Generalized Hoeffding Decomposition

AND THE (SURPRISING) LINEAR NATURE OF NON-LINEARITY

${ }^{1}$ EDF R\&D - Lab Chatou - PRISME Department
 ${ }^{2}$ Institut de Mathématiques de Toulouse
 ${ }^{3}$ SINCLAIR AI Lab

UQSay Seminar \#69
Online - Saclay, France. February 8, 2024

Does Hoeffding's functional decomposition hold when the inputs are not mutually independent?

Classical Hoeffding's decomposition: Unique decomposition $G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)$ for any square-integrable $G(X)$, where the inputs X are mutually independent.

Some context

Does Hoeffding's functional decomposition hold when the inputs are not mutually independent?

Classical Hoeffding's decomposition: Unique decomposition $G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)$ for any square-integrable $G(X)$, where the inputs X are mutually independent.

Yes, under two reasonable assumptions on the inputs:

- Non-perfect functional dependence.
- Non-perfect stochastic dependence.

Some context

Does Hoeffding's functional decomposition hold when the inputs are not mutually independent?

Classical Hoeffding's decomposition: Unique decomposition $G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)$ for any square-integrable $G(X)$, where the inputs X are mutually independent.

Yes, under two reasonable assumptions on the inputs:

- Non-perfect functional dependence.
- Non-perfect stochastic dependence.

However... Achieving this result requires an unusual methodological journey.

Some context

Does Hoeffding's functional decomposition hold when the inputs are not mutually independent?

Classical Hoeffding's decomposition: Unique decomposition $G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)$ for any square-integrable $G(X)$, where the inputs X are mutually independent.

Yes, under two reasonable assumptions on the inputs:

- Non-perfect functional dependence.
- Non-perfect stochastic dependence.

However... Achieving this result requires an unusual methodological journey.
In this talk: Mix the fields of probability theory and functional analysis, with a sprinkle of algebraic combinatorics, to generalize Hoeffding's decomposition to dependent inputs.

More context

We're not the first to have worked on this generalization.

(see, e.g., Rabitz and Aliş (1999), Peccati (2004), Hooker (2007), Kuo et al. (2009), and Hart and Gremaud (2018))

More context

We're not the first to have worked on this generalization.

(see, e.g., Rabitz and Aliş (1999), Peccati (2004), Hooker (2007), Kuo et al. (2009), and Hart and Gremaud (2018))

In Chastaing, Gamboa, and Prieur (2012), the authors approached the problem by considering subspaces of the Lebesgue space \mathbb{L}^{2}.

They showed that the generalized decomposition hold, but under fairly restrictive assumptions on the inputs.

More context

We're not the first to have worked on this generalization.

(see, e.g., Rabitz and Aliş (1999), Peccati (2004), Hooker (2007), Kuo et al. (2009), and Hart and Gremaud (2018))

In Chastaing, Gamboa, and Prieur (2012), the authors approached the problem by considering subspaces of the Lebesgue space \mathbb{L}^{2}.

They showed that the generalized decomposition hold, but under fairly restrictive assumptions on the inputs.

Our approach: Understand the relationships between these subspaces of \mathbb{L}^{2} when the inputs are not mutually independent.

Random inputs, black-box model

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\left(E_{1}, \mathcal{E}_{1}\right), \ldots,\left(E_{d}, \mathcal{E}_{d}\right)$ be standard Borel measurable spaces.

Random inputs, black-box model

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\left(E_{1}, \mathcal{E}_{1}\right), \ldots,\left(E_{d}, \mathcal{E}_{d}\right)$ be standard Borel measurable spaces.

The random inputs are defined as a measurable mapping (i.e., random element):

$$
X: \Omega \rightarrow E,
$$

where $E=X_{i=1}^{d} E_{i}$ is the cartesian product of the d Polish spaces.
(This is just a way to say that $X=\left(X_{1}, \ldots, X_{d}\right)$ is not necessarily \mathbb{R}^{d}-valued)
Remark. We are mainly going to treat X as a function: although its law is well-defined, we don't really need to control it directly.
(We are going to work with \mathbb{P} instead).

Random inputs, black-box model

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\left(E_{1}, \mathcal{E}_{1}\right), \ldots,\left(E_{d}, \mathcal{E}_{d}\right)$ be standard Borel measurable spaces.

The random inputs are defined as a measurable mapping (i.e., random element):

$$
X: \Omega \rightarrow E,
$$

where $E=X_{i=1}^{d} E_{i}$ is the cartesian product of the d Polish spaces.
(This is just a way to say that $X=\left(X_{1}, \ldots, X_{d}\right)$ is not necessarily \mathbb{R}^{d}-valued)
Remark. We are mainly going to treat X as a function: although its law is well-defined, we don't really need to control it directly.
(We are going to work with \mathbb{P} instead).

Let $G: E \rightarrow \mathbb{R}$ be a black-box model, and denote by $G(X)$ the random output (it is a random variable).

Generated and \mathbb{P}-trivial σ-algebras

Let $D=\{1, \ldots, d\}$, and denote \mathcal{P}_{D} the power-set of D (i.e., the set of subsets of D).

Generated and \mathbb{P}-trivial σ-algebras

Let $D=\{1, \ldots, d\}$, and denote \mathcal{P}_{D} the power-set of D (i.e., the set of subsets of D).
For every $A \subset D$, the mapping $X_{A}=\left(X_{i}\right)_{i \in A}$ is an $E_{A}:=X_{i \in A} E_{i}$-valued random element.

Generated and \mathbb{P}-trivial σ-algebras

Let $D=\{1, \ldots, d\}$, and denote \mathcal{P}_{D} the power-set of D (i.e., the set of subsets of D).
For every $A \subset D$, the mapping $X_{A}=\left(X_{i}\right)_{i \in A}$ is an $E_{A}:=X_{i \in A} E_{i}$-valued random element.
For every $A \subset D$, denote by:

- $\sigma_{A} \subseteq \mathcal{F}$ the σ-algebra generated by X_{A};
- $\sigma_{X} \subseteq \mathcal{F}$ the σ-algebra generated by X.

And notice that if $B \subseteq A$, then $\sigma_{B} \subseteq \sigma_{A}$.
Lemma (Doob-Dynkin). If an \mathbb{R}-valued random variable Y is σ_{X}-measurable, then there exists some function $f: E \rightarrow \mathbb{R}$ such that $Y=f(X)$ a.s.

Generated and \mathbb{P}-trivial σ-algebras

Let $D=\{1, \ldots, d\}$, and denote \mathcal{P}_{D} the power-set of D (i.e., the set of subsets of D).
For every $A \subset D$, the mapping $X_{A}=\left(X_{i}\right)_{i \in A}$ is an $E_{A}:=X_{i \in A} E_{i}$-valued random element.
For every $A \subset D$, denote by:

- $\sigma_{A} \subseteq \mathcal{F}$ the σ-algebra generated by X_{A};
- $\sigma_{X} \subseteq \mathcal{F}$ the σ-algebra generated by X.

And notice that if $B \subseteq A$, then $\sigma_{B} \subseteq \sigma_{A}$.
Lemma (Doob-Dynkin). If an \mathbb{R}-valued random variable Y is σ_{X}-measurable, then there exists some function $f: E \rightarrow \mathbb{R}$ such that $Y=f(X)$ a.s.

Finally, denote by σ_{\emptyset} the \mathbb{P}-trivial σ-algebra, i.e., the σ-algebra that contains every event of \mathcal{F} of probability 0 .

Lemma (Kallenberg (2021, Lemma 4.9)). Every σ_{\emptyset}-measurable random variable is a.s. constant. 4/40

Functional dependence

Assumption 1 (Non-perfect functional dependence). Suppose that:

- $\sigma_{\emptyset} \subset \sigma_{i}, i=1, \ldots, d$ (inputs are not constant).
- For $B \subset A, \sigma_{B} \subset \sigma_{A}$ (inputs add information).
- For every $A, B \in \mathcal{P}_{D}, A \neq B$,

$$
\sigma_{A} \cap \sigma_{B}=\sigma_{A \cap B}
$$

This assumption is purely functional: we're just controlling the pre-image of the mappings $\left(X_{A}\right)_{A \in \mathcal{P}_{D}}$.

Proposition. Suppose that Assumption 1 hold. Then, for any $A, B \in \mathcal{P}_{D}$ such that $A \cap B \notin\{A, B\}$ (i.e., the sets cannot be subsets of each other), there is no mapping T such that

$$
X_{B}=T\left(X_{A}\right) \text { a.e. }
$$

In other words, if Assumption 1 hold, then the inputs cannot be functions of each other.

