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About me…

 Hired as permanent CEA research engineer in June 2023.

 Recruited to strengthen the URANIE dev team (currently upgrading my skills).

 5-year experience in uncertainty quantification (UQ):

• Areas of expertise: sensitivity analysis & reliability assessment.

• Areas of interest: kernel methods, stochastic modelling, copula theory… 

Past positions

 2012-2017 Engineering student at INSA Rennes (Department of Applied Mathematics)

 2017-2021 PhD student at ONERA Toulouse (DTIS)

 Title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainties. 

 Supervisors: J. Morio (ONERA), A. Lagnoux (IMT), M. Balesdent (ONERA) & L. Brevault (ONERA).

 Keywords: sensitivity analysis, rare-event probability estimation, extreme value theory, copula models…

 Applications: buckling of a composite laminate plate + launch vehicle fallout in the atmosphere.

 2021-2023 Postdoctoral researcher at CEA Cadarache (DES/IRESNE/SESI/LEMS)

 Title: Surrogate modeling and optimization under uncertainty for high-dimensional problems.

 Supervisors: A. Marrel (CEA), S. Da Veiga (ENSAI) & V. Chabridon (EDF).

 Keywords: sensitivity analysis, surrogate modelling, reproducing kernel theory, hypothesis testing.  

 Application: reliability assessment of nuclear power plants  study of accidental transients.
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A few words on the SAMOURAI project… 

 4-year research project launched in March 2021 and funded by the French National Research Agency.

Simulation Analytics and Metamodel-based solutions

for Optimization, Uncertainty and Reliability AnalysIs

https://www.ifpenergiesnouvelles.fr/samourai

 Industrial partners  EDF R&D and Safran Tech

 Public institution partners  IFPEN and CEA

 Academic partners  Centrale Supélec, EMSE and Polytechnique Montréal
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 4-year research project launched in March 2021 and funded by the French National Research Agency.

Simulation Analytics and Metamodel-based solutions

for Optimization, Uncertainty and Reliability AnalysIs

https://www.ifpenergiesnouvelles.fr/samourai

 WP1: Metamodels for large-scale problems.

 Investigators: V. Chabridon (EDF), S. Da Veiga (ENSAI), A. Marrel (CEA) & B. Staber (Safran).

 Contributors: R. Carpintero Perez (Safran), Y. Marnissi (Safran) & G. Sarazin (CEA).

 WP2: Enrichment strategies for RBI and RBDO.

 Investigators: J. Bect (Centrale Supélec) & E. Vasquez (Central Supélec).

 Contributors: R. Abdelmalek-Lomenech (Centrale Supélec), V. Chabridon (EDF) & R. El Amri (IFPEN). 

 WP3: Metamodels and optimization for mixed problems.

 Investigators: M. Keller (EDF) & R. Le Riche (EMSE).

 Contributors: J. Pelamatti (EDF), B. Sow (EMSE) & S. Zannane (EDF).

 WP4: Dealing with hidden constraints.

 Investigators: S. Le Digabel (Polytechnique Montréal) & M. Munoz Zuniga (IFPEN).

 Contributors: S. Jacquet (IFPEN) & M. Menz (IFPEN).

 The project is divided into 4 work packages. Scientific coordination is ensured by Delphine Sinoquet (IFPEN).
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 4-year research project launched in March 2021 and funded by the French National Research Agency.

Simulation Analytics and Metamodel-based solutions

for Optimization, Uncertainty and Reliability AnalysIs

https://www.ifpenergiesnouvelles.fr/samourai

 As regards WP1, 4 research topics were identified as priorities.

 Task 1.1: Improve sparse Gaussian process (GP) regression and experiment modern kernel selection

 Task 1.2: Take advantage of state-of-the-art techniques in global sensitivity analysis (GSA)

 Better understand the mathematical foundings of the HSIC-ANOVA decomposition.

• Investigate the existence of explicit feature maps for Sobolev kernels.

• Establish connections between feature functions and HSIC-ANOVA terms. 

 Extend HSIC-based independence test prodecures to HSIC-ANOVA indices.

 Compare numerically the information captured by Sobol’ indices and HSIC-ANOVA indices.

 Upgrade the R package sensitivity (especially the routines dedicated to kernel-based GSA).

 Task 1.3: Make GP hyperparameter estimation more robust

 Task 1.4: Extend and adapt all methodologies to (very) large databases
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Introduction
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GSA in support to metamodel construction

 In all four work packages, there is a need to construct metamodels for high-dimensional design problems.

 The metamodel ො𝑔 must be constructed from 𝒁obs ≔ 𝑿 𝑖 , 𝑌(𝑖)
1≤𝑖≤𝑛

with 𝑛 ≤ 10𝑑 SMALL DATA.

 For a nice coverage of the input domain of variation, the DoE must be space-filling  GIVEN DATA.

• Let 𝑿 ≔ 𝑋1, … , 𝑋𝑑 be a random vector with independent components (𝑑 ≈ 100).

• Let 𝑌 ≔ 𝑔(𝑿) where 𝑔:𝓧1 ×⋯×𝓧𝑑 → 𝓨 is a computationally-expensive simulation code.

• 𝒁 = (𝑿, 𝑌) is the augmented vector containing the input and output variables.

The design of experiments (DoE) consists of a number of input-output observations.

Classical metamodeling techniques (such as GP regression) cannot be used directly.

Curse of dimensionality too many GP hyperparameters have to be optimized! 

Many existing strategies (screening, additive and ANOVA models, linear and nonlinear embeddings).

 Binois & Wycoff (2022) for a comprehensive review.

