ GP (fL|0, k2((x, f ?1 (x)), (x, f ?1 (x)), θ)). θ is the hyperparameters of the model.
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The machine learning option

Multi-fidelity neural networks [Meng et al., 2020]

X. Meng, G.E. Karniadakis / Journal of Computational Physics 401 (2020) 109020 3

Fig. 1. Schematic of the multi-fidelity DNN and MPINN. The left box (blue nodes) represents the low-fidelity DNN NN L(x, θ) connected to the box with 
green dots representing two high fidelity DNNs, NN Hi (x, yL , γi) (i = 1, 2). In the case of MPINN, the combined output of the two high-fidelity DNNs is 
input to an additional PDE-induced DNN. Here ∂� = �

∂t , ∂x, ∂y , ∂
2
x , ∂2

y , ...
�
yH denotes symbolically the last DNN that has a very complicated graph and its 

structure is determined by the specific PDE considered. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

To explore the linear/nonlinear correlation adaptively, we then decompose F(.) into two parts, i.e., the linear and nonlinear 
parts, which are expressed as

F = Fl + Fnl, (4)

where Fl and Fnl denote the linear and nonlinear terms in F , respectively. Now, we construct the correlation as

yH = Fl(x, yL) + Fnl(x, yL). (5)

The architecture of the proposed multi-fidelity DNN and MPINN is illustrated in Fig. 1, which is composed of four 
fully-connected neural networks. The first one NN L(xL, θ) is employed to approximate the low-fidelity data, while the 
second and third NNs (NN Hi (x, yL, β, γi), i = 1, 2) are for approximating the correlation for the low- and high-fidelity 
data; the last NN (NN fe ) is induced by encoding the governing equations, e.g. the partial differential equations (PDEs). In 
addition, Fl = NN H1 , and Fnl = NN H2 ; θ , β , and γi, i = 1, 2 are unknown parameters of the NNs, which can be learned 
by minimizing the following loss function:

MSE = MSE yL + MSE yH + MSE fe + λ
�

β2
i , (6)

where

MSE yL = 1

NyL

NyL�

i=1

�
|y∗

L − yL |2 + |∇ y∗
L − ∇ yL |2

�
, (7)

MSE yH = 1

NyH

NyH�

i=1

�
|y∗

H − yH |2
�

, (8)

MSE fe = 1

N f

N f�

i=1

�
| f ∗

e − fe|2
�

. (9)

Here, ψ (ψ = y∗
L, y∗

H , and f ∗
e ) denote the outputs of the NN L , NN H , and NN fe , β is any weight in NN L and NN H2 , 

and λ is the L2 regularization rates for β . The L2 regularization has been widely adopted to prevent overfitting [26,27], 
which is also used here to reduce the overfitting in both NN L and NN H2 . In addition, we can also penalize ∇ yL if 
the gradient of the low-fidelity data is available, which helps the approximation of yL . It is worth mentioning that the 
boundary/initial conditions for fe can also be added into the loss function, in a similar fashion as in the standard PINNs 
introduced in detail in [23] so we do not elaborate on this issue here. In the present study, the loss function is optimized 
using the L-BFGS method together with Xavier’s initialization method, while the hyperbolic tangent function is employed as 
the activation function in NN L and NN H2 . We note that no activation function is included in NN H1 due to the fact that 
it is used to approximate the linear part of F .

Finally, the rationale behind the linear/nonlinear decomposition in Eq. (5) is explained in detail here. In general, one has 
no prior knowledge on the correlation between the low- and high-fidelity data, which needs to be learned based on the 
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The machine learning option

Multi-fidelity Bayesian neural networks [Meng et al., 2020]
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Bayesian Neural Network (BNN)

� Bayesian neural network (BNN) for regression.

� We start from the same formalism as a neural network:

y = g(w1x + β1)

BNN(x) = w2y + β2

w1 ∈ Rq×d , β1 ∈ Rq , w2 ∈ Rq , β2 ∈ R and g activation function.

� The parameters wi and βi follow the Bayesian formalism.

� To predict we use Markov-Chain Monte-Carlo methods like Hamiltonian Monte Carlo.
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GP-BNN [Kerleguer, et al., 2024]

� The low-fidelity code is modeled by a Gaussian process.
� The High-fidelity and high-low interaction is modeled by a Bayesian Neural Network.
� The predictive distribution of the low-fidelity is transfered to the BNN using Gauss-Hermite

quadrature.

x
...

