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Some context

Does Hoeffding’s functional decomposition hold when the inputs are not
mutually independent?

Classical Hoeffding’s decomposition: Unique decomposition G(X ) =
∑

A∈PD
GA(XA) for any

square-integrable G(X ), where the inputs X are mutually independent.

Yes, under two reasonable assumptions on the inputs:

• Non-perfect functional dependence.
• Non-perfect stochastic dependence.

However... Achieving this result requires an unusual methodological journey.

In this talk: Mix the fields of probability theory and functional analysis, with a sprinkle of

algebraic combinatorics, to generalize Hoeffding’s decomposition to dependent inputs.
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More context

We’re not the first to have worked on this generalization.

(see, e.g., Rabitz and Aliş (1999), Peccati (2004), Hooker (2007), Kuo et al. (2009), and Hart and

Gremaud (2018))

In Chastaing, Gamboa, and Prieur (2012), the authors approached the problem by

considering subspaces of the Lebesgue space L2
.

They showed that the generalized decomposition hold, but under fairly restrictive
assumptions on the inputs.

Our approach: Understand the relationships between these subspaces of L2
when the

inputs are not mutually independent.
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Random inputs, black-box model

Let (Ω,F ,P) be a probability space, and let (E1, E1), . . . , (Ed , Ed) be standard Borel
measurable spaces.

The random inputs are defined as a measurable mapping (i.e., random element):

X : Ω → E ,

where E =×d

i=1
Ei is the cartesian product of the d Polish spaces.

(This is just a way to say that X = (X1, . . . ,Xd) is not necessarily Rd -valued)

Remark . We are mainly going to treat X as a function: although its law is well-defined, we
don’t really need to control it directly.
(We are going to work with P instead).

Let G : E → R be a black-box model, and denote by G(X ) the random output (it is a
random variable).
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Generated and P-trivial σ-algebras

Let D = {1, . . . , d}, and denote PD the power-set of D (i.e., the set of subsets of D).

For every A ⊂ D, the mapping XA = (Xi )i∈A is an EA :=×i∈A
Ei -valued random element.

For every A ⊂ D, denote by:

• σA ⊆ F the σ-algebra generated by XA ;

• σX ⊆ F the σ-algebra generated by X .

And notice that if B ⊆ A, then σB ⊆ σA.

Lemma (Doob-Dynkin). If an R-valued random variable Y is σX -measurable, then there exists
some function f : E → R such that Y = f (X ) a.s.

Finally, denote by σ∅ the P-trivial σ-algebra, i.e., the σ-algebra that contains every event of
F of probability 0.

Lemma (Kallenberg (2021, Lemma 4.9)). Every σ∅-measurable randomvariable is a.s. constant.
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Functional dependence

Assumption 1 (Non-perfect functional dependence). Suppose that:

• σ∅ ⊂ σi , i = 1, . . . , d (inputs are not constant).
• For B ⊂ A, σB ⊂ σA (inputs add information).
• For every A,B ∈ PD , A ̸= B,

σA ∩ σB = σA∩B .

This assumption is purely functional: we’re just controlling the pre-image of the mappings
(XA)A∈PD

.

Proposition . Suppose that Assumption 1 hold. Then, for any A,B ∈ PD such that A∩B ̸∈ {A,B}
(i.e., the sets cannot be subsets of each other), there is no mapping T such that

XB = T (XA) a.e.

In other words, if Assumption 1 hold, then the inputs cannot be functions of each other. 5/40



Output space

Recall that (Ω,F ,P) is our sample space, and let G be a sub-σ-algebra of F .

Definition (Lebesgue space). Denote by L2 (G) the Lebesgue space containing every square-
integrable, R-valued random variables. It is an (infinite-dimensional) Hilbert space with inner
product, ∀Z1,Z2 ∈ L2 (G):

⟨Z1,Z2⟩ = E [Z1Z2] =

∫
Ω

Z1(ω)Z2(ω)dP(ω).

L2 (σX ) is the space of random outputs: it only contains random variable that can be
expressed as functions of X .

For every A ⊂ D, L2 (σA) ⊂ L2 (σX ) only contains random variables that can be expressed as
functions of XA.