Focus on SCREENING  preliminary GSA for variable selection (and thus dimension reduction).
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 Steps 2 and 3 of the ICSCREAM methodology Iooss & Marrel (2019) or Marrel et al. (2020)

 Identification of penalizing Configurations using SCREening And Metamodel 

 Performing a preliminary GSA has two main advantages.

 Screening-oriented GSA  (crude) dimension reduction by discarding non-influential input variables.

GSA in support to metamodel construction
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 Steps 2 and 3 of the ICSCREAM methodology Iooss & Marrel (2019) or Marrel et al. (2020)

 Identification of penalizing Configurations using SCREening And Metamodel 

 Performing a preliminary GSA has two main advantages.

 Screening-oriented GSA  (crude) dimension reduction by discarding non-influential input variables.

 Ranking-oriented GSA  sequential building process of the GP metamodel.

1

2

GSA in support to metamodel construction



1. Various concepts related to kernels

2. Sensitivity measures based on the HSIC

3. A bridge between two opposite worlds: HSIC-ANOVA indices

4. Is it relevant to talk about interactions for HSIC-ANOVA indices?

5. More about Sobolev kernels and their properties

6. Does all this benefit independence testing?

Summary

25/01/2024Towards more interpretable kernel-based sensitivity analysis 10



Various concepts 
related to kernels
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Fundamentals of reproducing kernel theory
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 Let 𝐾:𝓩 × 𝓩 → ℝ be a function defined on 𝓩 ⊆ ℝ𝑝 with 𝑝 ≥ 1.

𝐾 is said to be a kernel if it is symmetric and positive definite.

A Hilbert space 𝓗, ∙,∙ 𝓗 is said to be a reproducing kernel Hilbert space (RKHS) if:

 Let 𝓗, ∙,∙ 𝓗 be a Hilbert space in ℝ𝓩 (the space of all functions defined from 𝓩 to ℝ). 

 Generally speaking, the smoother the functions, the smaller the function space.

 An RKHS is sufficiently big to remain complete.

 An RKHS is sufficiently smooth to have interesting properties.

There is a one-to-one mapping between reproducing kernels and RKHSs. 

Moore-Aronszajn theorem

reproducing

property

𝐾:𝓩 × 𝓩 → ℝ

kernel

𝓗, ∙,∙ 𝓗 with 𝓗 ⊆ ℝ𝓩

RKHS

Reproducing kernel Hilbert space (RKHS)1  Berlinet & Thomas-Agnan (2011)



 Let 𝓜1
+(𝓩) be the space of all probability measures defined on 𝓩 ⊆ ℝ𝑝.  

 Let 𝐾:𝓩 × 𝓩 → ℝ be a kernel and let 𝓗 be the induced RKHS.

 Any probability measure 𝜈 ∈ 𝓜1
+(𝓩) can be represented by a (well-defined) function 𝜇𝜈 ∈ 𝓗.

Assumptions

• 𝐾 must be measurable

• 𝔼𝜈 𝐾(𝑍, 𝑍) < ∞

RKHSSpace of all probability distributions

 𝐾 is said to be a characteristic kernel if the map 𝜈 ↦ 𝜇𝜈 is injective. 

 The dissimilarity between 𝜈1 and 𝜈2 can be measured through the distance in 𝓗 between 𝜇𝜈1 and 𝜇𝜈2 .

 Definition of a kernel-based dissimilarity measure on 𝓜1
+(𝓩). 

Kernel mean embeddings2  Muandet et al. (2017)
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 Alternative formula paving the way to a simple estimation procedure

 Definition resulting from the embedding mechanism

 Let 𝓜1
+(𝓩) be the space of all probability measures defined on 𝓩 ⊆ ℝ𝑝.  

 Let 𝐾:𝓩 × 𝓩 → ℝ be a kernel and let 𝓗 be the induced RKHS.

 Any probability measure 𝜈 ∈ 𝓜1
+(𝓩) can be represented by a (well-defined) function 𝜇𝜈 ∈ 𝓗.

Assumptions

• 𝐾 must be measurable

• 𝔼𝜈 𝐾(𝑍, 𝑍) < ∞

 𝐾 is said to be a characteristic kernel if the map 𝜈 ↦ 𝜇𝜈 is injective. 

Kernel mean embeddings2  Muandet et al. (2017)

Maximum Mean Discrepancy (MMD)3  Gretton et al. (2006)
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Feature maps4  Chapter 4 in Steinwart & Christmann (2008)

 Let 𝐾:𝓩 × 𝓩 → ℝ be a kernel and let 𝓗 be the induced RKHS.

 Let us assume that there exist a Hilbert space 𝓕 and a map 𝜑:𝓩 → 𝓕 such that: 

𝓕 is called a feature space. 𝜑 is called a feature map. Any object 𝜑(𝑧) is called a feature function.

 Existence of at least one feature map.

 The canonical feature map 𝜃 ∶ 𝓩 → 𝓗 is thus defined by 𝜃 𝑧 ≔ 𝐾(∙, 𝑧) for any 𝑧 ∈ 𝓩.

 Non-unicity of the feature map.

 There may exist a feature space where the kernel action is much easier to understand.

domain of variation

RKHS = canonical feature space

Most often, 𝜃(∙) is NOT informative! 

When 𝓕 is an Euclidean space or a sequence space, 

an explicit characterization of the RKHS can be derived.
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Feature-based characterization of the RKHS5  Chapter 4 in Steinwart & Christmann (2008)

 The polynomial kernel with position parameter 𝑐 ≥ 0 and exponent 𝑚 ∈ ℕ∗.

 The binomial theorem reveals a feature map 𝜑poly from ℝ to the Euclidean space ℝ𝑚+1.

