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Motivation of surrogate modeling

Megajoule laser experiment [CEA DAM, 2021]

B Physical system (Inertial confinement fusion)

B Manufacture of targets ~ 1 year
B Set up of the installation ~ 2 months

B Performing an experiment ~ 1 day

® Computer code

B Computation of a numerical experiment ~ 1 week

— Uncertainty quantification requires "many" simulations, intractable
with this computer code.

® Surrogate model
B Computing a surrogate experiment ~ 1 second
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Motivation of surrogate modeling

Input parameters x

| | |

Physical system Computer code Surrogate model

£ -

Zexp(X) ~ z(x) ~ Z(x)
Experimental Simulate Predict
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Multi-fidelity surrogate model \‘\\

- Two versions of the code are available:

Low Fidelity Code (Cheap)

—— Low Fidelity

X \Z(x)
High Fidelity Code (Expensive) Enriched

—— Surrogate Model

Goal: Construct a surrogate from (zL(x("))),'.\LL1 and (z,.,(x("))),l.vz”1 Ny < N,
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Hierarchical 2 levels multi-fidelity

2 versions of the same code
® | ow-fidelity : cheap and approximation
® High-fidelity : expensive and very accurate

Zh(X) = px, Zux) )+

® The interaction between code depends on the model.
B | ow-fidelity is learn with an independant surrogate model.
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Goal \‘\\

Method for surrogate modeling in a multi-fidelity framework
Stat-of-the-art methods:
B Multi-fidelity surrogate modeling with simple interactions and uncertainties quantification,

B Multi-fidelity surrogate modeling with complexe interactions and without uncertainties
quantification.

Challenges:

B Take into-account non-linear interactions and non-given interactions between fidelities.
B Quantify the prediction uncertainties associated with the surrogate model.
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Simple fidelity Gaussian process regression

B Hypothesis: z(x) is a realization of a Gaussian process (GP) Z(x)
® We have N observations z(x\)) =y, j=1,... N.
B The conditional GP gives a prediction of z(x), with analytical expressions for mean and

variance.
10
—— code
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51 == estimation
[ /g5, interval
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-10
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This framework is presented in [williams and Rasmussen, 2006].
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Multi-fidelity with scalar outputs

Problem: We want to predict a costly code outputs ay(x) € R, with x € RY. We
also have access to a cheaper code a; (x) with more observations available.
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Multi-fidelity with scalar outputs

Problem: We want to predict a costly code outputs ay(x) € R, with x € RY. We
also have access to a cheaper code a; (x) with more observations available.

State-of-the-art GP-based methods:
B Multi-fidelity AR(1) Gaussian process regression [Kennedy and O’Hagan, 2000].
B Multi-fidelity with Deep Gaussian processes [Perdikaris et al., 2017].
B Neural network for multi-fidelity [Meng et al., 2020].
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Multi-fidelity AR(1) Gaussian process regression

B Hypothesis: The emulator is a Gaussian process (Ax(x), AL(x)).

B Autoregressive CoKriging model from [Kennedy and O’'Hagan, 2000] :
An(x) = p(X)AL(x) + 0(x),

where §(x) GP independent of A.(x) and p(x) adjustment linear form.
B Estimation of hyperparameters: Maximum likelihood [Le Gratiet and Garnier, 2014], [Ma, 2020].

B Prediction: We have
[An(x)|data, hyperparameters] ~ GP(ma,(x), o4, (X)),

the quantities ma,,(x) and af‘H(x) have analytical expressions.
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lllustration AR(1) surrogate model

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Linear interactions between low- and high-fidelity:

00 25 50 75 100 125 150 175

Z
AR(1) multi-fidelity — for linear interactions
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If the interaction between fidelities is non-linear ?
Deep Gaussian process for multi-fidelity [perdikaris et al., 2017

® Hypotheses :

B There is a known relation between fidelity
B The output of the code is a realization of a Gaussian process

fr(x) = he(x),
fL(X) = hu(x, fL(X)) + 5(x),

with h; 4 two GPs and ¢ a GP.

The GP prior f, with the GP posterior from the previous inference level f*(x). Then, using
the additive structure , along with the independence assumption between the GPs f; and
4, we can summarize the autoregressive scheme as

fL(x) = gL(x7 fL*(x))7
where g, ~ GP (1,10, ka((X, f7 (X)), (X, (X)), 8)). 0 is the hyperparameters of the model.
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The machine learning option

Multi-fidelity neural networks [veng et al., 2020]

X. Meng, G.E. Karniadakis / Journal of Computational Physics 401 (2020) 109020
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The machine learning option

Multi-fidelity Bayesian neural networks [ueng et al., 2020]

Deep neural networks
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Multi-fidelity with scalar outputs

Problem: We want to predict a costly code outputs ay(x) € R, with x € RY. We
also have access to a cheaper code a; (x) with more observations available.

State-of-the-art GP-based methods:
B Multi-fidelity AR(1) Gaussian process regression [Kennedy and O’Hagan, 2000].
B Multi-fidelity with Deep Gaussian processes [Perdikaris et al., 2017].
B Neural network for multi-fidelity [Meng et al., 2020].