L2 (σ∅) only contains a.s constants.
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Generated Lebesgue subspaces

Theorem (Sidák (1957, Theorem 2)). Let B1 ⊆ B2 ⊆ F , then

• L2 (B1) ⊆ L2 (B2) ⊆ L2 (F) ;
• L2 (B1) ∩ L2 (B2) = L2 (B1 ∩ B2).

Recall that, since for B ⊂ A ∈ PD we have that σB ⊆ σA, then:

L2 (σB) is a closed Hilbert subspace of L2 (σA)

and all of them are closed subspaces of L2 (σX ): They are nested in very a particular way
(more on that later in the talk).

Controlling the Lebesgue spaces w.r.t. the σ-algebras allow to express spaces of functions of
subsets of inputs (analogously to Chastaing, Gamboa, and Prieur (2012)).
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The intuition

Recall the classical result:

Theorem (Malliavin (1995, Chapter 3)). Let X and Y be two random elements. Then:

X ⊥⊥ Y ⇐⇒ ∀f (X ) ∈ L2 (σX ) , ∀g(Y ) ∈ L2 (σY ) , Corr (f (X ), g(Y )) = 0,

or, in other words, L2
0 (σX ) ⊥ L2

0 (σY ), where L2
0 only contains centered random variables.

What does this result entail?

• X and Y are independent =⇒ The functions of X and Y are uncorrelated. ✓
• The functions of X and Y are uncorrelated =⇒ X and Y are independent. ???

Intuition:

Is it possible to control the dependence structure between the inputs by controlling the

angles between the subspaces
{
L2 (σA)

}
A∈PD

?
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Dixmier’s angle

Definition (Dixmier’s angle (Dixmier 1949)). Let M,N be closed subspaces of a Hilbert space
H. The cosine of Dixmier’s angle between M and N is defined as

c0 (M,N) := sup {|⟨x , y⟩| : x ∈ M, ∥x∥ ≤ 1, y ∈ N, ∥y∥ ≤ 1} .

Dixmier’s angle is closely related to the notion of maximal correlation in probability theory

(Koyak 1987), as a dependence measure between random elements.

Definition (Maximal correlation (Gebelein 1941)). Let Z1,Z2 be two random elements. The maxi-
mal correlation between Z1 and Z2 is

ρ0(Z1,Z2) := c0
(
L2

0 (σZ1) ,L
2
0 (σZ2)

)
Remark .

Z1 ⊥⊥ Z2 ⇐⇒ ρ0 (Z1,Z2) = 0.

9/40



Dixmier’s angle

Definition (Dixmier’s angle (Dixmier 1949)). Let M,N be closed subspaces of a Hilbert space
H. The cosine of Dixmier’s angle between M and N is defined as

c0 (M,N) := sup {|⟨x , y⟩| : x ∈ M, ∥x∥ ≤ 1, y ∈ N, ∥y∥ ≤ 1} .

Dixmier’s angle is closely related to the notion of maximal correlation in probability theory

(Koyak 1987), as a dependence measure between random elements.

Definition (Maximal correlation (Gebelein 1941)). Let Z1,Z2 be two random elements. The maxi-
mal correlation between Z1 and Z2 is

ρ0(Z1,Z2) := c0
(
L2
0 (σZ1) ,L

2
0 (σZ2)

)

Remark .

Z1 ⊥⊥ Z2 ⇐⇒ ρ0 (Z1,Z2) = 0.

9/40



Dixmier’s angle

Definition (Dixmier’s angle (Dixmier 1949)). Let M,N be closed subspaces of a Hilbert space
H. The cosine of Dixmier’s angle between M and N is defined as

c0 (M,N) := sup {|⟨x , y⟩| : x ∈ M, ∥x∥ ≤ 1, y ∈ N, ∥y∥ ≤ 1} .

Dixmier’s angle is closely related to the notion of maximal correlation in probability theory

(Koyak 1987), as a dependence measure between random elements.

Definition (Maximal correlation (Gebelein 1941)). Let Z1,Z2 be two random elements. The maxi-
mal correlation between Z1 and Z2 is

ρ0(Z1,Z2) := c0
(
L2
0 (σZ1) ,L

2
0 (σZ2)

)
Remark .