Example 1

First, let us examine two particular kernels!

initial definition

finite number of polynomial features
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Feature-based characterization of the RKHS5  Chapter 4 in Steinwart & Christmann (2008)

 The Gaussian kernel with scale parameter 𝛾 > 0.Example 2

First, let us examine two particular kernels!

initial definition

infinite number of damped polynomial features

 The Taylor series expansion reveals a feature map 𝜑𝛾 from ℝ into the Hilbert space 𝓁2 ℕ .
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Feature-based characterization of the RKHS5  Chapter 4 in Steinwart & Christmann (2008)

 As shown in these two examples, a kernel expansion allows to identify a feature map.

 More importantly, it provides all-in-one characterization of the RKHS.

 Let 𝐾:𝓩 × 𝓩 → ℝ be a kernel and let 𝓗 be the induced RKHS.

 It is assumed that it can be expanded as a sum (or series) of symmetric and separable functions.

 The functions 𝑔𝑖 𝑖∈𝐼 are the features. They must be linearly independent (in the 𝓁2-sense).

❶

❷

❸ The functions 𝑔𝑖 𝑖∈𝐼 form an orthonormal basis (ONB) of 𝓗.

Polynomial kernel  𝐼 = 0, … ,𝑚

Gaussian kernel  𝐼 = ℕ

18

Fundamentals of reproducing kernel theory



Sensitivity measures 
based on the HSIC
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Several views on HSIC indices

20

Kernel-based dependences measures1  Da Veiga (2015)

• ℙ𝑋𝑖𝑌  Joint distribution of (𝑋𝑖 , 𝑌)  True influence of 𝑋𝑖 on 𝑌

• ℙ𝑋𝑖⨂ℙ𝑌  Independence within (𝑋𝑖 , 𝑌)  Hypothetical lack of influence

How to measure the discrepancy?

What about using the MMD? 

• 𝐾𝑖 ∶ 𝓧𝑖 ×𝓧𝑖 → ℝ assigned to 𝑋𝑖

• 𝐾𝑌 ∶ 𝓨 × 𝓨 → ℝ assigned to 𝑌

• 𝐾𝑖⨂𝐾𝑌 used to handle (𝑋𝑖 , 𝑌)

• 𝓗≔𝓗𝑖⨂𝓗𝑌 induced by 𝐾𝑖⨂𝐾𝑌

How to estimate HSIC indices from a given dataset?
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Efficient estimation2  Gretton et al. (2005, 2007) and Serfling (2009)

 The alternative formula of the MMD allows to rewrite the HSIC only in terms of kernel-based moments.

(𝑋𝑖 , 𝑌) ⊥ (𝑋𝑖
′, 𝑌′) ⊥ (𝑋𝑖

′′, 𝑌′′) ⊥ (𝑋𝑖
′′′, 𝑌′′′) follow the joint input-output distribution ℙ𝑋𝑖𝑌.

 U-statistics and V-statistics are well-adapted to estimate HSIC indices from a given DoE. 

 ෡𝐻𝑖
𝑈 denotes the U-statistic estimator of HSIC 𝑋𝑖 , 𝑌  no bias BUT no guarantee of positivity.

 ෡𝐻𝑖
𝑉 denotes the V-statistic estimator of HSIC 𝑋𝑖 , 𝑌  positivity BUT bias.

 Consistency and existence of a CLT convergence at rate 1/ 𝑛.

 Low computational complexity only 𝒪(𝑛2) operations are required to compute estimates. 

𝑁𝑠𝑖𝑚 = 𝑛

Several views on HSIC indices



• Let 𝐾𝑖 ∶ 𝓧𝑖 ×𝓧𝑖 → ℝ be the 𝑖-th input kernel (with RKHS denoted by 𝓗𝑖).

• Let 𝐾𝑌 ∶ 𝓨 × 𝓨 → ℝ be the output kernel (with RKHS denoted by 𝓗𝑌).

 The knowledge of 𝓗𝑖 and 𝓗𝑌 allows to rewrite HSIC 𝑋𝑖 , 𝑌 as a kind of generalized covariance.

catalogues of transformationssum of covariances for different patterns

 Aggregation of covariance terms obtained after applying sequences of preliminary basis transformations.

 Each pair of non-linear functions 𝑣𝑖𝑘 ∙ , 𝑤𝑙 ∙ corresponds to a non-linear dependence pattern. 
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Cross-covariance operators3  Gretton et al. (2005)

 HSIC indices computed with Gaussian kernels  𝐾𝑖 = 𝐾𝑌 = 𝐾𝛾Example

damped polynomial feature 

Infinitely many damped polynomial transformations are applied to both 𝑋𝑖 and 𝑌.

Several views on HSIC indices
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Independence testing4  Gretton et al. (2007)

 The input kernel 𝐾𝑖 ∶ 𝓧𝑖 ×𝓧𝑖 → ℝ is assumed to be characteristic to 𝓜1
+ 𝓧𝑖 .

 The output kernel 𝐾𝑌 ∶ 𝓨 × 𝓨 → ℝ is assumed to be characteristic to 𝓜1
+ 𝓨 .

 Testing independence between 𝑋𝑖 and 𝑌 is equivalent to testing the nullity of the HSIC.

 Test statistic  either ෡𝐻𝑖
𝑈 or ෡𝐻𝑖

𝑉

 Test procedure  selected according to the sample size and the chosen test statistic

 Asymptotic test procedure  Zhang et al. (2018)

 Permutation-based test procedure  De Lozzo & Marrel (2016)

 Sequential permutation-based test procedure  El Amri & Marrel (2022)

 Non-asymptotic Gamma test procedure  El Amri & Marrel (2023)

Comparison with Sobol’ indices5

 Much harder to interpret  no uniform bound + sum ≠ 1 + non-trivial mathematical foundations.

