

Towards more interpretable kernel-based sensitivity analysis

Gabriel Sarazin (DES/ISAS/DM2S/SGLS/LIAD)

> Service de Génie Logiciel pour la Simulation
> Laboratoire d'Intelligence Artificielle et de sciences des Données
Joint work with research partners from the SAMOURAI project:

- CEA :
- CREST-ENSAI :
- EDF R\&D :

UQSay \#68

January 25th, 2024 - Online seminar https://www.uqsay.org/2024/01/uqsay-68.html

About me...

> Hired as permanent CEA research engineer in June 2023.
\checkmark Recruited to strengthen the URANIE dev team (currently upgrading my skills).
$\checkmark 5$-year experience in uncertainty quantification (UQ):

- Areas of expertise: sensitivity analysis \& reliability assessment.
- Areas of interest: kernel methods, stochastic modelling, copula theory...

Past positions

$>$ 2012-2017 \rightarrow Engineering student at INSA Rennes (Department of Applied Mathematics)
> 2017-2021 \rightarrow PhD student at ONERA Toulouse (DTIS)

- Title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainties.
- Supervisors: J. Morio (ONERA), A. Lagnoux (IMT), M. Balesdent (ONERA) \& L. Brevault (ONERA).
- Keywords: sensitivity analysis, rare-event probability estimation, extreme value theory, copula models...
- Applications: buckling of a composite laminate plate + launch vehicle fallout in the atmosphere.
> 2021-2023 \rightarrow Postdoctoral researcher at CEA Cadarache (DES/IRESNE/SESI/LEMS)
- Title: Surrogate modeling and optimization under uncertainty for high-dimensional problems.
- Supervisors: A. Marrel (CEA), S. Da Veiga (ENSAI) \& V. Chabridon (EDF).
- Keywords: sensitivity analysis, surrogate modelling, reproducing kernel theory, hypothesis testing.
- Application: reliability assessment of nuclear power plants \rightarrow study of accidental transients.

A few words on the SAMOURAI project...

> 4-year research project launched in March 2021 and funded by the French National Research Agency.

Simulation Analytics and Metamodel-based solutions
agence nationale de la recherche au service de la science for Optimization, Uncertainty and Reliability Analysls
© https://www.ifpenergiesnouvelles.fr/samourai
\checkmark Industrial partners
\checkmark Public institution partners
\checkmark Academic partners
\rightarrow EDF R\&D and Safran Tech
\rightarrow IFPEN and CEA
\rightarrow Centrale Supélec, EMSE and Polytechnique Montréal

A few words on the SAMOURAI project...

> 4-year research project launched in March 2021 and funded by the French National Research Agency.

Simulation Analytics and Metamodel-based solutions for Optimization, Uncertainty and Reliability Analysls

ह https://www.ifpenergiesnouvelles.fr/samourai
agence nationale de la recherche au service de la science S. Sinnoural
$>$ The project is divided into 4 work packages. Scientific coordination is ensured by Delphine Sinoquet (IFPEN).
\checkmark WP1: Metamodels for large-scale problems.

- Investigators: V. Chabridon (EDF), S. Da Veiga (ENSAI), A. Marrel (CEA) \& B. Staber (Safran).
- Contributors: R. Carpintero Perez (Safran), Y. Marnissi (Safran) \& G. Sarazin (CEA).
\checkmark WP2: Enrichment strategies for RBI and RBDO.
- Investigators: J. Bect (Centrale Supélec) \& E. Vasquez (Central Supélec)
- Contributors: R. Abdelmalek-Lomenech (Centrale Supélec), V. Chabridon (EDF) \& R. El Amri (IFPEN)
\checkmark WP3: Metamodels and optimization for mixed problems.
- Investigators: M. Keller (EDF) \& R. Le Riche (EMSE)
- Contributors: J. Pelamatti (FDF), B. Sow (FMSF) \& S. Zannane (EDF)

WP4: Dealing with hidden constraints.