Output space

Recall that $(\Omega, \mathcal{F}, \mathbb{P})$ is our sample space, and let \mathcal{G} be a sub- σ-algebra of \mathcal{F}.
Definition (Lebesgue space). Denote by $\mathbb{L}^{2}(\mathcal{G})$ the Lebesgue space containing every squareintegrable, \mathbb{R}-valued random variables. It is an (infinite-dimensional) Hilbert space with inner product, $\forall Z_{1}, Z_{2} \in \mathbb{L}^{2}(\mathcal{G})$:

$$
\left\langle Z_{1}, Z_{2}\right\rangle=\mathbb{E}\left[Z_{1} Z_{2}\right]=\int_{\Omega} Z_{1}(\omega) Z_{2}(\omega) d \mathbb{P}(\omega) .
$$

Output space

Recall that $(\Omega, \mathcal{F}, \mathbb{P})$ is our sample space, and let \mathcal{G} be a sub- σ-algebra of \mathcal{F}.
Definition (Lebesgue space). Denote by $\mathbb{L}^{2}(\mathcal{G})$ the Lebesgue space containing every squareintegrable, \mathbb{R}-valued random variables. It is an (infinite-dimensional) Hilbert space with inner product, $\forall Z_{1}, Z_{2} \in \mathbb{L}^{2}(\mathcal{G})$:

$$
\left\langle Z_{1}, Z_{2}\right\rangle=\mathbb{E}\left[Z_{1} Z_{2}\right]=\int_{\Omega} Z_{1}(\omega) Z_{2}(\omega) d \mathbb{P}(\omega) .
$$

$\mathbb{L}^{2}\left(\sigma_{X}\right)$ is the space of random outputs: it only contains random variable that can be expressed as functions of X.

For every $A \subset D, \mathbb{L}^{2}\left(\sigma_{A}\right) \subset \mathbb{L}^{2}\left(\sigma_{X}\right)$ only contains random variables that can be expressed as functions of X_{A}.
$\mathbb{L}^{2}\left(\sigma_{\emptyset}\right)$ only contains a.s constants.

Generated Lebesgue subspaces

Theorem (Sidák (1957, Theorem 2)). Let $\mathcal{B}_{1} \subseteq \mathcal{B}_{2} \subseteq \mathcal{F}$, then

- $\mathbb{L}^{2}\left(\mathcal{B}_{1}\right) \subseteq \mathbb{L}^{2}\left(\mathcal{B}_{2}\right) \subseteq \mathbb{L}^{2}(\mathcal{F})$;
- $\mathbb{L}^{2}\left(\mathcal{B}_{1}\right) \cap \mathbb{L}^{2}\left(\mathcal{B}_{2}\right)=\mathbb{L}^{2}\left(\mathcal{B}_{1} \cap \mathcal{B}_{2}\right)$.

Recall that, since for $B \subset A \in \mathcal{P}_{D}$ we have that $\sigma_{B} \subseteq \sigma_{A}$, then:

$$
\mathbb{L}^{2}\left(\sigma_{B}\right) \text { is a closed Hilbert subspace of } \mathbb{L}^{2}\left(\sigma_{A}\right)
$$

and all of them are closed subspaces of $\mathbb{L}^{2}\left(\sigma_{x}\right)$: They are nested in very a particular way (more on that later in the talk).

Generated Lebesgue subspaces

Theorem (Sidák (1957, Theorem 2)). Let $\mathcal{B}_{1} \subseteq \mathcal{B}_{2} \subseteq \mathcal{F}$, then

- $\mathbb{L}^{2}\left(\mathcal{B}_{1}\right) \subseteq \mathbb{L}^{2}\left(\mathcal{B}_{2}\right) \subseteq \mathbb{L}^{2}(\mathcal{F})$;
- $\mathbb{L}^{2}\left(\mathcal{B}_{1}\right) \cap \mathbb{L}^{2}\left(\mathcal{B}_{2}\right)=\mathbb{L}^{2}\left(\mathcal{B}_{1} \cap \mathcal{B}_{2}\right)$.

Recall that, since for $B \subset A \in \mathcal{P}_{D}$ we have that $\sigma_{B} \subseteq \sigma_{A}$, then:

$$
\mathbb{L}^{2}\left(\sigma_{B}\right) \text { is a closed Hilbert subspace of } \mathbb{L}^{2}\left(\sigma_{A}\right)
$$

and all of them are closed subspaces of $\mathbb{L}^{2}\left(\sigma_{X}\right)$: They are nested in very a particular way (more on that later in the talk).

Controlling the Lebesgue spaces w.r.t. the σ-algebras allow to express spaces of functions of subsets of inputs (analogously to Chastaing, Gamboa, and Prieur (2012)).

The intuition

Recall the classical result:
Theorem (Malliavin (1995, Chapter 3)). Let X and Y be two random elements. Then:

$$
X \Perp Y \Longleftrightarrow \forall f(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right), \forall g(Y) \in \mathbb{L}^{2}\left(\sigma_{Y}\right), \operatorname{Corr}(f(X), g(Y))=0,
$$

or, in other words, $\mathbb{L}_{0}^{2}\left(\sigma_{X}\right) \perp \mathbb{L}_{0}^{2}\left(\sigma_{Y}\right)$, where \mathbb{L}_{0}^{2} only contains centered random variables.

The intuition

Recall the classical result:
Theorem (Malliavin (1995, Chapter 3)). Let X and Y be two random elements. Then:

$$
X \Perp Y \Longleftrightarrow \forall f(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right), \forall g(Y) \in \mathbb{L}^{2}\left(\sigma_{Y}\right), \operatorname{Corr}(f(X), g(Y))=0,
$$

or, in other words, $\mathbb{L}_{0}^{2}\left(\sigma_{X}\right) \perp \mathbb{L}_{0}^{2}\left(\sigma_{Y}\right)$, where \mathbb{L}_{0}^{2} only contains centered random variables.

What does this result entail?

- X and Y are independent \Longrightarrow The functions of X and Y are uncorrelated. \checkmark

The intuition

Recall the classical result:
Theorem (Malliavin (1995, Chapter 3)). Let X and Y be two random elements. Then:

$$
X \Perp Y \Longleftrightarrow \forall f(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right), \forall g(Y) \in \mathbb{L}^{2}\left(\sigma_{Y}\right), \operatorname{Corr}(f(X), g(Y))=0,
$$

or, in other words, $\mathbb{L}_{0}^{2}\left(\sigma_{X}\right) \perp \mathbb{L}_{0}^{2}\left(\sigma_{Y}\right)$, where \mathbb{L}_{0}^{2} only contains centered random variables.

What does this result entail?

- X and Y are independent \Longrightarrow The functions of X and Y are uncorrelated. \checkmark
- The functions of X and Y are uncorrelated $\Longrightarrow X$ and Y are independent. ???

The intuition

Recall the classical result:
Theorem (Malliavin (1995, Chapter 3)). Let X and Y be two random elements. Then:

$$
X \Perp Y \Longleftrightarrow \forall f(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right), \forall g(Y) \in \mathbb{L}^{2}\left(\sigma_{Y}\right), \operatorname{Corr}(f(X), g(Y))=0,
$$

or, in other words, $\mathbb{L}_{0}^{2}\left(\sigma_{X}\right) \perp \mathbb{L}_{0}^{2}\left(\sigma_{Y}\right)$, where \mathbb{L}_{0}^{2} only contains centered random variables.

What does this result entail?

- X and Y are independent \Longrightarrow The functions of X and Y are uncorrelated. \checkmark
- The functions of X and Y are uncorrelated $\Longrightarrow X$ and Y are independent. ???

Intuition:

Is it possible to control the dependence structure between the inputs by controlling the angles between the subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$?

Dixmier's angle

Definition (Dixmier's angle (Dixmier 1949)). Let M, N be closed subspaces of a Hilbert space H. The cosine of Dixmier's angle between M and N is defined as

$$
c_{0}(M, N):=\sup \{|\langle x, y\rangle|: x \in M,\|x\| \leq 1, \quad y \in N,\|y\| \leq 1\}
$$

Dixmier's angle

Definition (Dixmier's angle (Dixmier 1949)). Let M, N be closed subspaces of a Hilbert space H. The cosine of Dixmier's angle between M and N is defined as

$$
c_{0}(M, N):=\sup \{|\langle x, y\rangle|: x \in M,\|x\| \leq 1, \quad y \in N,\|y\| \leq 1\}
$$

Dixmier's angle is closely related to the notion of maximal correlation in probability theory (Koyak 1987), as a dependence measure between random elements.

Definition (Maximal correlation (Gebelein 1941)). Let Z_{1}, Z_{2} be two random elements. The maximal correlation between Z_{1} and Z_{2} is

$$
\rho_{0}\left(Z_{1}, Z_{2}\right):=c_{0}\left(\mathbb{L}_{0}^{2}\left(\sigma_{Z_{1}}\right), \mathbb{L}_{0}^{2}\left(\sigma_{Z_{2}}\right)\right)
$$

Dixmier's angle

Definition (Dixmier's angle (Dixmier 1949)). Let M, N be closed subspaces of a Hilbert space H. The cosine of Dixmier's angle between M and N is defined as

$$
c_{0}(M, N):=\sup \{|\langle x, y\rangle|: x \in M,\|x\| \leq 1, \quad y \in N,\|y\| \leq 1\}
$$

Dixmier's angle is closely related to the notion of maximal correlation in probability theory (Koyak 1987), as a dependence measure between random elements.