 Not conceptually tailored to ranking-oriented GSA  no link with the output variability.

Several views on HSIC indices



 HSIC indices perfectly meet the needs of screening-oriented GSA.

 The use of characteristic kernels allows to detect any type of input-output dependence.

 Inference is an easy task (no need for specific data, big data or density estimation).
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Sobol’ indices vs. HSIC indices

GSA requirements

ANOVA decomposition

 RANKING

Characterize independence

 SCREENING

Estimation 

from GIVEN DATA

Compatibility with 

DEPENDENT inputs

Estimation 

from SMALL DATA

INVARIANCE through 

monotonic transformations 

𝑆𝑖 𝑇𝑖 HSIC(𝑋𝑖 , 𝑌)



 HSIC indices lack interpretability and they are not tailored to perform ranking-oriented GSA.
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Still room to improve HSIC indices?

Sum not equal to 𝟏. No universal bound. Different MMD scales.

GSA requirements

ANOVA decomposition

 RANKING

Characterize independence

 SCREENING

Estimation 

from GIVEN DATA

Compatibility with 

DEPENDENT inputs

Estimation 

from SMALL DATA

INVARIANCE through 

monotonic transformations 

𝑆𝑖 𝑇𝑖 HSIC(𝑋𝑖 , 𝑌)

How to do better 

on that point?



A bridge between 
two opposite worlds: 
HSIC-ANOVA indices
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 ANOVA decomposition for Sobol’ indices  Sobol’ (1993)

 The output variance 𝕍 Y is apportioned between all subsets of inputs.  

 First-order and total-order Sobol’ indices

 First-order Sobol’ indices 𝑆𝑖 1≤𝑖≤𝑑  main effects only!

 Total-order Sobol’ indices 𝑇𝑖 1≤𝑖≤𝑑  main effects + interactions.

 Constraints imposed on the sub-functions of the Sobol’-Hoeffding decomposition 

𝑋1 ⊥ ⋯ ⊥ 𝑋𝑑

27

Taking inspiration from standard ANOVA…



 𝓗𝑖 = ℝ⊕𝓖𝑖 where 𝓖𝑖 is only composed of zero-mean functions (with respect to ℙ𝑋𝑖).

 HISC-ANOVA decomposition  Da Veiga (2021)

 The quantity HSIC(𝑿, 𝑌) is apportioned between all subsets of inputs.  

𝑋1 ⊥ ⋯ ⊥ 𝑋𝑑

 First-order and total-order HSIC-ANOVA indices

 First-order HSIC-ANOVA indices 𝑆𝑖
HSIC

1≤𝑖≤𝑑
 main effects only!

 Total-order HSIC-ANOVA indices 𝑇𝑖
HSIC

1≤𝑖≤𝑑
 main effects + interactions.
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 Constraints imposed on the input kernels

 Each input kernel 𝐾𝑖 must be an ANOVA kernel (≈ a constant kernel + an orthogonal kernel).

… and bringing ANOVA into the HSIC paradigm



How to implement the HSIC-ANOVA decomposition in practice?

1. Transform each input distribution ℙ𝑋𝑖 into a standard uniform distribution 𝓤( 0,1 ). 

Density of the 𝒊-th input variable Density of the uniform distribution

Probability Integral Transform (PIT)

2. Assign a Sobolev kernel 𝐾Sob
𝑟 to each new input variable 𝑈𝑖 ≔ 𝐹𝑋𝑖(𝑋𝑖).

 𝑟 ∈ ℕ∗ is an integer parameter indicating the degree of smoothness of the RKHS.

 The functions 𝐵𝑖 𝑖≥1 are the Bernoulli polynomials 0׬
1
𝐵𝑖 𝑢 d𝑢 = 0.

For most parametric families of distributions, there is no well-known characteristic ANOVA kernel. 
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How to find ANOVA kernels?
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A grey area around HSIC-ANOVA indices?

GSA requirements

ANOVA decomposition

 RANKING

Characterize independence

 SCREENING

Estimation 

from GIVEN DATA

Compatibility with 

DEPENDENT inputs

Estimation 

from SMALL DATA

INVARIANCE through 

monotonic transformations 

𝑇𝑖 HSIC(𝑋𝑖 , 𝑌) 𝑆𝑖
HSIC 𝑇𝑖

HSIC

1. How do they measure sensitivity? How to distinguish between main effects and interactions?

2. Are they able to characterize independence?



Is it relevant to talk 
about interactions for 
HSIC-ANOVA indices?
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For most benchmark test cases, HSIC-ANOVA interactions are not significant.

𝑌 = 𝑔 𝑋1, 𝑋2, 𝑋3 = sin 𝑋1 + sin2 𝑋2 + 𝑋3
4 sin 𝑋1 with 𝑋𝑖 ∿𝓤 −𝜋, 𝜋

 Strong interaction between 𝑋1 and 𝑋3 in the variance-based ANOVA framework.

 No interaction between 𝑋1 and 𝑋3 in the HSIC-ANOVA framework.

CLEAR 

ACTIVATION

𝑆1
HSIC = 𝑆2

HSIC = 17%

𝑇1
HSIC = 𝑇2

HSIC = 83%

Hull function

 the Ishigami function Example

Counterexample  Hand-made pathological functions (only for 𝑑 ≈ 2)

32

No clear explanation on why those functions lead to strong HSIC-ANOVA interactions.

The feature-based viewpoint on the HSIC allows to break the deadlock.