- Investigators: S. Le Digabel (Polytechnique Montréal) \& M. Munoz Zuniga (IFPEN)
- Contributors: S. Jacquet (IFPEN) \& M. Menz (IFPEN)

A few words on the SAMOURAI project...

$>$ 4-year research project launched in March 2021 and funded by the French National Research Agency.
Simulation Analytics and Metamodel-based solutions for Optimization, Uncertainty and Reliability Analysls
F. https://www.ifpenergiesnouvelles.fr/samourai seimill

- As regards WP1, 4 research topics were identified as priorities.
\checkmark Task 1.1: Improve sparse Gaussian process (GP) regression and experiment modern kernel selection
\checkmark Task 1.2: Take advantage of state-of-the-art techniques in global sensitivity analysis (GSA)
- Better understand the mathematical foundings of the HSIC-ANOVA decomposition.
- Investigate the existence of explicit feature maps for Sobolev kernels.
- Establish connections between feature functions and HSIC-ANOVA terms.
- Extend HSIC-based independence test prodecures to HSIC-ANOVA indices.
- Compare numerically the information captured by Sobol' indices and HSIC-ANOVA indices.
- Upgrade the R package sensitivity (especially the routines dedicated to kernel-based GSA).
\checkmark Task 1.3: Make GP hyperparameter estimation more robust
\checkmark Task 1.4: Extend and adapt all methodologies to (very) large databases
$0 \square$ Introduction

GSA in support to metamodel construction

> In all four work packages, there is a need to construct metamodels for high-dimensional design problems.

- Let $X:=\left[X_{1}, \ldots, X_{d}\right]$ be a random vector with independent components ($d \approx 100$).
- Let $Y:=g(\boldsymbol{X})$ where $g: \boldsymbol{X}_{1} \times \cdots \times \boldsymbol{X}_{d} \rightarrow \boldsymbol{Y}$ is a computationally-expensive simulation code.
- $Z=(X, Y)$ is the augmented vector containing the input and output variables.

\triangle
The design of experiments (DoE) consists of a number of input-output observations.
$>$ The metamodel \hat{g} must be constructed from $Z_{\text {obs }}:=\left\{\left(\boldsymbol{X}^{(i)}, Y^{(i)}\right)\right\}_{1 \leq i \leq n}$ with $n \leq 10 d \rightarrow$ SMALL DATA.
$>$ For a nice coverage of the input domain of variation, the DoE must be space-filling \rightarrow GIVEN DATA.
Classical metamodeling techniques (such as GP regression) cannot be used directly.
Curse of dimensionality \rightarrow too many GP hyperparameters have to be optimized!
Many existing strategies (screening, additive and ANOVA models, linear and nonlinear embeddings).
\rightarrow Binois \& Wycoff (2022) for a comprehensive review.

[^0]
GSA in support to metamodel construction

Uncertain parameters

$>$ Steps 2 and 3 of the ICSCREAM methodology \rightarrow looss \& Marrel (2019) or Marrel et al. (2020)
\checkmark Identification of penalizing Configurations using SCREening And Metamodel
> Performing a preliminary GSA has two main advantages.

- Screening-oriented GSA \rightarrow (crude) dimension reduction by discarding non-influential input variables.

GSA in support to metamodel construction

$>$ Steps 2 and 3 of the ICSCREAM methodology \rightarrow looss \& Marrel (2019) or Marrel et al. (2020)
\checkmark Identification of penalizing Configurations using SCREening And Metamodel
> Performing a preliminary GSA has two main advantages.

- Screening-oriented GSA \rightarrow (crude) dimension reduction by discarding non-influential input variables.
- Ranking-oriented GSA \rightarrow sequential building process of the GP metamodel.