Definition (Maximal correlation (Gebelein 1941)). Let Z_{1}, Z_{2} be two random elements. The maximal correlation between Z_{1} and Z_{2} is

$$
\rho_{0}\left(Z_{1}, Z_{2}\right):=c_{0}\left(\mathbb{L}_{0}^{2}\left(\sigma_{Z_{1}}\right), \mathbb{L}_{0}^{2}\left(\sigma_{Z_{2}}\right)\right)
$$

Remark .

$$
Z_{1} \Perp Z_{2} \Longleftrightarrow \rho_{0}\left(Z_{1}, Z_{2}\right)=0 .
$$

Friedrich's angle

Definition (Friedrich's angle (Friedrichs 1937)). The cosine of Friedrichs' angle is defined as

$$
c(M, N):=\sup \left\{|\langle x, y\rangle|:\left\{\begin{array}{l}
x \in M \cap(M \cap N)^{\perp},\|x\| \leq 1 \\
y \in N \cap(M \cap N)^{\perp},\|y\| \leq 1
\end{array}\right\}\right.
$$

where the orthogonal complement is taken w.r.t. to H .

Friedrich's angle

Definition (Friedrich's angle (Friedrichs 1937)). The cosine of Friedrichs' angle is defined as

$$
c(M, N):=\sup \left\{|\langle x, y\rangle|:\left\{\begin{array}{l}
x \in M \cap(M \cap N)^{\perp},\|x\| \leq 1 \\
y \in N \cap(M \cap N)^{\perp},\|y\| \leq 1
\end{array}\right\}\right.
$$

where the orthogonal complement is taken w.r.t. to H .
Friedrich's angle is used in probability theory as a measure of partial dependence between two random elements (Bryc 1984, 1996; Dauxois, Nkiet, and Romain 2004).

Definition (Maximal partial correlation). Let Z_{1} and Z_{2} be two random elements. The maximal partial correlation is between Z_{1} and Z_{2} is

$$
\rho^{*}\left(Z_{1}, Z_{2}\right):=c\left(\mathbb{L}^{2}\left(\sigma_{Z_{1}}\right), \mathbb{L}^{2}\left(\sigma_{Z_{2}}\right)\right)
$$

Friedrich's angle

Definition (Friedrich's angle (Friedrichs 1937)). The cosine of Friedrichs' angle is defined as

$$
c(M, N):=\sup \left\{|\langle x, y\rangle|:\left\{\begin{array}{l}
x \in M \cap(M \cap N)^{\perp},\|x\| \leq 1 \\
y \in N \cap(M \cap N)^{\perp},\|y\| \leq 1
\end{array}\right\}\right.
$$

where the orthogonal complement is taken w.r.t. to H .
Friedrich's angle is used in probability theory as a measure of partial dependence between two random elements (Bryc 1984, 1996; Dauxois, Nkiet, and Romain 2004).

Definition (Maximal partial correlation). Let Z_{1} and Z_{2} be two random elements. The maximal partial correlation is between Z_{1} and Z_{2} is

$$
\rho^{*}\left(Z_{1}, Z_{2}\right):=c\left(\mathbb{L}^{2}\left(\sigma_{Z_{1}}\right), \mathbb{L}^{2}\left(\sigma_{Z_{2}}\right)\right)
$$

Remark .

$$
\rho^{*}\left(Z_{1}, Z_{2}\right)=0 \Longleftrightarrow \mathbb{E}\left[\mathbb{E}\left[\cdot \mid Z_{1}\right] \mid Z_{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\cdot \mid Z_{2}\right] \mid Z_{1}\right]
$$

Closure and complements

These two angles are related to the closedness of the sum of the two subspaces:

- $c(M, N)<1 \Longleftrightarrow M+N$ is closed in H;
- $c_{0}(M, N)<1 \Longleftrightarrow M \cap N=\{0\}$ and $M+N$ is closed in H.

Closure and complements

These two angles are related to the closedness of the sum of the two subspaces:

- $c(M, N)<1 \Longleftrightarrow M+N$ is closed in H;
- $c_{0}(M, N)<1 \Longleftrightarrow M \cap N=\{0\}$ and $M+N$ is closed in H.

But why should we care?

Closure and complements

These two angles are related to the closedness of the sum of the two subspaces:

- $c(M, N)<1 \Longleftrightarrow M+N$ is closed in H;
- $c_{0}(M, N)<1 \Longleftrightarrow M \cap N=\{0\}$ and $M+N$ is closed in H.

But why should we care?

Because in Hilbert spaces, a closed subspace is always complemented, i.e., if M is closed, then there always exists another subspace K such that:

$$
H=M+K \text { and } M \cap K=\{0\} .
$$

Closure and complements

These two angles are related to the closedness of the sum of the two subspaces:

- $c(M, N)<1 \Longleftrightarrow M+N$ is closed in H;
- $c_{0}(M, N)<1 \Longleftrightarrow M \cap N=\{0\}$ and $M+N$ is closed in H.

But why should we care?

Because in Hilbert spaces, a closed subspace is always complemented, i.e., if M is closed, then there always exists another subspace K such that:

$$
H=M+K \text { and } M \cap K=\{0\} .
$$

In other words, it makes sense to talk about "the remainder of the ambient space (H) outside of the closed subspace (M)".

Closure and complements

These two angles are related to the closedness of the sum of the two subspaces:

- $c(M, N)<1 \Longleftrightarrow M+N$ is closed in H;
- $c_{0}(M, N)<1 \Longleftrightarrow M \cap N=\{0\}$ and $M+N$ is closed in H.

But why should we care?

Because in Hilbert spaces, a closed subspace is always complemented, i.e., if M is closed, then there always exists another subspace K such that:

$$
H=M+K \text { and } M \cap K=\{0\} .
$$

In other words, it makes sense to talk about "the remainder of the ambient space (H) outside of the closed subspace (M)".

One popular complement of a closed subspace M is its orthogonal complement M^{\perp}.

Feshchenko matrix

Let's go back to our set of subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$.
How can we "globally" control all the Friedrichs' angles between them?

Feshchenko matrix

Let's go back to our set of subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$.

How can we "globally" control all the Friedrichs' angles between them?

Intuition: By putting them in a sort of "generalized precision matrix".

Feshchenko matrix

Let's go back to our set of subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$.
How can we "globally" control all the Friedrichs' angles between them?
Intuition: By putting them in a sort of "generalized precision matrix".
Definition (Maximal coalitional precision matrix). Let Δ be the $\left(2^{d} \times 2^{d}\right)$, symmetric set-indexed matrix, defined element-wise, $\forall A, B \in \mathcal{P}_{D}$ as

$$
\Delta_{A B}= \begin{cases}1 & \text { if } A=B ; \\ -c\left(\mathbb{L}^{2}\left(\sigma_{A}\right), \mathbb{L}^{2}\left(\sigma_{B}\right)\right) & \text { otherwise } .\end{cases}
$$

These matrices resemble closely the ones used by Feshchenko (2020) to study the closedness of an arbitrary sum of closed subspaces of a Hillbert space.

Feshchenko matrix

Let's go back to our set of subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$.
How can we "globally" control all the Friedrichs' angles between them?
Intuition: By putting them in a sort of "generalized precision matrix".
Definition (Maximal coalitional precision matrix). Let Δ be the $\left(2^{d} \times 2^{d}\right)$, symmetric set-indexed matrix, defined element-wise, $\forall A, B \in \mathcal{P}_{D}$ as

$$
\Delta_{A B}= \begin{cases}1 & \text { if } A=B ; \\ -c\left(\mathbb{L}^{2}\left(\sigma_{A}\right), \mathbb{L}^{2}\left(\sigma_{B}\right)\right) & \text { otherwise } .\end{cases}
$$

These matrices resemble closely the ones used by Feshchenko (2020) to study the closedness of an arbitrary sum of closed subspaces of a Hilbert space.
\Longrightarrow We're going to call them "Feshchenko matrices".

Stochastic dependence

But why is the Feshchenko matrix interesting?

Stochastic dependence

But why is the Feshchenko matrix interesting?

Proposition. Suppose that Assumption 1 hold. Then,

$$
\Delta=I_{2^{d}} \quad \Longleftrightarrow X \text { is mutually independent. }
$$

Remark . Recall that we're working with abstract-valued random elements (and not necessarily a random vector).

Stochastic dependence

But why is the Feshchenko matrix interesting?