Focus on HSIC-ANOVA interactions
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HSIC indices1

 Remember the reformulation of the HSIC as a sum of covariance terms (depending on the chosen kernels). 

catalogues of transformationsdependence patterns captured by 𝐾1 and 𝐾𝑌

A detour through cross-covariance operators
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HSIC indices1

 Remember the reformulation of the HSIC as a sum of covariance terms (depending on the chosen kernels). 

catalogues of transformationsdependence patterns captured by 𝐾1 and 𝐾𝑌

A detour through cross-covariance operators

First-order HSIC-ANOVA indices 2

 Application of the above formula in the case where 𝐾1 is an ANOVA kernel.

 The RKHS induced by 𝐾1 = 1 + 𝑘1 may be decomposed as 𝓗1 = ℝ⊕𝓖1.

 All the functions in 𝓖1 have zero mean (with respect to ℙ𝑋1). 

 An ONB 𝑣1𝑘 𝑘 of 𝓗1 can be obtained by taking {𝟙 ; 𝑢1𝑘 𝑘} where 𝑢1𝑘 𝑘 is an ONB of 𝓖1.

dependence patterns captured by 𝑘1 and 𝐾𝑌

How to extend this reasoning to higher-order HSIC-ANOVA indices?
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HSIC-ANOVA decomposition3

A detour through cross-covariance operators

 For the sake of clarity, it is assumed that 𝑑 = 2.

 No loss of generality. Everything remains true in higher dimension!

Now, let us rewrite the left-hand term in the HSIC-ANOVA decomposition. 

HSIC-ANOVA 

interaction term
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A detour through cross-covariance operators

 For the sake of clarity, it is assumed that 𝑑 = 2.

 No loss of generality. Everything remains true in higher dimension!

 Step A Identify the input and output kernels

 For the random INPUT vector 𝑿 = [𝑋1, 𝑋2]  𝐾1⨂𝐾2 with RKHS 𝓗1⨂𝓗2

 For the random OUTPUT variable 𝑌  𝐾𝑌 with RKHS 𝓗𝑌

HSIC-ANOVA decomposition3
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A detour through cross-covariance operators

 For the sake of clarity, it is assumed that 𝑑 = 2.

 No loss of generality. Everything remains true in higher dimension!

 Step A Identify the input and output kernels.

 Step B Find an ONB for each input RKHS.

HSIC-ANOVA decomposition3
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A detour through cross-covariance operators

 For the sake of clarity, it is assumed that 𝑑 = 2.

 No loss of generality. Everything remains true in higher dimension!

 Step A Identify the input and output kernels.

 Step B Find an ONB for each input RKHS.

 Step C Build an ONB of the product RKHS.

HSIC-ANOVA decomposition3
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A detour through cross-covariance operators

 For the sake of clarity, it is assumed that 𝑑 = 2.

 No loss of generality. Everything remains true in higher dimension!

HSIC-ANOVA decomposition3
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A detour through cross-covariance operators

 For the sake of clarity, it is assumed that 𝑑 = 2.

 No loss of generality. Everything remains true in higher dimension!

HSIC-ANOVA decomposition3

ANOVA 

viewpoint

feature-based 

viewpoint
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A detour through cross-covariance operators

HSIC-ANOVA indices4

dependence patterns captured by 𝑘1 and 𝐾𝑌

dependence patterns captured by 𝑘1⨂𝑘2 and 𝐾𝑌
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A detour through cross-covariance operators

HSIC-ANOVA indices4

What are the basis functions in the case of Sobolev kernels?

dependence patterns captured by 𝑘1 and 𝐾𝑌

dependence patterns captured by 𝑘1⨂𝑘2 and 𝐾𝑌

 Remember the simplest solution to compute HSIC-ANOVA indices.

 Uniform inputs  𝑈1 ⊥ 𝑈2 ~𝓤 0,1

 Sobolev kernels for the inputs  𝐾1 = 𝐾2 = 𝐾Sob
𝑟

 Gaussian kernel for the output  𝐾𝑌 = 𝐾𝛾



More about 
Sobolev kernels 
and their properties
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Many questions at the beginning of this work…

❶ What is the RKHS 𝓗Sob
𝑟 induced by 𝐾Sob

𝑟 ?

❸ Is there an explicit and easily interpretable feature map 𝜑Sob
𝑟 ∶ [0,1] → 𝓕Sob

𝑟 ?

❷ Is 𝐾Sob
𝑟 a characteristic kernel? 

❹ How to identify an ONB of 𝓗Sob
𝑟 ? Is there a link with feature maps? 

44

❺ How to choose 𝑟 in practice?

Sobolev kernels and their feature maps



Many questions at the beginning of this work…

❶ What is the RKHS 𝓗Sob
𝑟 induced by 𝐾Sob

𝑟 ? see Gu (2013) or Kuo et al. (2010)

 A standard function space: the Sobolev space of order 𝑟 defined on 0,1 for the 𝐿2-norm.

 A specific inner product: 
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Many questions at the beginning of this work…

❶ What is the RKHS 𝓗Sob
𝑟 induced by 𝐾Sob

𝑟 ?

❷ Is 𝐾Sob
𝑟 a characteristic kernel? 

 YES! Simply because 𝐻𝑟( 0,1 ) is uniformly dense in 𝐶 0,1 .

 Major consequence 

 The HSIC-ANOVA indices based on Sobolev kernels are able to characterize independence.

This is different from what happens for Sobol’ indices.
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Many questions at the beginning of this work…

❶ What is the RKHS 𝓗Sob
𝑟 induced by 𝐾Sob

𝑟 ?

❸ Is there an explicit and easily interpretable feature map 𝜑Sob
𝑟 ∶ [0,1] → 𝓕Sob

𝑟 ?

❷ Is 𝐾Sob
𝑟 a characteristic kernel? 