Z1 ⊥⊥ Z2 ⇐⇒ ρ0 (Z1,Z2) = 0.

9/40



Friedrich’s angle

Definition (Friedrich’s angle (Friedrichs 1937)). The cosine of Friedrichs’ angle is defined as

c (M,N) := sup

|⟨x , y⟩| :

x ∈ M ∩ (M ∩ N)⊥, ∥x∥ ≤ 1

y ∈ N ∩ (M ∩ N)⊥, ∥y∥ ≤ 1

 ,

where the orthogonal complement is taken w.r.t. to H.

Friedrich’s angle is used in probability theory as a measure of partial dependence between

two random elements (Bryc 1984, 1996; Dauxois, Nkiet, and Romain 2004).

Definition (Maximal partial correlation). Let Z1 and Z2 be two random elements. The maximal
partial correlation is between Z1 and Z2 is

ρ∗(Z1,Z2) := c
(
L2 (σZ1) ,L

2 (σZ2)
)

Remark .

ρ∗ (Z1,Z2) = 0 ⇐⇒ E [E [. | Z1] | Z2] = E [E [. | Z2] | Z1]
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Closure and complements

These two angles are related to the closedness of the sum of the two subspaces:

• c (M,N) < 1 ⇐⇒ M + N is closed in H ;

• c0 (M,N) < 1 ⇐⇒ M ∩ N = {0} and M + N is closed in H.

But why should we care?

Because in Hilbert spaces, a closed subspace is always complemented, i.e., if M is closed,

then there always exists another subspace K such that:

H = M + K and M ∩ K = {0}.

In other words, it makes sense to talk about “the remainder of the ambient space (H)
outside of the closed subspace (M)”.

One popular complement of a closed subspace M is its orthogonal complement M⊥
.

11/40
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Feshchenko matrix

Let’s go back to our set of subspaces

{
L2 (σA)

}
A∈PD

.

How can we “globally” control all the Friedrichs’ angles between them?

Intuition: By putting them in a sort of “generalized precision matrix”.

Definition (Maximal coalitional precision matrix). Let ∆ be the (2d × 2d), symmetric set-indexed
matrix, defined element-wise, ∀A,B ∈ PD as

∆AB =

1 if A = B;

−c
(
L2 (σA) ,L2 (σB)

)
otherwise.

These matrices resemble closely the ones used by Feshchenko (2020) to study the

closedness of an arbitrary sum of closed subspaces of a Hilbert space.

=⇒ We’re going to call them “Feshchenko matrices”.
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Stochastic dependence

But why is the Feshchenko matrix interesting?

Proposition . Suppose that Assumption 1 hold. Then,

∆ = I2d ⇐⇒ X is mutually independent.

Remark . Recall that we’re working with abstract-valued random elements (and not neces-

sarily a random vector).

Our second assumption:

Assumption 2 (Non-degenerate stochastic dependence). The Feshchenko matrix ∆ of the inputs is
definite-positive.

Note that this is a restriction of the inner product of L2 (σX ), and thus an indirect restriction on
the law of X .
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Direct-sum decomposition

An infinite-dimensional Hilbert space is still a linear vector space.

Definition (Direct-sum decomposition (Axler 2015)). LetW be a vector space and letW1, . . . ,Wn

be proper subspaces of W .

W is said to admit a direct-sum decomposition if any w ∈ W can be written uniquely as

w =
n∑

i=1

wi where wi ∈ Wi for i = 1, . . . , n.

In this case, we write:
W =

n⊕
i=1

Wi .

Intuition: Can we find a direct-sum decomposition for L2 (σA), for every A ∈ PD?

If so, we could uniquely decompose any non-linear function of XA, A ∈ PD .

But which subspaces should be involved in the direct-sum decomposition ?
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Generalized Hoeffding decomposition

Theorem . Under Assumptions 1 and 2, for every A ∈ PD , one has that

L2 (σA) =
⊕
B∈PA

VB .

where V∅ = L2 (σ∅), and

VB =

 +
C∈PB ,C ̸=B

VC

⊥B

,

where ⊥B denotes the orthogonal complement in L2 (σB).