Proposition. Suppose that Assumption 1 hold. Then,

$$
\Delta=I_{2^{d}} \quad \Longleftrightarrow X \text { is mutually independent. }
$$

Remark. Recall that we're working with abstract-valued random elements (and not necessarily a random vector).

Our second assumption:

Assumption 2 (Non-degenerate stochastic dependence). The Feshchenko matrix Δ of the inputs is definite-positive.

Note that this is a restriction of the inner product of $\mathbb{L}^{2}\left(\sigma_{x}\right)$, and thus an indirect restriction on the law of X.

Direct-sum decomposition

An infinite-dimensional Hilbert space is still a linear vector space.

Direct-sum decomposition

An infinite-dimensional Hilbert space is still a linear vector space.
Definition (Direct-sum decomposition (Axler 2015)). Let W be a vector space and let W_{1}, \ldots, W_{n} be proper subspaces of W.
W is said to admit a direct-sum decomposition if any $w \in W$ can be written uniquely as

$$
w=\sum_{i=1}^{n} w_{i} \text { where } w_{i} \in W_{i} \text { for } i=1, \ldots, n
$$

In this case, we write:

$$
W=\bigoplus_{i=1}^{n} W_{i}
$$

Direct-sum decomposition

An infinite-dimensional Hilbert space is still a linear vector space.

Definition (Direct-sum decomposition (Axler 2015)). Let W be a vector space and let W_{1}, \ldots, W_{n} be proper subspaces of W.
W is said to admit a direct-sum decomposition if any $w \in W$ can be written uniquely as

$$
w=\sum_{i=1}^{n} w_{i} \text { where } w_{i} \in W_{i} \text { for } i=1, \ldots, n
$$

In this case, we write:

$$
W=\bigoplus_{i=1}^{n} W_{i}
$$

Intuition: Can we find a direct-sum decomposition for $\mathbb{L}^{2}\left(\sigma_{A}\right)$, for every $A \in \mathcal{P}_{D}$? If so, we could uniquely decompose any non-linear function of $X_{A}, A \in \mathcal{P}_{D}$.

Direct-sum decomposition

An infinite-dimensional Hilbert space is still a linear vector space.

Definition (Direct-sum decomposition (Axler 2015)). Let W be a vector space and let W_{1}, \ldots, W_{n} be proper subspaces of W.
W is said to admit a direct-sum decomposition if any $w \in W$ can be written uniquely as

$$
w=\sum_{i=1}^{n} w_{i} \text { where } w_{i} \in W_{i} \text { for } i=1, \ldots, n
$$

In this case, we write:

$$
W=\bigoplus_{i=1}^{n} W_{i}
$$

Intuition: Can we find a direct-sum decomposition for $\mathbb{L}^{2}\left(\sigma_{A}\right)$, for every $A \in \mathcal{P}_{D}$?
If so, we could uniquely decompose any non-linear function of $X_{A}, A \in \mathcal{P}_{D}$.
But which subspaces should be involved in the direct-sum decomposition?

Generalized Hoeffding decomposition

Theorem. Under Assumptions 1 and 2, for every $A \in \mathcal{P}_{D}$, one has that

$$
\mathbb{L}^{2}\left(\sigma_{A}\right)=\bigoplus_{B \in \mathcal{P}_{A}} V_{B}
$$

where $V_{\emptyset}=\mathbb{L}^{2}\left(\sigma_{\emptyset}\right)$, and

$$
V_{B}=\left[\underset{c \in \mathcal{P}_{B}, c \neq B}{+} V_{C}\right]^{\perp_{B}},
$$

where \perp_{B} denotes the orthogonal complement in $\mathbb{L}^{2}\left(\sigma_{B}\right)$.

Generalized Hoeffding decomposition

Theorem. Under Assumptions 1 and 2, for every $A \in \mathcal{P}_{D}$, one has that

$$
\mathbb{L}^{2}\left(\sigma_{A}\right)=\bigoplus_{B \in \mathcal{P}_{A}} V_{B}
$$

where $V_{\emptyset}=\mathbb{L}^{2}\left(\sigma_{\emptyset}\right)$, and

$$
V_{B}=\left[\underset{c \in \mathcal{P}_{B}, c \neq B}{+} V_{C}\right]^{\perp_{B}},
$$

where \perp_{B} denotes the orthogonal complement in $\mathbb{L}^{2}\left(\sigma_{B}\right)$.

Main intuition:
"Inductive generalized centering"

Intuition behind the result: One input

One input:

1. Let $i \in D$, and fix $\mathbb{L}^{2}\left(\sigma_{i}\right)$ as the ambient space.
2. We have that $V_{\emptyset}:=\mathbb{L}^{2}\left(\sigma_{\emptyset}\right)$ is a closed subspace of $\mathbb{L}^{2}\left(\sigma_{i}\right)$ (thus it is complemented).
3. Denote $V_{i}=\left[V_{\emptyset}\right]^{\perp_{i}}$, the orthogonal complement of V_{\emptyset} in $\mathbb{L}^{2}\left(\sigma_{i}\right)$.
4. One has that $\mathbb{L}^{2}\left(\sigma_{i}\right)=V_{\emptyset} \oplus V_{i}$.
5. Since V_{\emptyset} only contains constants, $V_{i}=\mathbb{L}_{0}^{2}\left(\sigma_{i}\right)$.

In other words, we just showed that any $f\left(X_{i}\right) \in \mathbb{L}^{2}\left(\sigma_{i}\right)$ can be written as

$$
f\left(X_{i}\right)=\underbrace{\mathbb{E}\left[f\left(X_{i}\right)\right]}_{\in V_{\emptyset}}+\underbrace{\mathbb{E}\left[f\left(X_{i}\right)-\mathbb{E}\left[f\left(X_{i}\right)\right]\right]}_{\in V_{i}} .
$$

Intuition behind the result: One input

One input:

1. Let $i \in D$, and fix $\mathbb{L}^{2}\left(\sigma_{i}\right)$ as the ambient space.
2. We have that $V_{\emptyset}:=\mathbb{L}^{2}\left(\sigma_{\emptyset}\right)$ is a closed subspace of $\mathbb{L}^{2}\left(\sigma_{i}\right)$ (thus it is complemented).
3. Denote $V_{i}=\left[V_{\emptyset}\right]^{\perp_{i}}$, the orthogonal complement of V_{\emptyset} in $\mathbb{L}^{2}\left(\sigma_{i}\right)$.
4. One has that $\mathbb{L}^{2}\left(\sigma_{i}\right)=V_{\emptyset} \oplus V_{i}$.
5. Since V_{\emptyset} only contains constants, $V_{i}=\mathbb{L}_{0}^{2}\left(\sigma_{i}\right)$.

In other words, we just showed that any $f\left(X_{i}\right) \in \mathbb{L}^{2}\left(\sigma_{i}\right)$ can be written as

$$
f\left(X_{i}\right)=\underbrace{\mathbb{E}\left[f\left(X_{i}\right)\right]}_{\in V_{\emptyset}}+\underbrace{\mathbb{E}\left[f\left(X_{i}\right)-\mathbb{E}\left[f\left(X_{i}\right)\right]\right]}_{\in V_{i}} .
$$

And note that we can do this for any $i \in D$.

Intuition behind the result: Two inputs

Two inputs:

1. Let $i, j \in D$, and $\mathbf{f i x} \mathbb{L}^{2}\left(\sigma_{i j}\right)$ as the ambient space.
2. We have that $\mathbb{L}^{2}\left(\sigma_{i}\right)$ and $\mathbb{L}^{2}\left(\sigma_{j}\right)$ are closed subspaces of $\mathbb{L}^{2}\left(\sigma_{i j}\right)$.
3. Assumptions $\mathbf{1}$ and $\mathbf{2}$ imply that $\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)$ is closed in $\mathbb{L}^{2}\left(\sigma_{i j}\right)$ (thus it is complemented).
4. Notice (previous step) that $\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)=V_{\emptyset}+V_{i}+V_{j}$.
5. Denote $V_{i j}=\left[V_{\emptyset}+V_{i}+V_{j}\right]^{\perp_{i j}}$, the orthogonal complement in $\mathbb{L}^{2}\left(\sigma_{i j}\right)$.
6. We thus have that $\mathbb{L}^{2}\left(\sigma_{i j}\right)=V_{\emptyset}+V_{i}+V_{j}+V_{i j}$.