 For 𝑟 = 1, the Mercer expansion of 𝐾Sob
1 is actually known.  Dick et al. (2014, 2015)

 For 𝑟 ≥ 2, a series expansion of 𝐾Sob
2 is also mentioned in the literature.  Baldeaux et al. (2009)
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Sobolev kernels and their feature maps



Many questions at the beginning of this work…
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❶ What is the RKHS 𝓗Sob
𝑟 induced by 𝐾Sob

𝑟 ?

❸ Is there an explicit and easily interpretable feature map 𝜑Sob
𝑟 ∶ [0,1] → 𝓕Sob

𝑟 ?

❷ Is 𝐾Sob
𝑟 a characteristic kernel? 

❹ How to identify an ONB of 𝓗Sob
𝑟 ? Is there a link with feature maps? 

 Mercer expansion of 𝐾Sob
1



 ONB of the RKHS 𝓗Sob
𝑟



 Series expansion of 𝐾Sob
𝑟



 ONB of the RKHS 𝓗Sob
1



Sobolev kernels and their feature maps



Many questions at the beginning of this work…

❶ What is the RKHS 𝓗Sob
𝑟 induced by 𝐾Sob

𝑟 ?

❸ Is there an explicit and easily interpretable feature map 𝜑Sob
𝑟 ∶ [0,1] → 𝓕Sob

𝑟 ?

❷ Is 𝐾Sob
𝑟 a characteristic kernel? 

❹ How to identify an ONB of 𝓗Sob
𝑟 ? Is there a link with feature maps? 

 Taking 𝑟 = 1 is recommended! 

 For 𝑟 ≥ 2, 𝐾Sob
𝑟 𝑥, 𝑥′ ≈ 1 + 𝑘lin 𝑥, 𝑥′  poor numerical performance for screening!
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❺ How to choose 𝑟 in practice?

Sobolev kernels and their feature maps



Many questions at the beginning of this work…

❶ What is the RKHS 𝓗Sob
𝑟 induced by 𝐾Sob

𝑟 ?

❸ Is there an explicit and easily interpretable feature map 𝜑Sob
𝑟 ∶ [0,1] → 𝓕Sob

𝑟 ?

❷ Is 𝐾Sob
𝑟 a characteristic kernel? 

❹ How to identify an ONB of 𝓗Sob
𝑟 ? Is there a link with feature maps? 
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❺ How to choose 𝑟 in practice?

What is the point of these theoretical results?

 Remember the pure interaction term 𝛥12
HSIC.

 Apply with 𝐾1 = 𝐾2 = 𝐾Sob
1 now that an ONB of 𝓗Sob

1 is explicitly known.

This provides the hint to design a toy case.

Sobolev kernels and their feature maps



𝑼𝟏 𝑼𝟐 𝑼𝟑

R2-HSIC 0.19 0.03 0.01

First-order 0.77 0.13 0.07

Total-order 0.79 0.14 0.08

 Back to the Ishigami function

 Additional term chosen to boost HSIC-ANOVA interactions.

 Design parameter

 𝜸 = 𝟎

 Estimation of sensitivity measures

 Sample size 𝑛 = 500

 R2-HSIC indices + HSIC-ANOVA indices

𝑌 = 𝑔 𝑈1, 𝑈2, 𝑈3 = ishigami(𝑋1, 𝑋2, 𝑋3) + 𝜸 cos 𝜋𝑈1 cos 𝜋𝑈2 with
𝑈𝑖 ∿𝓤 0,1
𝑋𝑖 = 𝜋(2𝑈𝑖 − 1)
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How to exacerbate HSIC-ANOVA interactions?



 Back to the Ishigami function

 Additional term chosen to boost HSIC-ANOVA interactions.

 Design parameter

 𝜸 = 𝟏𝟎

 Estimation of sensitivity measures

 Sample size 𝑛 = 500

 R2-HSIC indices + HSIC-ANOVA indices

𝑌 = 𝑔 𝑈1, 𝑈2, 𝑈3 = ishigami(𝑋1, 𝑋2, 𝑋3) + 𝜸 cos 𝜋𝑈1 cos 𝜋𝑈2 with
𝑈𝑖 ∿𝓤 0,1
𝑋𝑖 = 𝜋(2𝑈𝑖 − 1)
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How to exacerbate HSIC-ANOVA interactions?

𝑼𝟏 𝑼𝟐 𝑼𝟑

R2-HSIC 0.05 0.08 0.01

First-order 0.25 0.40 0.02

Total-order 0.56 0.71 0.04



 Back to the Ishigami function

 Additional term chosen to boost HSIC-ANOVA interactions.

 Design parameter

 𝜸 = 𝟏𝟎𝟎

 Estimation of sensitivity measures

 Sample size 𝑛 = 500

 R2-HSIC indices + HSIC-ANOVA indices

𝑌 = 𝑔 𝑈1, 𝑈2, 𝑈3 = ishigami(𝑋1, 𝑋2, 𝑋3) + 𝜸 cos 𝜋𝑈1 cos 𝜋𝑈2 with
𝑈𝑖 ∿𝓤 0,1
𝑋𝑖 = 𝜋(2𝑈𝑖 − 1)
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How to exacerbate HSIC-ANOVA interactions?

𝑼𝟏 𝑼𝟐 𝑼𝟑

R2-HSIC 0.05 0.05 0.01

First-order 0.28 0.23 0.04

Total-order 0.72 0.66 0.05
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How to use HSIC-ANOVA in practice?