Main intuition:

“Inductive generalized centering”
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Intuition behind the result: One input

One input:

1. Let i ∈ D, and fix L2 (σi ) as the ambient space.
2. We have that V∅ := L2 (σ∅) is a closed subspace of L2 (σi ) (thus it is complemented).
3. Denote Vi = [V∅]

⊥i
, the orthogonal complement of V∅ in L2 (σi ).

4. One has that L2 (σi ) = V∅ ⊕ Vi .

5. Since V∅ only contains constants, Vi = L2
0 (σi ).

In other words, we just showed that any f (Xi ) ∈ L2 (σi ) can be written as

f (Xi ) = E [f (Xi )]︸ ︷︷ ︸
∈V∅

+E [f (Xi )− E [f (Xi )]]︸ ︷︷ ︸
∈Vi

.

And note that we can do this for any i ∈ D.
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Intuition behind the result: Two inputs

Two inputs:

1. Let i , j ∈ D, and fix L2 (σij) as the ambient space.
2. We have that L2 (σi ) and L2 (σj) are closed subspaces of L2 (σij).

3. Assumptions 1 and 2 imply that L2 (σi ) + L2 (σj) is closed in L2 (σij) (thus it is

complemented).
4. Notice (previous step) that L2 (σi ) + L2 (σj) = V∅ + Vi + Vj .

5. Denote Vij = [V∅ + Vi + Vj ]
⊥ij

, the orthogonal complement in L2 (σij).

6. We thus have that L2 (σij) = V∅ + Vi + Vj + Vij .

And note that we can do this for any pair i , j ∈ D.

In essence, we “centered” a bivariate function from its “univariate and constant parts”.

And we can continue the same induction up to d inputs.
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Orthocanonical decomposition

As a direct consequence of the previous theorem:

Corollary (Orthocanonical decomposition). Under Assumptions 1 and 2, any G(X ) ∈ L2 (σX ) can
be uniquely decomposed as

G(X ) =
∑
A∈PD

GA(XA),

where each GA(XA) ∈ VA.

The term “orthocanonical” comes from the choice of the orthogonal complement in the

“centering process”.

The subspaces VA are comprised of proper representants, i.e., either 0 or functions of exactly
XA (they do not contain functions of fewer inputs).
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Projectors

Recall that for any G(X ) ∈ L2 (σX ), we have

G(X ) =
∑
A∈PD

GA(XA).

Oblique projections

Denote the operator

QA : L2 (σX ) → L2 (σX ) , such that QA (G(X )) = GA(XA).

QA is the (canonical) oblique projection onto VA, parallel to
⊕

B∈PD :B ̸=A VA.

Orthogonal projections

Denote the projector

PA : L2 (σX ) → L2 (σX ) , such that Ran (PA) = VA,Ker (PA) = [VA]
⊥ .

the orthogonal projection onto VA.
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Illustration : L2
0 (σ12)

Hence, for any G(X ) ∈ L2 (σX ), one has that, ∀A ∈ PD

GA(XA) = QA(G(X )).

V2

V12

G

V1 ⊕ V2

G1 + G2

G12

α

V1

V1 ⊕ V2

V1

V2

G1 + G2

α α

α
G1

G2 P2(G)

P1(G)

The oblique projection QA usually differ from the oblique projections PA
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Oblique and orthogonal projections

In fact,

Proposition . Under Assumptions 1 and 2,

PA(G(X )) = QA(G(X )) a.s. , ∀A ∈ PD ⇐⇒ X is mutually independent.

This comes from the fact that the subspaces VA are all pairwise orthogonal if and only if the
inputs are mutually independent.

But, under Assumptions 1 and 2, they may not be all orthogonal.

To illustrate this fact, we need some algebraic combinatorics.
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Boolean lattice and hierarchical orthogonality

Our decomposition is over the power-set PD , which which is not trivial.

When endowed with the binary relation ⊆ they form an algebraic structure called a
Boolean lattice.

∅

{3}{1}

{12} {23}

{123}

{2}

{13}

a) Boolean lattice

V∅

V3V1

V12 V23

V123

V2

V13

b) Hierarchical orthogonality

The subspaces {VA}A∈PD
are hierarchically orthogonal by design: they follow the same

algebraic structure, but this time w.r.t. to ⊥.
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More projectors

Recall that:

• QA is the oblique projection onto VA.