Intuition behind the result: Two inputs

Two inputs:

1. Let $i, j \in D$, and $\mathrm{fix} \mathbb{L}^{2}\left(\sigma_{i j}\right)$ as the ambient space.
2. We have that $\mathbb{L}^{2}\left(\sigma_{i}\right)$ and $\mathbb{L}^{2}\left(\sigma_{j}\right)$ are closed subspaces of $\mathbb{L}^{2}\left(\sigma_{i j}\right)$.
3. Assumptions $\mathbf{1}$ and $\mathbf{2}$ imply that $\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)$ is closed in $\mathbb{L}^{2}\left(\sigma_{i j}\right)$ (thus it is complemented).
4. Notice (previous step) that $\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)=V_{\emptyset}+V_{i}+V_{j}$.
5. Denote $V_{i j}=\left[V_{\emptyset}+V_{i}+V_{j}\right]^{\perp_{i j}}$, the orthogonal complement in $\mathbb{L}^{2}\left(\sigma_{i j}\right)$.
6. We thus have that $\mathbb{L}^{2}\left(\sigma_{i j}\right)=V_{\emptyset}+V_{i}+V_{j}+V_{i j}$.

And note that we can do this for any pair $i, j \in D$.
In essence, we "centered" a bivariate function from its "univariate and constant parts".

Intuition behind the result: Two inputs

Two inputs:

1. Let $i, j \in D$, and $\mathrm{fix} \mathbb{L}^{2}\left(\sigma_{i j}\right)$ as the ambient space.
2. We have that $\mathbb{L}^{2}\left(\sigma_{i}\right)$ and $\mathbb{L}^{2}\left(\sigma_{j}\right)$ are closed subspaces of $\mathbb{L}^{2}\left(\sigma_{i j}\right)$.
3. Assumptions $\mathbf{1}$ and $\mathbf{2}$ imply that $\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)$ is closed in $\mathbb{L}^{2}\left(\sigma_{i j}\right)$ (thus it is complemented).
4. Notice (previous step) that $\mathbb{L}^{2}\left(\sigma_{i}\right)+\mathbb{L}^{2}\left(\sigma_{j}\right)=V_{\emptyset}+V_{i}+V_{j}$.
5. Denote $V_{i j}=\left[V_{\emptyset}+V_{i}+V_{j}\right]^{\perp_{i j}}$, the orthogonal complement in $\mathbb{L}^{2}\left(\sigma_{i j}\right)$.
6. We thus have that $\mathbb{L}^{2}\left(\sigma_{i j}\right)=V_{\emptyset}+V_{i}+V_{j}+V_{i j}$.

And note that we can do this for any pair $i, j \in D$.
In essence, we "centered" a bivariate function from its "univariate and constant parts".
And we can continue the same induction up to d inputs.

Orthocanonical decomposition

As a direct consequence of the previous theorem:
Corollary (Orthocanonical decomposition). Under Assumptions 1 and 2 , any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$ can be uniquely decomposed as

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right),
$$

where each $G_{A}\left(X_{A}\right) \in V_{A}$.
The term "orthocanonical" comes from the choice of the orthogonal complement in the "centering process".

Orthocanonical decomposition

As a direct consequence of the previous theorem:
Corollary (Orthocanonical decomposition). Under Assumptions 1 and 2 , any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$ can be uniquely decomposed as

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right),
$$

where each $G_{A}\left(X_{A}\right) \in V_{A}$.
The term "orthocanonical" comes from the choice of the orthogonal complement in the "centering process".

The subspaces V_{A} are comprised of proper representants, i.e., either 0 or functions of exactly X_{A} (they do not contain functions of fewer inputs).

Projectors

Recall that for any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$, we have

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)
$$

Projectors

Recall that for any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$, we have

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)
$$

Oblique projections
Denote the operator

$$
Q_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right), \text { such that } \quad Q_{A}(G(X))=G_{A}\left(X_{A}\right)
$$

Q_{A} is the (canonical) oblique projection onto V_{A}, parallel to $\bigoplus_{B \in \mathcal{P}_{D}: B \neq A} V_{A}$.

Projectors

Recall that for any $G(X) \in \mathbb{L}^{2}\left(\sigma_{x}\right)$, we have

$$
G(X)=\sum_{A \in \mathcal{P}_{D}} G_{A}\left(X_{A}\right)
$$

Oblique projections
Denote the operator

$$
Q_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right), \text { such that } \quad Q_{A}(G(X))=G_{A}\left(X_{A}\right)
$$

Q_{A} is the (canonical) oblique projection onto V_{A}, parallel to $\bigoplus_{B \in \mathcal{P}_{D}: B \neq A} V_{A}$.

Orthogonal projections

Denote the projector

$$
P_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right), \text { such that } \quad \operatorname{Ran}\left(P_{A}\right)=V_{A}, \operatorname{Ker}\left(P_{A}\right)=\left[V_{A}\right]^{\perp}
$$

the orthogonal projection onto V_{A}.

Illustration : $\mathbb{L}_{0}^{2}\left(\sigma_{12}\right)$

Hence, for any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$, one has that, $\forall A \in \mathcal{P}_{D}$

$$
G_{A}\left(X_{A}\right)=Q_{A}(G(X)) .
$$

Illustration : $\mathbb{L}_{0}^{2}\left(\sigma_{12}\right)$

Hence, for any $G(X) \in \mathbb{L}^{2}\left(\sigma_{X}\right)$, one has that, $\forall A \in \mathcal{P}_{D}$

$$
G_{A}\left(X_{A}\right)=Q_{A}(G(X))
$$

The oblique projection Q_{A} usually differ from the oblique projections P_{A}

Oblique and orthogonal projections

In fact,
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Oblique and orthogonal projections

In fact,
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

This comes from the fact that the subspaces V_{A} are all pairwise orthogonal if and only if the inputs are mutually independent.

Oblique and orthogonal projections

In fact,
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

This comes from the fact that the subspaces V_{A} are all pairwise orthogonal if and only if the inputs are mutually independent.

But, under Assumptions 1 and 2, they may not be all orthogonal.

Oblique and orthogonal projections

In fact,
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

This comes from the fact that the subspaces V_{A} are all pairwise orthogonal if and only if the inputs are mutually independent.

But, under Assumptions 1 and 2, they may not be all orthogonal.

To illustrate this fact, we need some algebraic combinatorics.

Boolean lattice and hierarchical orthogonality

Our decomposition is over the power-set \mathcal{P}_{D}, which which is not trivial.
When endowed with the binary relation \subseteq they form an algebraic structure called a Boolean lattice.
a) Boolean lattice

b) Hierarchical orthogonality

The subspaces $\left\{V_{A}\right\}_{A \in \mathcal{P}_{D}}$ are hierarchically orthogonal by design: they follow the same algebraic structure, but this time w.r.t. to \perp.

More projectors

Recall that:

- Q_{A} is the oblique projection onto V_{A}.
- P_{A} is the orthogonal projection onto V_{A}.

But what about projections onto the subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$?

More projectors

Recall that:

- Q_{A} is the oblique projection onto V_{A}.
- P_{A} is the orthogonal projection onto V_{A}.

But what about projections onto the subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$?

- (Canonical) oblique projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$:

$$
\begin{aligned}
\mathbb{M}_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) & \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right) \\
G(X) & \mapsto \sum_{B \in \mathcal{P}_{A}} G_{B}\left(X_{B}\right)
\end{aligned}
$$

More projectors

Recall that:

- Q_{A} is the oblique projection onto V_{A}.
- P_{A} is the orthogonal projection onto V_{A}.

But what about projections onto the subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$?

- (Canonical) oblique projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$:

$$
\begin{aligned}
\mathbb{M}_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) & \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right) \\
G(X) & \mapsto \sum_{B \in \mathcal{P}_{A}} G_{B}\left(X_{B}\right)
\end{aligned}
$$

- Orthogonal projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$:

$$
\mathbb{E}_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right), \quad \text { such that } \operatorname{Ran}\left(\mathbb{E}_{A}\right)=\mathbb{L}^{2}\left(\sigma_{A}\right) \text { and } \operatorname{Ker}\left(P_{A}\right)=\mathbb{L}^{2}\left(\sigma_{A}\right)^{\perp},
$$

a.k.a the conditional expectation w.r.t. to X_{A} (i.e., $\left.\mathbb{E}\left[. \mid X_{A}\right]\right)$.

More projectors

Recall that:

- Q_{A} is the oblique projection onto V_{A}.
- P_{A} is the orthogonal projection onto V_{A}.

But what about projections onto the subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$?

More projectors

Recall that:

- Q_{A} is the oblique projection onto V_{A}.
- P_{A} is the orthogonal projection onto V_{A}.

But what about projections onto the subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$?

- (Canonical) oblique projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$:

$$
\begin{aligned}
\mathbb{M}_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) & \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right) \\
G(X) & \mapsto \sum_{B \in \mathcal{P}_{A}} G_{B}\left(X_{B}\right)
\end{aligned}
$$

More projectors

Recall that:

- Q_{A} is the oblique projection onto V_{A}.
- P_{A} is the orthogonal projection onto V_{A}.

But what about projections onto the subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$?