Summary

1. Various concepts related to kernels
2. Sensitivity measures based on the HSIC
3. A bridge between two opposite worlds: HSIC-ANOVA indices
4. Is it relevant to talk about interactions for HSIC-ANOVA indices?
5. More about Sobolev kernels and their properties
6. Does all this benefit independence testing?
$\square \begin{aligned} & \text { Various concepts } \\ & \text { related to kernels }\end{aligned}$

Fundamentals of reproducing kernel theory

1 Reproducing kernel Hilbert space (RKHS) \rightarrow Berlinet \& Thomas-Agnan (2011)
\rightarrow Let $K: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ be a function defined on $\mathcal{Z} \subseteq \mathbb{R}^{p}$ with $p \geq 1$.
K is said to be a kernel if it is symmetric and positive definite.
\rightarrow Let $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ be a Hilbert space in \mathbb{R}^{Z} (the space of all functions defined from \mathcal{Z} to \mathbb{R}).
A Hilbert space $\left(\mathcal{H},\langle\cdot, \cdot\rangle_{\mathcal{H}}\right)$ is said to be a reproducing kernel Hilbert space (RKHS) if:

$$
\forall z \in \mathcal{Z}, \quad \exists C_{z}>0, \quad \text { such that } \quad \forall h \in \mathcal{H}, \quad|h(z)| \leq C_{z}\|h\|_{\mathcal{H}}
$$

> Generally speaking, the smoother the functions, the smaller the function space.
\checkmark An RKHS is sufficiently big to remain complete.
\checkmark An RKHS is sufficiently smooth to have interesting properties.
Moore-Aronszain theorem
There is a one-to-one mapping between reproducing kernels and RKHSs.

$$
\forall z \in \mathcal{Z}, \quad \forall h \in \mathcal{H}, \quad h(z)=\langle h, K(\cdot, z)\rangle_{\mathcal{H}}
$$

Fundamentals of reproducing kernel theory

2 Kernel mean embeddings \rightarrow Muandet et al. (2017)

\rightarrow Let $\mathcal{M}_{1}^{+}(\mathcal{Z})$ be the space of all probability measures defined on $\mathcal{Z} \subseteq \mathbb{R}^{p}$.
\rightarrow Let $K: Z ્ Z \rightarrow \mathbb{R}$ be a kernel and let \mathcal{H} be the induced RKHS.
$>$ Any probability measure $v \in \mathcal{M}_{1}^{+}(\mathcal{Z})$ can be represented by a (well-defined) function $\mu_{v} \in \mathcal{H}$.

$$
\begin{aligned}
\mu_{\nu}: \mathcal{Z} & \longrightarrow \mathbb{R} \\
z & \longmapsto \mu_{\nu}(z)=\mathbb{E}_{\nu}[K(z, Z)]=\int_{\mathcal{Z}} K(z, \zeta) \mathrm{d} \nu(\zeta)
\end{aligned}
$$

Assumptions

- K must be measurable
- $\mathbb{E}_{v}[\sqrt{K(Z, Z)}]<\infty$
$>K$ is said to be a characteristic kernel if the map $v \mapsto \mu_{v}$ is injective.

$>$ The dissimilarity between ν_{1} and ν_{2} can be measured through the distance in \mathcal{H} between $\mu_{\nu_{1}}$ and $\mu_{v_{2}}$. \checkmark Definition of a kernel-based dissimilarity measure on $\mathcal{M}_{1}^{+}(\mathcal{Z})$.

Fundamentals of reproducing kernel theory

2 Kernel mean embeddings \rightarrow Muandet et al. (2017)

\rightarrow Let $\boldsymbol{M}_{1}^{+}(\boldsymbol{Z})$ be the space of all probability measures defined on $\mathcal{Z} \subseteq \mathbb{R}^{p}$.
\rightarrow Let $K: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ be a kernel and let \mathcal{H} be the induced RKHS.
$>$ Any probability measure $v \in \mathcal{M}_{1}^{+}(\mathcal{Z})$ can be represented by a (well-defined) function $\mu_{v} \in \mathcal{H}$.