• PA is the orthogonal projection onto VA.

But what about projections onto the subspaces
{
L2 (σA)

}
A∈PD

?

• (Canonical) oblique projection onto L2 (σA):
MA : L2 (σX ) → L2 (σX )

G(X ) 7→
∑
B∈PA

GB(XB)

• Orthogonal projection onto L2 (σA):
EA : L2 (σX ) → L2 (σX ) , such that Ran (EA) = L2 (σA) and Ker (PA) = L2 (σA)

⊥ ,

a.k.a the conditional expectation w.r.t. to XA (i.e., E [. | XA]).
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Generalized Möbius inversion

Yes, because we’re working on the power-set PD !

Corollary (Möbius inversion on power-sets (Rota 1964)). Let D = {1, . . . , d}. For any two set
functions:

f : PD → A, g : PD → A,

where A is an abelian group, the following equivalence holds:

f (A) =
∑
B∈PA

g(B), ∀A ∈ PD ⇐⇒ g(A) =
∑
B∈PA

(−1)|A|−|B|f (B), ∀A ∈ PD .

In our case, we have, by definition of the oblique projection onto L2 (σA), that

MA(G(X )) =
∑
B∈PA

GB(XB), ∀A ∈ PD ,

which is equivalent to

GA(XA) =
∑
B∈PA

(−1)|A|−|B|MB(G(X )), ∀A ∈ PD .

(This is what we call the “model-centric” approach)
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MA(G(X )) =
∑
B∈PA

GB(XB), ∀A ∈ PD ,

which is equivalent to

GA(XA) =
∑
B∈PA

(−1)|A|−|B|MB(G(X )), ∀A ∈ PD .

(This is what we call the “model-centric” approach)
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Generalized Hoeffding decomposition

If the inputs are mutually independent, from Hoeffding (1948), we have that:

GA(XA) =
∑
B∈PA

(−1)|A|−|B|E [G(X ) | XB ], ∀A ∈ PD .

In our approach, under Assumptions 1 and 2, we have that:

GA(XA) =
∑
B∈PA

(−1)|A|−|B|MB(G(X )), ∀A ∈ PD .

In addition:

Proposition . Under Assumptions 1 and 2,

E [G(X ) | XA] = MA(G(X )) a.s. ,∀A ∈ PD ⇐⇒ X is mutually independent.

Our approach actually generalizes Hoeffding’s decomposition!
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Variance decomposition

Let’s talk about variance decomposition.

We propose two complementary approaches for decomposing V (G(X )) based on this

generalized decomposition.

Organic variance decomposition: separate pure interaction effects to dependence effects.
The dependence structure of X is unwanted, and one wishes to study its effects.

Orthocanonical variance decomposition: the dependence structure of X is inherent in the
uncertainty modeling of the studied phenomenon. It amounts to quantify structural and
correlative effects.
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Organic variance decomposition: Pure interaction

The notion of pure interaction is intrinsically linked with the notion of mutual independence.

Let X̃ = (X̃1, . . . , X̃d)
⊤
be the random vector such that

X̃i
d
= Xi , and X̃ is mutually independent.

Definition (Pure interaction). For every A ∈ PD , define the pure interaction of XA on G(X ) as

SA =
V
(
PA(G(X̃ ))

)
V
(
G(X̃ )

) × V (G(X )) .

These indices are the Sobol’ indices computed on the mutually independent version of X .

This approach strongly resembles the “independent Sobol’ indices” proposed by Mara,

Tarantola, and Annoni (2015).

(see, also, Lebrun and Dutfoy (2009a, 2009b))
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Organic variance decomposition: Dependence effects

Recall the following result:

Proposition . Under Assumptions 1 and 2,

PA(G(X )) = QA(G(X )) a.s. , ∀A ∈ PD ⇐⇒ X is mutually independent.

Which motivates the definition of dependence effects.

Definition (Dependence effects). For every A ∈ PD , define the dependence effects of XA on
G(X ) as

SD
A = E

[
(QA(G(X ))− PA(G(X )))2

]
.