- (Canonical) oblique projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$:

$$
\begin{aligned}
\mathbb{M}_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) & \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right) \\
G(X) & \mapsto \sum_{B \in \mathcal{P}_{A}} G_{B}\left(X_{B}\right)
\end{aligned}
$$

- Orthogonal projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$:

$$
\mathbb{E}_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right), \quad \text { such that } \operatorname{Ran}\left(\mathbb{E}_{A}\right)=\mathbb{L}^{2}\left(\sigma_{A}\right) \text { and } \operatorname{Ker}\left(P_{A}\right)=\mathbb{L}^{2}\left(\sigma_{A}\right)^{\perp},
$$

a.k.a the conditional expectation w.r.t. to X_{A} (i.e., $\left.\mathbb{E}\left[. \mid X_{A}\right]\right)$.

More projectors

Recall that:

- Q_{A} is the oblique projection onto V_{A}.
- P_{A} is the orthogonal projection onto V_{A}.

But what about projections onto the subspaces $\left\{\mathbb{L}^{2}\left(\sigma_{A}\right)\right\}_{A \in \mathcal{P}_{D}}$?

- (Canonical) oblique projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$:

$$
\begin{aligned}
\mathbb{M}_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) & \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right) \\
G(X) & \mapsto \sum_{B \in \mathcal{P}_{A}} G_{B}\left(X_{B}\right)
\end{aligned}
$$

- Orthogonal projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$:

$$
\mathbb{E}_{A}: \mathbb{L}^{2}\left(\sigma_{X}\right) \rightarrow \mathbb{L}^{2}\left(\sigma_{X}\right), \quad \text { such that } \operatorname{Ran}\left(\mathbb{E}_{A}\right)=\mathbb{L}^{2}\left(\sigma_{A}\right) \text { and } \operatorname{Ker}\left(P_{A}\right)=\mathbb{L}^{2}\left(\sigma_{A}\right)^{\perp},
$$

a.k.a the conditional expectation w.r.t. to X_{A} (i.e., $\mathbb{E}\left[. \mid X_{A}\right]$).

Is it possible to express the projections Q_{A} using \mathbb{M}_{A} ?

Generalized Möbius inversion

Yes, because we're working on the power-set \mathcal{P}_{D} !

Generalized Möbius inversion

Yes, because we're working on the power-set \mathcal{P}_{D} !
Corollary (Mäbius inversion on power-sets (Rota 1964)). Let $D=\{1, \ldots, d\}$. For any two set functions:

$$
f: \mathcal{P}_{D} \rightarrow \mathbb{A}, \quad g: \mathcal{P}_{D} \rightarrow \mathbb{A}
$$

where \mathbb{A} is an abelian group, the following equivalence holds:

$$
f(A)=\sum_{B \in \mathcal{P}_{A}} g(B), \quad \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad g(A)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} f(B), \quad \forall A \in \mathcal{P}_{D} .
$$

In our case, we have, by definition of the oblique projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$, that

$$
\mathbb{M}_{A}(G(X))=\sum_{B \in \mathcal{P}_{A}} G_{B}\left(X_{B}\right), \quad \forall A \in \mathcal{P}_{D},
$$

which is equivalent to

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{M}_{B}(G(X)), \quad \forall A \in \mathcal{P}_{D}
$$

Generalized Möbius inversion

Yes, because we're working on the power-set \mathcal{P}_{D} !
Corollary (Möbius inversion on power-sets (Rota 1964)). Let $D=\{1, \ldots, d\}$. For any two set functions:

$$
f: \mathcal{P}_{D} \rightarrow \mathbb{A}, \quad g: \mathcal{P}_{D} \rightarrow \mathbb{A}
$$

where \mathbb{A} is an abelian group, the following equivalence holds:

$$
f(A)=\sum_{B \in \mathcal{P}_{A}} g(B), \quad \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad g(A)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} f(B), \quad \forall A \in \mathcal{P}_{D} .
$$

In our case, we have, by definition of the oblique projection onto $\mathbb{L}^{2}\left(\sigma_{A}\right)$, that

$$
\mathbb{M}_{A}(G(X))=\sum_{B \in \mathcal{P}_{A}} G_{B}\left(X_{B}\right), \quad \forall A \in \mathcal{P}_{D},
$$

which is equivalent to

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{M}_{B}(G(X)), \quad \forall A \in \mathcal{P}_{D}
$$

Generalized Hoeffding decomposition

If the inputs are mutually independent, from Hoeffding (1948), we have that:

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{E}\left[G(X) \mid X_{B}\right], \quad \forall A \in \mathcal{P}_{D} .
$$

Generalized Hoeffding decomposition

If the inputs are mutually independent, from Hoeffding (1948), we have that:

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{E}\left[G(X) \mid X_{B}\right], \quad \forall A \in \mathcal{P}_{D} .
$$

In our approach, under Assumptions 1 and 2, we have that:

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{M}_{B}(G(X)), \quad \forall A \in \mathcal{P}_{D} .
$$

Generalized Hoeffding decomposition

If the inputs are mutually independent, from Hoeffding (1948), we have that:

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{E}\left[G(X) \mid X_{B}\right], \quad \forall A \in \mathcal{P}_{D} .
$$

In our approach, under Assumptions 1 and 2, we have that:

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{M}_{B}(G(X)), \quad \forall A \in \mathcal{P}_{D} .
$$

In addition:
Proposition. Under Assumptions 1 and 2,

$$
\mathbb{E}\left[G(X) \mid X_{A}\right]=\mathbb{M}_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Generalized Hoeffding decomposition

If the inputs are mutually independent, from Hoeffding (1948), we have that:

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{E}\left[G(X) \mid X_{B}\right], \quad \forall A \in \mathcal{P}_{D} .
$$

In our approach, under Assumptions 1 and 2, we have that:

$$
G_{A}\left(X_{A}\right)=\sum_{B \in \mathcal{P}_{A}}(-1)^{|A|-|B|} \mathbb{M}_{B}(G(X)), \quad \forall A \in \mathcal{P}_{D} .
$$

In addition:
Proposition. Under Assumptions 1 and 2,
$\mathbb{E}\left[G(X) \mid X_{A}\right]=\mathbb{M}_{A}(G(X))$ a.s.,$\forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X$ is mutually independent.

Our approach actually generalizes Hoeffding's decomposition!

Variance decomposition

Let's talk about variance decomposition.

Variance decomposition

Let's talk about variance decomposition.

We propose two complementary approaches for decomposing $\mathbb{V}(G(X))$ based on this generalized decomposition.

Variance decomposition

Let's talk about variance decomposition.

We propose two complementary approaches for decomposing $\mathbb{V}(G(X))$ based on this generalized decomposition.

Organic variance decomposition: separate pure interaction effects to dependence effects. The dependence structure of X is unwanted, and one wishes to study its effects.

Variance decomposition

Let's talk about variance decomposition.

We propose two complementary approaches for decomposing $\mathbb{V}(G(X))$ based on this generalized decomposition.

Organic variance decomposition: separate pure interaction effects to dependence effects. The dependence structure of X is unwanted, and one wishes to study its effects.

Orthocanonical variance decomposition: the dependence structure of X is inherent in the uncertainty modeling of the studied phenomenon. It amounts to quantify structural and correlative effects.

Organic variance decomposition: Pure interaction

The notion of pure interaction is intrinsically linked with the notion of mutual independence.
Let $\tilde{X}=\left(\widetilde{x}_{1}, \ldots, \widetilde{X}_{d}\right)^{\top}$ be the random vector such that

$$
\tilde{X}_{i} \stackrel{d}{=} X_{i}, \quad \text { and } \tilde{X} \text { is mutually independent. }
$$

Organic variance decomposition: Pure interaction

The notion of pure interaction is intrinsically linked with the notion of mutual independence.
Let $\widetilde{X}=\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{d}\right)^{\top}$ be the random vector such that

$$
\widetilde{X}_{i} \stackrel{d}{=} X_{i}, \quad \text { and } \tilde{X} \text { is mutually independent. }
$$

Definition (Pure interaction). For every $A \in \mathcal{P}_{D}$, define the pure interaction of X_{A} on $G(X)$ as

$$
S_{A}=\frac{\mathbb{V}\left(P_{A}(G(\tilde{X}))\right)}{\mathbb{V}(G(\widetilde{X}))} \times \mathbb{V}(G(X))
$$

These indices are the Sobol' indices computed on the mutually independent version of X.

Organic variance decomposition: Pure interaction

The notion of pure interaction is intrinsically linked with the notion of mutual independence.
Let $\widetilde{X}=\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{d}\right)^{\top}$ be the random vector such that

$$
\widetilde{X}_{i} \stackrel{d}{=} X_{i}, \quad \text { and } \widetilde{X} \text { is mutually independent. }
$$

Definition (Pure interaction). For every $A \in \mathcal{P}_{D}$, define the pure interaction of X_{A} on $G(X)$ as

$$
S_{A}=\frac{\mathbb{V}\left(P_{A}(G(\tilde{X}))\right)}{\mathbb{V}(G(\widetilde{X}))} \times \mathbb{V}(G(X))
$$

These indices are the Sobol' indices computed on the mutually independent version of X.