1. How to build a test of independence? How to extend to the existing test procedures?

2. Is there any advantage to using the total-order HSIC-ANOVA index?

GSA requirements

ANOVA decomposition

 RANKING

Characterize independence

 SCREENING

Estimation 

from GIVEN DATA

Compatibility with 

DEPENDENT inputs

Estimation 

from SMALL DATA

INVARIANCE through 

monotonic transformations 

𝑇𝑖 HSIC(𝑋𝑖 , 𝑌) 𝑆𝑖
HSIC 𝑇𝑖

HSIC



Does all this benefit 
independence testing?
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 A test of independence consists in testing the null hypothesis 𝐻0
𝑖 ∶ 𝑋𝑖 ⊥ 𝑌.

56

Testing independence with HSIC-ANOVA indices

Numerator of the first-order index Numerator of the total-order index 



V-statistic

estimator

Apply existing test procedures with 𝐾𝑖 = 𝐾Sob
1

Is there a reason to hope for higher statistical power? 

Actually, NO!

 A test of independence consists in testing the null hypothesis 𝐻0
𝑖 ∶ 𝑋𝑖 ⊥ 𝑌.
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Testing independence with HSIC-ANOVA indices

Numerator of the first-order index Numerator of the total-order index 



V-statistic

estimator

 A test of independence consists in testing the null hypothesis 𝐻0
𝑖 ∶ 𝑋𝑖 ⊥ 𝑌.
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Testing independence with HSIC-ANOVA indices

Apply existing test procedures with 𝐾𝑖 = 𝐾Sob
1

Is there a reason to hope for higher statistical power? 

Actually, NO!

Computing this test statistic is slightly more expensive.

Is there a reason to hope for higher statistical power? 

Let us see!

V-statistic

estimator

Much more 

appealing!

Numerator of the first-order index Numerator of the total-order index 



59

Testing independence with the total-order index
 The distribution of ෡𝓣𝑖 𝒁obs under (𝐻0

𝑖) can be simulated from the available data.

All the columns of the DoE are required to compute the test statistic. 

+ → ෡𝓣𝑖 𝒁obs

𝑿obs 𝒀obs
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 The distribution of ෡𝓣𝑖 𝒁obs under (𝐻0
𝑖) can be simulated from the available data.

All the columns of the DoE are required to compute the test statistic. 

 Permuting 𝒀obs leads to eliminate dependence between the joint observations 𝑿(𝑘), 𝑌 𝑘 .

 This boils down to testing 𝐻0 ∶ 𝑿 ⊥ 𝑌 and this is not what is desired!

Testing independence with the total-order index

𝑌

𝑋𝑖

𝑿−𝑖

⊥ + →

𝒀obs
𝜎 ≔ 𝑌 𝜎(𝑘)

1≤𝑘≤𝑛
𝑿obs
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 The distribution of ෡𝓣𝑖 𝒁obs under (𝐻0
𝑖) can be simulated from the available data.

Instead, the trick is to permute the observations of the input variable.

Testing independence with the total-order index

+ → ෡𝓣𝑖 𝒁obs

𝑿obs 𝒀obs
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 The distribution of ෡𝓣𝑖 𝒁obs under (𝐻0
𝑖) can be simulated from the available data.

Instead, the trick is to permute the observations of the input variable.

Testing independence with the total-order index

𝑌

𝑋𝑖

𝑿−𝑖

⊥ + →

𝑿obs
𝜎 ≔ 𝑋𝑖

(𝜎(𝑘))
, 𝑿−𝑖

(𝑘)

𝑘
𝒀obs

෡𝓣𝑖
𝜎
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 The distribution of ෡𝓣𝑖 𝒁obs under (𝐻0
𝑖) can be simulated from the available data.

Instead, the trick is to permute the observations of the input variable.

Permutation-based test procedure

• Step A Perform a sequence 𝜎𝑏 1≤𝑏≤𝐵 of random permutations on the 𝑖-th column of 𝑿obs.

• Step B Compute the value ෠𝒯𝑖
𝜎𝑏 of the test statistic for each permuted design.

• Step C Derive a non-parametric estimate of the p-value 𝑝𝑖 ≔ ℙ ෡𝓣𝑖 > ෡𝓣𝑖(𝒁obs) .

Simulation of the test statistic 

under the null hypothesis

Testing independence with the total-order index

+ →

𝑿obs
𝜎𝑏 ≔ 𝑋𝑖

(𝜎𝑏(𝑘)), 𝑿−𝑖
(𝑘)

𝑘
𝒀obs

෡𝓣𝑖
𝜎𝑏

Permutation scheme

• Default value: 𝐵 ≈ 103

• Complexity: (𝑑2 + 7𝐵𝑑) 𝑛2



 Back to the Ishigami function

 Additional term chosen to boost HSIC-ANOVA interactions.

 Design parameter

 𝜸 = 𝟎

𝑌 = 𝑔 𝑈1, 𝑈2, 𝑈3 = ishigami(𝑋1, 𝑋2, 𝑋3) + 𝜸 cos 𝜋𝑈1 cos 𝜋𝑈2 with
𝑈𝑖 ∿𝓤 0,1
𝑋𝑖 = 𝜋(2𝑈𝑖 − 1)
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𝑼𝟏 𝑼𝟐 𝑼𝟑

HSIC 0.88 0.07 0.22

Total-order 0.87 0.19 0.19

 Study of the statistical power

 Sample size 𝑛 = 50

 Number of replicates 𝑀 = 200

Numerical study of the statistical power

 Separation rate

 Distributions of ෡𝓣𝑖 𝒁obs under 𝐻0
𝑖 et 𝐻1

𝑖



 Back to the Ishigami function

 Additional term chosen to boost HSIC-ANOVA interactions.