Proposition . Under Assumptions 1 and 2,

SD
A = 0,∀A ∈ PD , ⇐⇒ X is mutually independent.

What do they sum up to ?...
Probably some interesting global multivariate dependence measure!
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Canonical variance decomposition

The structural effects represent the variance of each of the GA(XA). It amounts to perform a

covariance decomposition (Hart and Gremaud 2018; Da Veiga et al. 2021).

Definition (Structural effects). For every A ∈ PD , define the structural effects of XA on G(X ) as

SU
A = V (GA(XA)) .

The correlative effects represent the part of variance that is due to the correlation between

the GA(XA).

Definition (Correlative effects). For every A ∈ PD , define the correlative effects of XA on G(X )

as

SC
A = Cov

GA(XA),
∑

B∈PD :B ̸=A

GB(XB)

 .
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Variance decomposition: Intuition

V1 ⊕ V2

V1

V2

G1 + G2

α

G1

G2 P2(G)

P1(G)

SD
1

SU
1

SD
2SU

2

V1 ⊕ V2

V1

V2

G̃1 + G̃2

G̃1

G̃2

S1

S2

Pure interaction effects Structural and dependence effects
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Example: Two Bernoulli inputs

Let E = {0, 1}2, and let X = (X1,X2), where

X1 ∼ B (q1) , and X2 ∼ B (q2) .

The joint law of X can be express using three parameters:
p00 = 1− q1 − q2 + ρ, p01 = q2 − ρ, p10 = q1 − ρ, p11 = ρ

where pij = P ({X1 = i} ∩ {X2 = j}).

Any function G : {0, 1}2 → R can be expressed as the vector G = (G00,G01,G10,G11)
⊤
.

Each value Gij = G(i , j), can be observed with probability pij .

In this case, we can compute everything analytically.
It requires to solving 13 equations with 13 unknowns*.

*https://github.com/milidris/GeneralizedAnova
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Feshchenko matrix and the Fréchet bounds

For the Feshchenko matrix ∆ to be definite positive, one has that:

max
{
0, q1q2 −

√
q1q2(1− q1)(1− q2)

}
< ρ < min

{
1, q1q2 −

√
q1q2(1− q1)(1− q2)

}
.

However, the classical Fréchet bounds for ρ for bivariate Bernoulli random variables (Joe
1997, p.210) are equal to

max {0, q1 + q2 − 1} ≤ ρ ≤ min {q1, q2} ,

and are more restrictive than the previous ones.

ρ strictly contained in the Fréchet bounds =⇒ Assumptions 1 and 2 hold.

Our decomposition hold for virtually any dependence structure between two Bernoullis.
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However, the classical Fréchet bounds for ρ for bivariate Bernoulli random variables (Joe
1997, p.210) are equal to

max {0, q1 + q2 − 1} ≤ ρ ≤ min {q1, q2} ,

and are more restrictive than the previous ones.
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For the Feshchenko matrix ∆ to be definite positive, one has that:

max
{
0, q1q2 −

√
q1q2(1− q1)(1− q2)

}
< ρ < min

{
1, q1q2 −

√
q1q2(1− q1)(1− q2)

}
.
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Conclusion

Main take-aways:

• Hoeffding-like decomposition of function with dependent inputs is achievable under
fairly reasonable assumptions.

• Mixing probability, functional analysis and combinatorics lead to a linear treatment of
multivariate non-linear stochastic problems.

• We can define intuitive model-centric decompositions of quantities of interest.
• We proposed candidates to separate pure interaction and dependence effects.
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Perspectives

Main challenge: Estimation.

• We haven’t found an off-the-shelf method to estimate the oblique projections...

• But we have a lot of ideas on where to start :)

A few perspectives:

• Causality and algebraic structures beyond the Boolean lattice.

• Link between Feshchenko matrices and copulas.

• Non R-valued output.

• Beyond the MSE for surrogate modelling.

• Many methodological questions that seemed unreachable so far, but appear

approachable using this framework.
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Thank you for your attention!

Any questions?
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Annihilating property

Proposition (Annihilating property). For any A ∈ PD and any B ⊂ A

PB (QA (G(X ))) = PB (GA(XA)) = 0.
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