This approach strongly resembles the "independent Sobol' indices" proposed by Mara, Tarantola, and Annoni (2015).
(see, also, Lebrun and Dutfoy (2009a, 2009b))

Organic variance decomposition: Dependence effects

Recall the following result:
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Which motivates the definition of dependence effects.

Organic variance decomposition: Dependence effects

Recall the following result:
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Which motivates the definition of dependence effects.
Definition (Dependence effects). For every $A \in \mathcal{P}_{D}$, define the dependence effects of X_{A} on $G(X)$ as

$$
S_{A}^{D}=\mathbb{E}\left[\left(Q_{A}(G(X))-P_{A}(G(X))\right)^{2}\right] .
$$

Proposition. Under Assumptions 1 and 2,

$$
S_{A}^{D}=0, \forall A \in \mathcal{P}_{D}, \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Organic variance decomposition: Dependence effects

Recall the following result:
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Which motivates the definition of dependence effects.
Definition (Dependence effects). For every $A \in \mathcal{P}_{D}$, define the dependence effects of X_{A} on $G(X)$ as

$$
S_{A}^{D}=\mathbb{E}\left[\left(Q_{A}(G(X))-P_{A}(G(X))\right)^{2}\right] .
$$

Proposition. Under Assumptions 1 and 2,

$$
S_{A}^{D}=0, \forall A \in \mathcal{P}_{D}, \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Organic variance decomposition: Dependence effects

Recall the following result:
Proposition. Under Assumptions 1 and 2,

$$
P_{A}(G(X))=Q_{A}(G(X)) \text { a.s. }, \forall A \in \mathcal{P}_{D} \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Which motivates the definition of dependence effects.
Definition (Dependence effects). For every $A \in \mathcal{P}_{D}$, define the dependence effects of X_{A} on $G(X)$ as

$$
S_{A}^{D}=\mathbb{E}\left[\left(Q_{A}(G(X))-P_{A}(G(X))\right)^{2}\right] .
$$

Proposition. Under Assumptions 1 and 2,

$$
S_{A}^{D}=0, \forall A \in \mathcal{P}_{D}, \quad \Longleftrightarrow \quad X \text { is mutually independent. }
$$

Canonical variance decomposition

The structural effects represent the variance of each of the $G_{A}\left(X_{A}\right)$. It amounts to perform a covariance decomposition (Hart and Gremaud 2018; Da Veiga et al. 2021).

Definition (Structural effects). For every $A \in \mathcal{P}_{D}$, define the structural effects of X_{A} on $G(X)$ as

$$
S_{A}^{U}=\mathbb{V}\left(G_{A}\left(X_{A}\right)\right)
$$

The correlative effects represent the part of variance that is due to the correlation between the $G_{A}\left(X_{A}\right)$.

Definition (Correlative effects). For every $A \in \mathcal{P}_{D}$, define the correlative effects of X_{A} on $G(X)$ as

$$
S_{A}^{C}=\operatorname{Cov}\left(G_{A}\left(X_{A}\right), \sum_{B \in \mathcal{P}_{D}: B \neq A} G_{B}\left(X_{B}\right)\right) .
$$

Variance decomposition: Intuition

Example: Two Bernoulli inputs

Let $E=\{0,1\}^{2}$, and let $X=\left(X_{1}, X_{2}\right)$, where

$$
x_{1} \sim \mathcal{B}\left(q_{1}\right), \quad \text { and } X_{2} \sim \mathcal{B}\left(q_{2}\right) .
$$

The joint law of X can be express using three parameters:

$$
p_{00}=1-q_{1}-q_{2}+\rho, \quad p_{01}=q_{2}-\rho, \quad p_{10}=q_{1}-\rho, \quad p_{11}=\rho
$$

where $p_{i j}=\mathbb{P}\left(\left\{X_{1}=i\right\} \cap\left\{X_{2}=j\right\}\right)$.
Any function $G:\{0,1\}^{2} \rightarrow \mathbb{R}$ can be expressed as the vector $G=\left(G_{00}, G_{01}, G_{10}, G_{11}\right)^{\top}$.
Each value $G_{i j}=G(i, j)$, can be observed with probability $p_{i j}$.

Example: Two Bernoulli inputs

Let $E=\{0,1\}^{2}$, and let $X=\left(X_{1}, X_{2}\right)$, where

$$
X_{1} \sim \mathcal{B}\left(q_{1}\right), \quad \text { and } X_{2} \sim \mathcal{B}\left(q_{2}\right)
$$

The joint law of X can be express using three parameters:

$$
p_{00}=1-q_{1}-q_{2}+\rho, \quad p_{01}=q_{2}-\rho, \quad p_{10}=q_{1}-\rho, \quad p_{11}=\rho
$$

where $p_{i j}=\mathbb{P}\left(\left\{X_{1}=i\right\} \cap\left\{X_{2}=j\right\}\right)$.
Any function $G:\{0,1\}^{2} \rightarrow \mathbb{R}$ can be expressed as the vector $G=\left(G_{00}, G_{01}, G_{10}, G_{11}\right)^{\top}$.
Each value $G_{i j}=G(i, j)$, can be observed with probability $p_{i j}$.

In this case, we can compute everything analytically.

It requires to solving 13 equations with 13 unknowns*.

Feshchenko matrix and the Fréchet bounds

For the Feshchenko matrix Δ to be definite positive, one has that:

$$
\max \left\{0, q_{1} q_{2}-\sqrt{q_{1} q_{2}\left(1-q_{1}\right)\left(1-q_{2}\right)}\right\}<\rho<\min \left\{1, q_{1} q_{2}-\sqrt{q_{1} q_{2}\left(1-q_{1}\right)\left(1-q_{2}\right)}\right\}
$$

Feshchenko matrix and the Fréchet bounds

For the Feshchenko matrix Δ to be definite positive, one has that:

$$
\max \left\{0, q_{1} q_{2}-\sqrt{q_{1} q_{2}\left(1-q_{1}\right)\left(1-q_{2}\right)}\right\}<\rho<\min \left\{1, q_{1} q_{2}-\sqrt{q_{1} q_{2}\left(1-q_{1}\right)\left(1-q_{2}\right)}\right\}
$$

However, the classical Fréchet bounds for ρ for bivariate Bernoulli random variables (Joe 1997, p.210) are equal to

$$
\max \left\{0, q_{1}+q_{2}-1\right\} \leq \rho \leq \min \{q 1, q 2\}
$$

and are more restrictive than the previous ones.

Feshchenko matrix and the Fréchet bounds

For the Feshchenko matrix Δ to be definite positive, one has that:

$$
\max \left\{0, q_{1} q_{2}-\sqrt{q_{1} q_{2}\left(1-q_{1}\right)\left(1-q_{2}\right)}\right\}<\rho<\min \left\{1, q_{1} q_{2}-\sqrt{q_{1} q_{2}\left(1-q_{1}\right)\left(1-q_{2}\right)}\right\} .
$$

However, the classical Fréchet bounds for ρ for bivariate Bernoulli random variables (Joe 1997, p.210) are equal to

$$
\max \left\{0, q_{1}+q_{2}-1\right\} \leq \rho \leq \min \{q 1, q 2\},
$$

and are more restrictive than the previous ones.
ρ strictly contained in the Fréchet bounds \Longrightarrow Assumptions $\mathbf{1}$ and $\mathbf{2}$ hold.

Our decomposition hold for virtually any dependence structure between two Bernoullis.

Conclusion

Main take-aways:

- Hoeffding-like decomposition of function with dependent inputs is achievable under fairly reasonable assumptions.
- Mixing probability, functional analysis and combinatorics lead to a linear treatment of multivariate non-linear stochastic problems.
- We can define intuitive model-centric decompositions of quantities of interest.
- We proposed candidates to separate pure interaction and dependence effects.

Perspectives

Main challenge: Estimation.

- We haven't found an off-the-shelf method to estimate the oblique projections...

Perspectives

Main challenge: Estimation.

- We haven't found an off-the-shelf method to estimate the oblique projections...
- But we have a lot of ideas on where to start :)

Perspectives

Main challenge: Estimation.

- We haven' \dagger found an off-the-shelf method to estimate the oblique projections...
- But we have a lot of ideas on where to start :)

A few perspectives:

- Causality and algebraic structures beyond the Boolean lattice.
- Link between Feshchenko matrices and copulas.
- Non \mathbb{R}-valued output.
- Beyond the MSE for surrogate modelling.
- Many methodological questions that seemed unreachable so far, but appear approachable using this framework.