Proposed approach:
B Gaussian process and Bayesian Neural network combined (GP-BNN) [Kerleguer, et al., 2024].
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Bayesian Neural Network (BNN)

B Bayesian neural network (BNN) for regression.

We start from the same formalism as a neural network:

y =9g(wx+ 1)

BNN(x) = way + (32
wi € R 8y e RY, wy € RY, 3, € R and g activation function.

B The parameters w; and j; follow the Bayesian formalism.

To predict we use Markov-Chain Monte-Carlo methods like Hamiltonian Monte Carlo.
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GP-BNN [Kerleguer, et al., 2024]

® The low-fidelity code is modeled by a Gaussian process.
® The High-fidelity and high-low interaction is modeled by a Bayesian Neural Network.
B The predictive distribution of the low-fidelity is transfered to the BNN using Gauss-Hermite

quadrature.
High-fidelity
e N
Low-fidelity ~
X — n : I:ZAH(X)
g']) A(x)~GP S o AH(X)

J
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GP-BNN estimators

The Gauss-Hermite sampling in the GP-BNN method.

Low-fidelity

Sampling

High-fidelity

0.0 02 0.4 0.6 08 10

B GP-BNN — for non-linear interactions
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Sampling of A;(x)
B |et zs; be the roots of the Hermite polynomials Hs(x) = (—1)Se*28,§e*XZ, SeN.
B For each input x the GP posterior law has mean . (x) and covariance C.(X, X).
B Therefore, the ith realization in the Gauss-Hermite quadrature formula is:

fLi(X) = p(X) + 25,1/ CL(X, X),

B the associated weight is ps; = Sis%s'(z\/j) fori=1,...,8.
S—1 5!

-2

@ A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 19



ARG
The High-fidelity BNN \\

® The inputs: x and 7 ;(x)
® Output: BNNg(x, f.i(X))
B The estimator of the predictive mean of the output of the high-fidelity model is:

N, S
~ 1 %
fu(x) = No E E PS,iBNNBj(xv fLi(X)),

j=1 i=1

and the estimator of the predictive variance is:

2
Ch(x) = N Z (Zps,BNNg (x, fLi(x ))) — fA(x + N Z (Zps,> af.

— Also available for Mean-Standard Deviation Method, Quantiles Method
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Hyperparameters of the model \\\

Low fidelity model

® Prior mean and parameters (null mean and classical DICEkriging priors)
® Kernel function (Matern 2)
B (Low fidelity Sampler)

High fidelity
® Dimension of the neural network (Set at 100)

® Number of samples in the MCMC estimator (N, = 500 explaine in [kerleguer, et al., 2024])
® Number of samples of the low-fidelity Gaussian process S (Explain in the following)
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Multi-Fidelity scalar illustration

Interaction AR(1) GP-BNN
Linear s ,

[Forrester et al., 2007] ¢ o S

Non-linear o0

sin-sin® s
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Evaluation of surrogate models

02

M (i) — fu(x))?
NTVT (fH) )

Qr=1-

with V() = i S [1060) — % )

B A highly predictive model gives a Q2 close to 1 while a less predictive model has a smaller Q3.

Evaluation of the uncertainty interval

B The uncertainty prediction interval is not taken into account with Q?. Two metrics are therefore
introduced: the coverage probability and the mean predictive interval width. Both were studied
in [Acharki et al., 2023] and [Kerleguer, et al., 2024].
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Evaluation of surrogate models
Coverage probability (CP)

B CP,: probability for f;(xr) to be within the prediction interval with confidence level o :

1 &
CPa = Nt ; 1fH(X£II;))EIa(X£Il))7

with 1 the indicator function and Z.,(x) the prediction interval at point x with confidence level «.
® The prediction uncertainty of the surrogate model is well characterized when CP,, is close to a.
Mean Predictive Interval Width
B The mean predictive interval width MPIW,, is the average width of the prediction intervals:
MPIW, = %T: |Za (x|
« = Ne o(XT) |

i=1
where |Z.(x)| the length of the prediction interval Z, (x).
B The prediction uncertainty of the surrogate model is small when MPIW, is small.
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Parameters of the surrogate model
A test multi-fidelity function [rerdikaris et al., 2017]

1.04 1.0

0.5 0.5

= 0.0 -~ 0.0
£ x
b= =

-0.5 -0.5

-1.0 -1.0

-15 -15

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x x

fL(x) = sin 87 x i fu(x) = (x = V2)3(x)

ZH
L

Interactions :

"
ZL
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Parameters of the surrogate model
A test multi-fidelity function [perdikaris et al., 2017)

1.0 1.0

0.5 05

= 0.04 ~ 0.0
X x
b= =

-0.5 -0.5

-1.0 -1.0

=15 -15

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Low fidelity learning intervals

The low-fidelity learning interval is I = [0, 1]\/
T 0 3.5 31
Q2099 098 084
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Optimal S for this example