 Design parameter

 𝜸 = 𝟏𝟎

𝑌 = 𝑔 𝑈1, 𝑈2, 𝑈3 = ishigami(𝑋1, 𝑋2, 𝑋3) + 𝜸 cos 𝜋𝑈1 cos 𝜋𝑈2 with
𝑈𝑖 ∿𝓤 0,1
𝑋𝑖 = 𝜋(2𝑈𝑖 − 1)
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𝑼𝟏 𝑼𝟐 𝑼𝟑

HSIC 0.59 0.63 0.05

Total-order 0.92 0.94 0.07

 Study of the statistical power

 Sample size 𝑛 = 50

 Number of replicates 𝑀 = 200

Increased power when 𝑆𝑖
HSIC ≪ 𝑇𝑖

HSIC

Same power when 𝑆𝑖
HSIC ≈ 𝑇𝑖

HSIC

Numerical study of the statistical power

 Separation rate

 Distributions of ෡𝓣𝑖 𝒁obs under 𝐻0
𝑖 et 𝐻1

𝑖



 Back to the Ishigami function

 Additional term chosen to boost HSIC-ANOVA interactions.

 Design parameter

 𝜸 = 𝟏𝟎𝟎

𝑌 = 𝑔 𝑈1, 𝑈2, 𝑈3 = ishigami(𝑋1, 𝑋2, 𝑋3) + 𝜸 cos 𝜋𝑈1 cos 𝜋𝑈2 with
𝑈𝑖 ∿𝓤 0,1
𝑋𝑖 = 𝜋(2𝑈𝑖 − 1)
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𝑼𝟏 𝑼𝟐 𝑼𝟑

HSIC 0.65 0.70 0.07

Total-order 1.00 1.00 0.06

 Study of the statistical power

 Sample size 𝑛 = 50

 Number of replicates 𝑀 = 200

Increased power when 𝑆𝑖
HSIC ≪ 𝑇𝑖

HSIC

Same power when 𝑆𝑖
HSIC ≈ 𝑇𝑖

HSIC

Numerical study of the statistical power

 Separation rate

 Distributions of ෡𝓣𝑖 𝒁obs under 𝐻0
𝑖 et 𝐻1

𝑖



HSIC-ANOVA indices are fully transparent sensitivity measures able to perform screening and ranking!

In many situations, the test of independence based on 𝑇𝑖
HSIC is more powerful!

67

Benefits brought by HSIC-ANOVA indices in GSA

GSA requirements

ANOVA decomposition

 RANKING

Characterize independence

 SCREENING

Estimation 

from GIVEN DATA

Compatibility with 

DEPENDENT inputs

Estimation 

from SMALL DATA

INVARIANCE through 

monotonic transformations 

𝑇𝑖 HSIC(𝑋𝑖 , 𝑌) 𝑇𝑖
HSIC𝑆𝑖

HSIC



Conclusion
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69

Conclusion

 The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the 

advantages of Sobol’ indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

 Low estimation cost.

 Characterization of independence.

 Unified framework to handle continuous and discrete variables.

 Interpretation as percentages of influence.

 Main effects vs. Interaction effects.

• Need for mutually independent inputs

HSIC - ANOVA

HSIC-like properties Sobol’-like properties
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Conclusion

 The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the 

advantages of Sobol’ indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

 The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.

 For the standard uniform distribution, it is recommended to take the Sobolev kernel 𝐾Sob
1 .

 For other distributions, orthogonalization techniques can be used to build suitable kernels. 
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Conclusion

 The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the 

advantages of Sobol’ indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

 The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.

 The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.

 The first-order index 𝑆1
HSIC scans all possible dependence patterns between 𝑋1 and 𝑌.

 The second-order index 𝑆12
HSIC also scans all possible dependence patterns between (𝑋1, 𝑋2) and 𝑌.



 The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the 

advantages of Sobol’ indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

 The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.

 The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.

 Variable selection can be performed with test procedures based on HSIC-ANOVA indices.

 For the first-order index 𝑆1
HSIC

 The existing test procedures can be applied directly.

 For the total-order index 𝑇1
HSIC

 The existing test procedures need to be adapted!
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Conclusion
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Conclusion

 The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the 

advantages of Sobol’ indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

 The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.

 The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.

 Variable selection can be performed with test procedures based on HSIC-ANOVA indices.

 Using the total-order HSIC-ANOVA indices leads to more powerful test procedures.

Traditional benchmarks

 Ishigami, Friedman, Morris…

𝑆𝑖
𝐻𝑆𝐼𝐶 ≲ 𝑇𝑖

𝐻𝑆𝐼𝐶

 Hand-made use cases.

 Test functions in optimization.

 Flexible metafunction framework.

𝑆𝑖
𝐻𝑆𝐼𝐶 ≪ 𝑇𝑖

𝐻𝑆𝐼𝐶

Specific benchmarks
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Conclusion

 The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the 

advantages of Sobol’ indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

 The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.

 The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.

 Variable selection can be performed with test procedures based on HSIC-ANOVA indices.

 Using the total-order HSIC-ANOVA indices leads to more powerful test procedures.

Publications
 Preprint  https://cea.hal.science/cea-04320711/document

 Conference paper  https://cea.hal.science/cea-03701170v1/document

Codes
 Two dedicated routines the R package sensitivity

 sensiHSIC  https://rdrr.io/cran/sensitivity/man/sensiHSIC.html

 testHSIC  https://rdrr.io/cran/sensitivity/man/testHSIC.html

https://cea.hal.science/cea-04320711/document
https://cea.hal.science/cea-03701170v1/document
https://rdrr.io/cran/sensitivity/man/sensiHSIC.html
https://rdrr.io/cran/sensitivity/man/testHSIC.html
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