...
m̃AH (x)

σ̃2
AH (x)

GP
BNN

High-fidelity

Low-fidelity ∑
S

pS,1

pS,SÃL(x)∼GP

ÃL,1(x)

ÃL,S(x)
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GP-BNN estimators

The Gauss-Hermite sampling in the GP-BNN method.

Low-fidelity Sampling High-fidelity

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

� GP-BNN → for non-linear interactions

A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 18



Sampling of ÃL(x)
� Let zS,i be the roots of the Hermite polynomials HS(x) = (−1)Sex2

∂S
x e−x2

, S ∈ N.
� For each input x the GP posterior law has mean µL(x) and covariance CL(x, x).
� Therefore, the i th realization in the Gauss-Hermite quadrature formula is:

f̃L,i(x) = µL(x) + zS,i

√
CL(x, x),

� the associated weight is pS,i =
2S−1S!

√
π

S2H2
S−1(zS,i )

, for i = 1, . . . ,S.
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The High-fidelity BNN

� The inputs: x and f̃L,i(x)

� Output: BNNθ(x, f̃L,i(x))
� The estimator of the predictive mean of the output of the high-fidelity model is:

f̃H(x) =
1

Nv

Nv∑
j=1

S∑
i=1

pS,iBNNθj (x, f̃L,i(x)),

and the estimator of the predictive variance is:

C̃H(x) =
1

Nv

Nv∑
j=1

(
S∑

i=1

pS,iBNNθj (x, f̃L,i(x))

)2

− f̃ 2
H(x) +

1
Nv

Nv∑
j=1

(
S∑

i=1

p2
S,i

)
σ2

j .

→ Also available for Mean-Standard Deviation Method, Quantiles Method
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Hyperparameters of the model

Low fidelity model
� Prior mean and parameters (null mean and classical DICEkriging priors)
� Kernel function (Matèrn 5

2 )
� (Low fidelity Sampler)

High fidelity
� Dimension of the neural network (Set at 100)
� Number of samples in the MCMC estimator (Nv = 500 explaine in [Kerleguer, et al., 2024])
� Number of samples of the low-fidelity Gaussian process S (Explain in the following)

A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 21



Multi-Fidelity scalar illustration
Interaction AR(1) GP-BNN

Linear
[Forrester et al., 2007]
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Evaluation of surrogate models

Q2

Q2
T = 1−

∑NT
i=1

[
µ̃H(x

(i)
T )− fH(x

(i)
T )
]2

NTVT (fH)
,

with VT(fH) = 1
NT

∑NT
i=1

[
fH(x

(i)
T )− 1

NT

∑NT
j=1 fH(x

(j)
T )
]2.

� A highly predictive model gives a Q2
T close to 1 while a less predictive model has a smaller Q2

T.

Evaluation of the uncertainty interval
� The uncertainty prediction interval is not taken into account with Q2. Two metrics are therefore

introduced: the coverage probability and the mean predictive interval width. Both were studied
in [Acharki et al., 2023] and [Kerleguer, et al., 2024].
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Evaluation of surrogate models
Coverage probability (CP)

� CPα: probability for fH(xT) to be within the prediction interval with confidence level α :

CPα =
1

NT

NT∑
i=1

1
fH (x(i)T )∈Iα(x(i)T )

,

with 1 the indicator function and Iα(x) the prediction interval at point x with confidence level α.
� The prediction uncertainty of the surrogate model is well characterized when CPα is close to α.

Mean Predictive Interval Width
� The mean predictive interval width MPIWα is the average width of the prediction intervals:

MPIWα =
1

NT

NT∑
i=1

∣∣Iα(x(i)
T )
∣∣,

where |Iα(x)| the length of the prediction interval Iα(x).
� The prediction uncertainty of the surrogate model is small when MPIWα is small.
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Parameters of the surrogate model
A test multi-fidelity function [Perdikaris et al., 2017]
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Parameters of the surrogate model
A test multi-fidelity function [Perdikaris et al., 2017]
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Low fidelity learning intervals
The low-fidelity learning interval is I = [0,1]\̄I

Ī ∅ [1
3 ,

2
3 ] [3

4 ,1]

Q2
L 0.99 0.98 0.84
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Optimal S for this example

� GPBNN performance with different values of S
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→ S = 5, number of neurons Nn = 100 and number of samples Nv = 500
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Performance of the surrogate model

MBK method is proposed in [Meng et al., 2020]
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→ Prediction performance is equivalent, but in areas where low fidelity is poorly
reconstructed, GPBNN performs better.