$$
\begin{aligned}
\mu_{\nu}: \mathcal{Z} & \longrightarrow \mathbb{R} \\
z & \longmapsto \mu_{\nu}(z)=\mathbb{E}_{\nu}[K(z, Z)]=\int_{\mathcal{Z}} K(z, \zeta) \mathrm{d} \nu(\zeta)
\end{aligned}
$$

Assumptions

- K must be measurable
- $\mathbb{E}_{v}[\sqrt{K(Z, Z)}]<\infty$
$>K$ is said to be a characteristic kernel if the map $v \mapsto \mu_{v}$ is injective.
3 Maximum Mean Discrepancy (MMD) \rightarrow Gretton et al. (2006)

$$
\begin{aligned}
\operatorname{MMD}^{2}\left(\nu_{1}, \nu_{2}\right) & =\left\|\mu_{\nu_{1}}-\mu_{\nu_{2}}\right\|_{\mathcal{H}}^{2} \checkmark \text { Definition resulting from the embedding mechanism } \\
& =\mathbb{E}_{\nu_{1} \otimes \nu_{1}}\left[K\left(Z, Z^{\prime}\right)\right]+\mathbb{E}_{\nu_{2} \otimes \nu_{2}}\left[K\left(Z, Z^{\prime}\right)\right]-2 \mathbb{E}_{\nu_{1} \otimes \nu_{2}}\left[K\left(Z, Z^{\prime}\right)\right]
\end{aligned}
$$

\checkmark Alternative formula paving the way to a simple estimation procedure

Fundamentals of reproducing kernel theory

4 Feature maps \rightarrow Chapter 4 in Steinwart \& Christmann (2008)
\rightarrow Let $K: \mathcal{Z} \times \mathcal{Z} \rightarrow \mathbb{R}$ be a kernel and let \mathcal{H} be the induced RKHS.
$>$ Let us assume that there exist a Hilbert space \mathcal{F} and a map $\varphi: \mathcal{Z} \rightarrow \mathcal{F}$ such that:

$$
\forall z, z^{\prime} \in \mathcal{Z}, K\left(z, z^{\prime}\right)=\left\langle\varphi(z), \varphi\left(z^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

\mathcal{F} is called a feature space. φ is called a feature map. Any object $\varphi(z)$ is called a feature function.
$>$ Existence of at least one feature map.
\checkmark The canonical feature map $\theta: Z \rightarrow \mathcal{H}$ is thus defined by $\theta(z):=K(\cdot, z)$ for any $z \in \mathcal{Z}$.
> Non-unicity of the feature map.
\checkmark There may exist a feature space where the kernel action is much easier to understand.

\triangleMost often, $\theta(\cdot)$ is NOT informative!

Fundamentals of reproducing kernel theory

5 Feature-based characterization of the RKHS \rightarrow Chapter 4 in Steinwart \& Christmann (2008)
First, let us examine two particular kernels!
Example $1>$ The polynomial kernel with position parameter $c \geq 0$ and exponent $m \in \mathbb{N}^{*}$.
initial definition

$$
\begin{aligned}
K_{\text {poly }}\left(x, x^{\prime}\right): & =\left(x x^{\prime}+c\right)^{m} \\
& =\left\langle\sum_{k=0}^{m}\binom{m}{k} x^{k}\left(x^{\prime}\right)^{k} c^{m-k}(x), \varphi_{\text {poly }}\left(x^{\prime}\right)\right\rangle_{\mathbb{R}^{m+1}} \quad \text { with } \varphi_{\text {poly }}(x)=\left[(\sqrt{c})^{m-k} \sqrt{\binom{m}{k}} x^{k}\right]_{0 \leq k \leq m}
\end{aligned}
$$

finite number of polynomial features
\checkmark The binomial theorem reveals a feature map $\varphi_{\text {poly }}$ from \mathbb{R} to the Euclidean space \mathbb{R}^{m+1}.