References i

Axler, S. 2015. Linear Algebra Done Right [in en]. Undergraduate Texts in Mathematics. Cham: Springer International Publishing. ISBN: 978-3-319-11079-0 978-3-319-11080-6. https://doi.org/10.1007/978-3-319-11080-6.
https://link.springer.com/10.1007/978-3-319-11080-6.
Bryc, W. 1984. "Conditional expectation with respect to dependent sigma-fields." In Proceedings of VII conference on Probability Theory, 409-411. https://homepages.uc.edu/~brycwz/preprint/Brasov-1982.pdf.
__ 1996. "Conditional Moment Representations for Dependent Random Variables." Publisher: Institute of Mathematical Statistics and Bernoulli Society, Electronic Journal of Probability 1 (none): 1-14. IssN: 1083-6489, 1083-6489. https://doi.org/10.1214/EJP.v1-7. https://projecteuclid.org/journals/electronic-journal-of-probability/volume-1/issue-none/Conditional-Moment-Representations-for-Dependent-Random-Variables/10.1214/EJP.v1-7.full.

Chastaing, G., F. Gamboa, and C. Prieur. 2012. "Generalized Hoeffding-Sobol decomposition for dependent variables - application to sensitivity analysis." Publisher: Institute of Mathematical Statistics and Bernoulli Society, Electronic Journal of Statistics 6, no. none (January): 2420-2448. ISSN: 1935-7524, 1935-7524. https://doi.org/10.1214/12-EJS749.
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-6/issue-none/Generalized-Hoeffding-Sobol-decomposition-for-dependent-variables---application/10.1214/12-EJS749.full.

Da Veiga, S., F. Gamboa, B. looss, and C. Prieur. 2021. Basics and Trends in Sensitivity Analysis: Theory and Practice in R [in en]. Philadelphia, PA: Society for Industrial / Applied Mathematics, January. ISBN: 978-1-61197-668-7 978-1-61197-669-4, accessed November 22, 2022. https://doi.org/10.1137/1.9781611976694. https://epubs.siam.org/doi/book/10.1137/1.9781611976694.

References if

Dauxois, J, G. M Nkiet, and Y Romain. 2004. "Canonical analysis relative to a closed subspace." Linear Algebra and its Applications, Tenth Special Issue (Part 1) on Linear Algebra and Statistics, 388:119-145. ISSN: 0024-3795. https://doi.org/10.1016/j.laa.2004.02.036. https://www.sciencedirect.com/science/article/pii/S0024379504001107.

Dixmier, J. 1949. "Étude sur les variétés et les opérateurs de Julia, avec quelques applications" [in fre]. Bulletin de la Société Mathématique de France 77:11-101. http://eudml.org/doc/86830.

Feshchenko, I. 2020. When is the sum of closed subspaces of a Hilbert space closed? https://doi.org/10.48550/arXiv.2012.08688. arXiv: 2012.08688 [math. FA].

Friedrichs, K. 1937. "On Certain Inequalities and Characteristic Value Problems for Analytic Functions and For Functions of Two Variables." Publisher: American Mathematical Society, Transactions of the American Mathematical Society 41 (3): 321-364. ISSN: 0002-9947. https://doi.org/10.2307/1989786. https://www.jstor.org/stable/1989786.

Gebelein, H. 1941. "Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung" [in de]. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 21 (6): 364-379. IsSN: 00442267, 15214001. https://doi.org/10.1002/zamm. 19410210604.
https://onlinelibrary.wiley.com/doi/10.1002/zamm. 19410210604.
Hart, J., and P. A. Gremaud. 2018. "An approximation theoretic perspective of Sobol' indices with dependent variables" [in English]. Publisher: Begel House Inc. International Journal for Uncertainty Quantification 8 (6). ISSN: 2152-5080, 2152-5099.
https://doi.org/10.1615/Int.J.UncertaintyQuantification. 2018026498.
https://www.dl.begellhouse.com/journals/52034eb04b657aea, 23dc16a4645b89c9,61d464a51b6bf191.html.

References if

Hoeffding, W. 1948. "A Class of Statistics with Asymptotically Normal Distribution." Publisher: Institute of Mathematical Statistics, The Annals of Mathematical Statistics 19, no. 3 (September): 293-325. ISSN: 0003-4851, 2168-8990. https://doi.org/10.1214/aoms/1177730196.
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-19/issue-3/A-Class-of-Statistics-with-Asymptotically-Normal-Distribution/10.1214/aoms/1177730196.full.

Hooker, G. 2007. "Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables" [in en]. Journal of Computational and Graphical Statistics 16 (3): 709-732. http://www.jstor.org/stable/27594267.

Joe, H. 1997. Multivariate Models and Multivariate Dependence Concepts. New York: Chapman / Hall/CRC. ISBN: 978-0-367-80389-6. https://doi.org/10.1201/9780367803896.

Kallenberg, O. 2021. Foundations of modern probability. Probability theory and stochastic modelling. Cham, Switzerland: Springer. ISBN: 978-3-030-61871-1. https://doi.org/10.1007/978-3-030-61871-1.

Koyak, R. A. 1987. "On Measuring Internal Dependence in a Set of Random Variables." Publisher: Institute of Mathematical Statistics, The Annals of Statistics 15 (3): 1215-1228. ISSN: 0090-5364, 2168-8966. https://doi.org/10.1214/aos/1176350501.
https://projecteuclid.org/journals/annals-of-statistics/volume-15/issue-3/On- Measuring-Internal-Dependence-in-a-Set-of-Random-Variables/10.1214/aos/1176350501.full.

Kuo, F. Y. I. H. Sloan, G. W. Wasilkowski, and H. Woźniakowski. 2009. "On decompositions of multivariate functions" [in en]. Mathematics of Computation 79, no. 270 (November): 953-966. ISSN: 0025-5718. https://doi.org/10.1090/S0025-5718-09-02319-9. http://www.ams.org/journal-getitem?pii=S0025-5718-09-02319-9.

References iv

Lebrun, R., and A. Dutfoy. 2009a. "A generalization of the Nataf transformation to distributions with elliptical copula." Probabilistic Engineering Mechanics 24 (2): 172-178. ISSN: 0266-8920. https://doi.org/10.1016/j.probengmech.2008.05.001. https://www.sciencedirect.com/science/article/pii/S0266892008000507.

2009b. "Do Rosenblatt and Nataf isoprobabilistic transformations really differ?" Probabilistic Engineering Mechanics 24 (4): 577-584. ISSN: 0266-8920. https://doi.org/10.1016/j.probengmech.2009.04.006.
https://www.sciencedirect.com/science/article/pii/S0266892009000307.
Malliavin, P. 1995. Integration and Probability. Vol. 157. Graduate Texts in Mathematics. New York, NY: Springer. ISBN: 978-1-4612-8694-3. https://doi.org/10.1007/978-1-4612-4202-4. http://link.springer.com/10.1007/978-1-4612-4202-4.

Mara, Thierry A., Stefano Tarantola, and Paola Annoni. 2015. "Non-parametric methods for global sensitivity analysis of model output with dependent inputs" [in en]. Environmental Modelling \& Software 72 (October): 173-183. ISSN: 13648152.
https://doi.org/10.1016/j.envsoft.2015.07.010. https://linkinghub.elsevier.com/retrieve/pii/S1364815215300153.
Peccati, Giovanni. 2004. "Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations." Publisher: Institute of Mathematical Statistics, The Annals of Probability 32 (3): 1796-1829. IsSN: 0091-1798, 2168-894X.
https://doi.org/10.1214/009117904000000405.
https://projecteuclid.org/journals/annals-of-probability/volume-32/issue-3/Hoeffding-ANOVA-decompositions-for-symmetric-statistics-of-exchangeable-observations/10.1214/009117904000000405.full.

Rabitz, H., and O. Aliş. 1999. "General foundations of high-dimensional model representations" [in en]. Journal of Mathematical Chemistry 25 (2): 197-233. ISSN: 1572-8897. https://doi.org/10.1023/A:1019188517934. https://doi.org/10.1023/A:1019188517934.

References \mathbf{v}

Rota, G-C. 1964. "On the foundations of combinatorial theory I. Theory of Möbius Functions." Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2 (4): 340-368. ISSN: 1432-2064. https://doi.org/10.1007/BF00531932.

Sidák, Z. 1957. "On Relations Between Strict-Sense and Wide-Sense Conditional Expectations." Theory of Probability \& Its Applications 2 (2): 267-272. ISSN: 0040-585X. https://doi.org/10.1137/1102020. https://epubs.siam.org/doi/abs/10.1137/1102020.

THANK YOU FOR YOUR ATTENTION!

Any Questions?

MAROUANEILIDRISSI.COM

Annihilating property

Proposition (Annihilating property). For any $A \in \mathcal{P}_{D}$ and any $B \subset A$

$$
P_{B}\left(Q_{A}(G(X))\right)=P_{B}\left(G_{A}\left(X_{A}\right)\right)=0
$$