→ The uncertainty interval is more relevant in all cases for the GPBNN method
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Double pendulum

GP 1F AR(1) [Perdikaris et al., 2017] [Meng et al., 2020] [Kerleguer, et al., 2024]

Q2
T 0.93 0.94 0.95 0.54 0.95

CP80% 0.81 0.78 0.62 0.88 0.80
MPIW80% 0.154 0.146 0.069 0.859 0.101

Q2
T: represent the quadratic error.

CP80%: coverage probabilité of the Uncertainty Quantification.
MPIW80% size of the Uncertainty interval.

A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 29



Perspectives

Gaussian-Process Bayesian Neural Network:
� Modele available on [Kerleguer, et al., 2024]

� Uncertainty prediction for both high- and low-fidelity

� Interactions between high- and low-fidelity linear and non-linear

Adaptations needed:

� Growing the dimension of output

� Image processing

� Non-hierarchical Multi-fidelity surrogate modeling
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Hierarchical Multi-fidelity is more than

MF : Multi-Fidelity, GP : Gaussien Process, NN : Neural Network

Scalar Time-series

Linear Co-Kriging MF x x
autorecursive MF x x MF time series x x

Non-linear

Deep GP x x
GPBNN x x

Deep MF
Transfert learning

Deep MF
(MF wavelet GP x x)

Transfert learning

Today’s methods x Avec quantification d’incertitudes
( work in progress ) x Small Data

A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 31



References

Acharki Naoufal, Antoine Bertoncello, and Josselin Garnier (2023)
Robust prediction interval estimation for Gaussian processes by cross-validation method
Computational Statistics & Data Analysis, 178 (2023): 107597.

CEA DAM (2021)
Première expérience de fusion nucléaire au laser mégajoule
www-dam.cea.fr

Alexander Forrester, Andras Sóbester and Andy Keane (2007)
Multi-fidelity optimization via surrogate modelling
Proceedings of the royal society A: mathematical, physical and engineering sciences, 463(2088), 3251-3269.

M. C. Kennedy and A. O’Hagan (2000)
Predicting the output from a complex computer code when fast approximations are available
Biometrika,(2000), 87, 1, pp. 1–13.

Baptiste Kerleguer, Claire Cannamela, and Josselin Garnier (2024)
A Bayesian neural network approach to Multi-fidelity surrogate modelling
In Review in International Journal for Uncertainty Quantification.
International Journal for Uncertainty Quantification 14(1):43–60.

Loic Le Gratiet and Josselin Garnier (2014)
Recursive co-kriging model for design of computer experiments with multiple levels of fidelity
International Journal for Uncertainty Quantification 4(5).

A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 32

www-dam.cea.fr


References

Edward Lorenz (1963)
Deterministic Nonperiodic Flow
Journal of the Atmospheric Sciences, 20(2), 130-141.

Pulong Ma (2020)
Objective Bayesian analysis of a cokriging model for hierarchical multifidelity codes.
SIAM/ASA Journal on Uncertainty Quantification, vol. 8, no 4, p. 1358-1382.

Xuhui Meng, Hessam Babaee and George Em Karniadakis (2021)
Multi-fidelity Bayesian neural networks: Algorithms ans applications
Journal of Computational Physics,401 (2021): 110361.

Paris Perdikaris, Maziar Raissi, Andreas Damianou, Neil Lawrence, & George Karniadakis (2017)
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,473.2198 (2017): 20160751.

Williams, Christopher and Carl Edward Rasmussen (2006)
Gaussian processes for machine learning
Cambridge, MA : MIT press,(2006).

A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 33


	Context and Goals
	Surrogate modeling
	Multi-fidelity
	Simple fidelity Gaussian process regression
	AR(1) multi-fidelity model
	GP-BNN model