Fundamentals of reproducing kernel theory

5 Feature-based characterization of the RKHS \rightarrow Chapter 4 in Steinwart \& Christmann (2008)
First, let us examine two particular kernels!
Example $2>$ The Gaussian kernel with scale parameter $\gamma>0$.
initial definition

$$
K_{\gamma}\left(x, x^{\prime}\right):=e^{-\frac{1}{2}\left(\frac{x-x^{\prime}}{\gamma}\right)^{2}}=e^{-\frac{1}{2}\left(\frac{x}{\gamma}\right)^{2}} e^{-\frac{1}{2}\left(\frac{x^{\prime}}{\gamma}\right)^{2}} \sum_{k=0}^{\infty} \frac{1}{k!}\left(\frac{x}{\gamma}\right)^{k}\left(\frac{x^{\prime}}{\gamma}\right)^{k}
$$

$$
=\left\langle\varphi_{\gamma}\left(x^{\prime}\right), \varphi_{\gamma}(x)\right\rangle_{\ell^{2}} \quad \text { with } \varphi_{\gamma}(x):=e^{-\frac{1}{2}\left(\frac{x}{\gamma}\right)^{2}}\left[\frac{1}{\sqrt{k}}\left(\frac{x}{\gamma}\right)^{k}\right]_{k \geq 0}
$$

infinite number of damped polynomial features
\checkmark The Taylor series expansion reveals a feature map φ_{γ} from \mathbb{R} into the Hilbert space $\ell^{2}(\mathbb{N})$.

Fundamentals of reproducing kernel theory

5 Feature-based characterization of the RKHS \rightarrow Chapter 4 in Steinwart \& Christmann (2008)
$>$ As shown in these two examples, a kernel expansion allows to identify a feature map.
\checkmark More importantly, it provides all-in-one characterization of the RKHS.
\rightarrow Let $K: Z \times Z \rightarrow \mathbb{R}$ be a kernel and let \mathcal{H} be the induced RKHS.
$>$ It is assumed that it can be expanded as a sum (or series) of symmetric and separable functions.

$$
\forall z, z^{\prime} \in \mathcal{Z}, \quad K\left(z, z^{\prime}\right)=\sum_{i \in I} g_{i}(z) g_{i}\left(z^{\prime}\right) \quad \begin{aligned}
& \text { Polynomial kernel } \rightarrow I=\{0, \ldots, m\} \\
& \text { Gaussian kernel } \rightarrow I=\mathbb{N}
\end{aligned}
$$

\checkmark The functions $\left(g_{i}\right)_{i \in I}$ are the features. They must be linearly independent (in the ℓ^{2}-sense).
(1) $\mathcal{H}=\left\{h \in \mathbb{R}^{\mathcal{Z}} \mid h(\cdot)=\sum_{i \in I} a_{i} g_{i}(\cdot)\right.$ with $\left.\left(a_{i}\right)_{i \in I} \in \ell^{2}(I, \mathbb{R})\right\}$
(2) $\langle\cdot, \cdot\rangle_{\mathcal{H}}: \mathcal{H} \quad \times \quad \mathcal{H} \quad \longrightarrow \quad \mathbb{R}$

$$
\left(h_{1}(\cdot)=\sum_{i \in I} a_{i} g_{i}(\cdot), h_{2}(\cdot)=\sum_{i \in I} b_{i} g_{i}(\cdot)\right) \longmapsto \sum_{i \in I} a_{i} b_{i}
$$

(3) The functions $\left(g_{i}\right)_{i \in I}$ form an orthonormal basis (ONB) of \mathcal{H}.

Sensitivity measures based on the HSIC

Several views on HSIC indices

1 Kernel-based dependences measures \rightarrow Da Veiga (2015)

- $\mathbb{P}_{X_{i} Y} \rightarrow$ Joint distribution of $\left(X_{i}, Y\right) \quad \rightarrow$ True influence of X_{i} on Y
- $\mathbb{P}_{X_{i}} \otimes \mathbb{P}_{Y} \rightarrow$ Independence within $\left(X_{i}, Y\right) \rightarrow$ Hypothetical lack of influence