= GPBNN performance with different values of S

1.00
Py ——— _
0.95 - S \\
ot ,.\
0.90 Douhh S
o~ 0.85 - \

— =0 \
0.80 _

---1=2 A
0.75 3’3
070{ e I=[3.1]
0.65

2 4 6 8 10 12 2 4 6 8 10 12
S S

— § =5, number of neurons N, = 100 and number of samples N, = 500

@ A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 27



Performance of the surrogate model

MBK method is proposed in [Meng et al., 2020]

1.0 Low-Fidelity 10 10
— Exact
— = MBK method 05 05
05 — - GP-BNN method
L
00 0.0 \
0.0 ,\
/'\ s
¢ -05
-05 \' o | |
{ | \ 1! \/" \ ! -1.0
/ '\J Low-Fidelity -10 Low-Fidelity
-1.0 v \J _1s — Exact — Exact
= MBK method -15 —= MBK method
—- GP-BNN method —- GP-BNN method
“1s -20
0.0 0.2 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

— Prediction performance is equivalent, but in areas where low fidelity is poorly

reconstructed, GPBNN performs better.

— The uncertainty interval is more relevant in all cases for the GPBNN method
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Double pendulum Mﬂ%ﬁ \N.

‘ GP 1F AR(1) [Perdikaris et al., 2017]  [Meng et al., 2020]  [Kerleguer, et al., 2024]

Qz 093 0.94 0.95 0.54 0.95
CPgoo; 081 078 0.62 0.88 0.80
MPIWgq, | 0.154 0.146 0.069 0.859 0.101

Q2.: represent the quadratic error.
CPgge,: coverage probabilité of the Uncertainty Quantification.
MPIWgqo, size of the Uncertainty interval.
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Perspectives \

Gaussian-Process Bayesian Neural Network:
B Modele available on kerieguer, et al., 2024]
® Uncertainty prediction for both high- and low-fidelity

B |nteractions between high- and low-fidelity linear and non-linear

Adaptations needed:

® Growing the dimension of output
B |[mage processing

®m Non-hierarchical Multi-fidelity surrogate modeling
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Hierarchical Multi-fidelity is more than

MF : Multi-Fidelity, GP : Gaussien Process, NN : Neural Network

I Scalar | Time-series
Linear Co-Kriging MF x x MF time series x x
autorecursive MF x x
e | e
Non-linear (MF wavelet GP x x)
Deep MF .
. Transfert learning
Transfert learning

Today’s methods x Avec quantification d’incertitudes
(work in progress ) x Small Data

a A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024 31



References

@ Acharki Naoufal, Antoine Bertoncello, and Josselin Garnier (2023)
Robust prediction interval estimation for Gaussian processes by cross-validation method
Computational Statistics & Data Analysis, 178 (2023): 107597.
@ CEA DAM (2021)
Premiere expérience de fusion nucléaire au laser mégajoule
www-dam.cea.fr
Alexander Forrester, Andras Sébester and Andy Keane (2007)

Multi-fidelity optimization via surrogate modelling
Proceedings of the royal society A: mathematical, physical and engineering sciences, 463(2088), 3251-3269.

[
a M. C. Kennedy and A. O’Hagan (2000)
[
B

Predicting the output from a complex computer code when fast approximations are available
Biometrika,(2000), 87, 1, pp. 1-13.

Baptiste Kerleguer, Claire Cannamela, and Josselin Garnier (2024)

A Bayesian neural network approach to Multi-fidelity surrogate modelling
In Review in International Journal for Uncertainty Quantification.
International Journal for Uncertainty Quantification 14(1):43—-60.

Loic Le Gratiet and Josselin Garnier (2014)

Recursive co-kriging model for design of computer experiments with multiple levels of fidelity
International Journal for Uncertainty Quantification 4(5).

@ A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024

32


www-dam.cea.fr

References

@ Edward Lorenz (1963)
Deterministic Nonperiodic Flow
Journal of the Atmospheric Sciences, 20(2), 130-141.

@ Pulong Ma (2020)

Objective Bayesian analysis of a cokriging model for hierarchical multifidelity codes.
SIAM/ASA Journal on Uncertainty Quantification, vol. 8, no 4, p. 1358-1382.

Xuhui Meng, Hessam Babaee and George Em Karniadakis (2021)

Multi-fidelity Bayesian neural networks: Algorithms ans applications
Journal of Computational Physics,401 (2021): 110361.

Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling

@ Paris Perdikaris, Maziar Raissi, Andreas Damianou, Neil Lawrence, & George Karniadakis (2017)
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,473.2198 (2017): 20160751.

Williams, Christopher and Carl Edward Rasmussen (2006)

Gaussian processes for machine learning
Cambridge, MA : MIT press,(2006).

@ A Bayesian neural network approach to multi-fidelity surrogate modeling - B. Kerleguer et al. 7 march 2024

33



	Context and Goals
	Surrogate modeling
	Multi-fidelity
	Simple fidelity Gaussian process regression
	AR(1) multi-fidelity model
	GP-BNN model