$$
S_{i}^{\Delta}:=\Delta\left(\mathbb{P}_{X_{i} Y}, \mathbb{P}_{X_{i}} \otimes \mathbb{P}_{Y}\right) \quad \text { How to measure the discrepancy? }
$$

$$
\operatorname{HSIC}\left(X_{i}, Y\right):=\operatorname{MMD}^{2}\left(\mathbb{P}_{X_{i} Y}, \mathbb{P}_{X_{i}} \otimes \mathbb{P}_{Y}\right)=\left\|\mu_{\mathbb{P}_{X_{i} Y}}-\mu_{\mathbb{P}_{X_{i}} \otimes \mathbb{P}_{Y}}\right\|_{\mathcal{H}}^{2}
$$

Several views on HSIC indices

2 Efficient estimation \rightarrow Gretton et al. $(2005,2007)$ and Serfling (2009)

> The alternative formula of the MMD allows to rewrite the HSIC only in terms of kernel-based moments.

$$
\begin{gathered}
\operatorname{HSIC}\left(X_{i}, Y\right)=\mathbb{E}\left[K_{i}\left(X_{i}, X_{i}^{\prime}\right) K_{Y}\left(Y, Y^{\prime}\right)\right]+\mathbb{E}\left[K_{i}\left(X_{i}, X_{i}^{\prime}\right) K_{Y}\left(Y^{\prime \prime}, Y^{\prime \prime \prime}\right)\right] \\
-2 \mathbb{E}\left[K_{i}\left(X_{i}, X_{i}^{\prime}\right) K_{Y}\left(Y, Y^{\prime \prime}\right)\right]
\end{gathered}
$$

〔 $\left(X_{i}, Y\right) \perp\left(X_{i}^{\prime}, Y^{\prime}\right) \perp\left(X_{i}^{\prime \prime}, Y^{\prime \prime}\right) \perp\left(X_{i}^{\prime \prime \prime}, Y^{\prime \prime \prime}\right)$ follow the joint input-output distribution $\mathbb{P}_{X_{i} Y}$.
(U-statistics and V-statistics are well-adapted to estimate HSIC indices from a given DoE.

$$
N_{\text {sim }}=n
$$

$$
\begin{aligned}
\widehat{H}_{i}^{U}=\frac{1}{(n)_{2}} & \sum_{1 \leq p \neq q \leq n} K_{i}\left(X_{i}^{(p)}, X_{i}^{(q)}\right) K_{Y}\left(Y^{(p)}, Y^{(q)}\right)+\frac{1}{(n)_{4}} \sum_{1 \leq p \neq q \neq r \neq s \leq n} K_{i}\left(X_{i}^{(p)}, X_{i}^{(q)}\right) K_{Y}\left(Y^{(r)}, Y^{(s)}\right) \\
& -\frac{2}{(n)_{3}} \sum_{1 \leq p \neq q \neq r \leq n} K_{i}\left(X_{i}^{(p)}, X_{i}^{(q)}\right) K_{Y}\left(Y^{(p)}, Y^{(r)}\right) \quad \text { with } \quad(n)_{p}=p!\binom{n}{p}
\end{aligned}
$$

- \widehat{H}_{i}^{U} denotes the $\underline{\text { U-statistic estimator of } \operatorname{HSIC}\left(X_{i}, Y\right) \rightarrow \text { no bias BUT no guarantee of positivity. }}$
- \widehat{H}_{i}^{V} denotes the V-statistic estimator of $\operatorname{HSIC}\left(X_{i}, Y\right) \rightarrow$ positivity BUT bias.
- Consistency and existence of a CLT \rightarrow convergence at rate $1 / \sqrt{n}$.
- Low computational complexity \rightarrow only $\mathcal{O}\left(n^{2}\right)$ operations are required to compute estimates.

Several views on HSIC indices

3 Cross-covariance operators \rightarrow Gretton et al. (2005)

- Let $K_{i}: \boldsymbol{X}_{i} \times \boldsymbol{x}_{i} \rightarrow \mathbb{R}$ be the i-th input kernel (with RKHS denoted by \mathcal{H}_{i}).
- Let $K_{Y}: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ be the output kernel (with RKHS denoted by \mathcal{H}_{Y}).
$>$ The knowledge of \mathcal{H}_{i} and \mathcal{H}_{Y} allows to rewrite $\operatorname{HSIC}\left(X_{i}, Y\right)$ as a kind of generalized covariance.

$$
\begin{aligned}
& \operatorname{HSIC}\left(X_{i}, Y\right)=\sum_{k} \sum_{l}\left|\operatorname{Cov}\left(v_{i k}\left(X_{i}\right), w_{l}(Y)\right)\right|^{2} \text { with } \begin{cases}\left(v_{i k}\right)_{k} & \text { an ONB of } \mathcal{H}_{i} \\
\left(w_{l}\right)_{l} & \text { an ONB of } \mathcal{H}_{Y}\end{cases} \\
& \text { sum of covariances for different patterns } \\
& \text { catalogues of transformations }
\end{aligned}
$$

\checkmark Aggregation of covariance terms obtained after applying sequences of preliminary basis transformations.
\checkmark Each pair of non-linear functions $\left(v_{i k}(\cdot), w_{l}(\cdot)\right)$ corresponds to a non-linear dependence pattern.
Example $>$ HSIC indices computed with Gaussian kernels $\rightarrow K_{i}=K_{Y}=K_{\gamma}$

$$
\begin{aligned}
& K_{\gamma}\left(z, z^{\prime}\right)=e^{-\frac{1}{2}\left(\frac{z-z^{\prime}}{\gamma}\right)^{2}}=\sum_{k=0}^{\infty} g_{k}(z) g_{k}\left(z^{\prime}\right) \text { with } g_{k}(z) \propto e^{-\frac{1}{2}\left(\frac{z}{\gamma}\right)^{2}} z^{k} \\
& \operatorname{HSIC}\left(X_{i}, Y\right)=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty}\left|\operatorname{Cov}\left(g_{k}\left(X_{i}\right), g_{l}(Y)\right)\right|^{2}
\end{aligned}
$$

Infinitely many damped polynomial transformations are applied to both X_{i} and Y.

Several views on HSIC indices

4 Independence testing \rightarrow Gretton et al. (2007)
\rightarrow The input kernel $K_{i}: \boldsymbol{X}_{i} \times \boldsymbol{X}_{i} \rightarrow \mathbb{R}$ is assumed to be characteristic to $\mathcal{M}_{1}^{+}\left(\boldsymbol{X}_{i}\right)$.
\rightarrow The output kernel $K_{Y}: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is assumed to be characteristic to $\mathcal{M}_{1}^{+}(\boldsymbol{Y})$.

$$
X_{i} \perp Y \Longleftrightarrow \operatorname{HSIC}\left(X_{i}, Y\right)=0
$$

$>$ Testing independence between X_{i} and Y is equivalent to testing the nullity of the HSIC.

$$
\left(H_{0}\right): \operatorname{HSIC}\left(X_{i}, Y\right)=0 \quad \text { vs. } \quad\left(H_{1}\right): \operatorname{HSIC}\left(X_{i}, Y\right)>0
$$

- Test statistic \rightarrow either \widehat{H}_{i}^{U} or \widehat{H}_{i}^{V}
- Test procedure \rightarrow selected according to the sample size and the chosen test statistic
\checkmark Asymptotic test procedure
\checkmark Permutation-based test procedure
\checkmark Sequential permutation-based test procedure
\checkmark Non-asymptotic Gamma test procedure
\rightarrow Zhang et al. (2018)
\rightarrow De Lozzo \& Marrel (2016)
\rightarrow El Amri \& Marrel (2022)
\rightarrow El Amri \& Marrel (2023)

5 Comparison with Sobol' indices
$>$ Much harder to interpret \rightarrow no uniform bound + sum $\neq 1+$ non-trivial mathematical foundations.
$>$ Not conceptually tailored to ranking-oriented GSA \rightarrow no link with the output variability.

Sobol' indices vs. HSIC indices

$>$ HSIC indices perfectly meet the needs of screening-oriented GSA.
\checkmark The use of characteristic kernels allows to detect any type of input-output dependence. \checkmark Inference is an easy task (no need for specific data, big data or density estimation).

GSA requirements	S_{i}		HSIC $\left(X_{i}, Y\right)$
ANOVA decomposition \rightarrow RANKING			
Characterize independence \rightarrow SCREENING			
Estimation from GIVEN DATA			
Estimation from SMALL DATA			
Compatibility with DEPENDENT inputs			
INVARIANCE through monotonic transformations			

Still room to improve HSIC indices?

> HSIC indices lack interpretability and they are not tailored to perform ranking-oriented GSA.

©
Sum not equal to 1.

No universal bound.
© Different MMD scales.

GSA requirements	S_{i}	T_{i}	$\operatorname{HSIC}\left(X_{i}, Y\right)$
ANOVA decomposition \rightarrow RANKING	C	C	
Characterize independence \rightarrow SCREENING	How to do better		
on that point?			

A bridge between 5 two opposite worlds:

Taking inspiration from standard ANOVA...

$>$ ANOVA decomposition for Sobol' indices \rightarrow Sobol' (1993)
\checkmark The output variance $\mathbb{V}(\mathrm{Y})$ is apportioned between all subsets of inputs.

$$
\mathbb{V}(Y)=\sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} V_{\boldsymbol{u}}=\sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}}(-1)^{|\boldsymbol{u}|-|\boldsymbol{v}|} \mathbb{V}\left(\mathbb{E}\left[Y \mid X_{\boldsymbol{u}}\right]\right) \quad \text { ! } X_{1} \perp \cdots \perp X_{d}
$$

First-order and total-order Sobol' indices
\checkmark First-order Sobol' indices $\left(S_{i}\right)_{1 \leq i \leq d} \rightarrow$ main effects only!
\checkmark Total-order Sobol' indices $\left(T_{i}\right)_{1 \leq i \leq d} \rightarrow$ main effects + interactions.

$$
\forall 1 \leq i \leq d, \quad S_{i}=\frac{\mathbb{V}\left(\mathbb{E}\left[Y \mid X_{i}\right]\right)}{\mathbb{V}(Y)} \quad \text { and } \quad T_{i}=1-\frac{\mathbb{V}\left(\mathbb{E}\left[Y \mid \boldsymbol{X}_{-i}\right]\right)}{\mathbb{V}(Y)}
$$

> Constraints imposed on the sub-functions of the Sobol'-Hoeffding decomposition

$$
g(\boldsymbol{x})=\sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \eta_{\boldsymbol{u}}\left(\boldsymbol{x}_{\boldsymbol{u}}\right) \quad \text { such that } \quad \forall i \in \boldsymbol{u}, \quad \int_{\mathcal{X}_{i}} \eta_{\boldsymbol{u}}\left(\boldsymbol{x}_{\boldsymbol{u}}\right) \mathrm{d} \mathbb{P}_{X_{i}}\left(x_{i}\right)=0
$$

... and bringing ANOVA into the HSIC paradigm
$>$ HISC-ANOVA decomposition \rightarrow Da Veiga (2021)
\checkmark The quantity $\operatorname{HSIC}(\boldsymbol{X}, Y)$ is apportioned between all subsets of inputs.

$$
\operatorname{HSIC}(\boldsymbol{X}, Y)=\sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} H_{\boldsymbol{u}}=\sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}}(-1)^{|\boldsymbol{u}|-|\boldsymbol{v}|} \operatorname{HSIC}\left(\boldsymbol{X}_{\boldsymbol{v}}, Y\right)
$$

First-order and total-order HSIC-ANOVA indices
\checkmark First-order HSIC-ANOVA indices $\left(S_{i}^{\text {HSIC }}\right)_{1 \leq i \leq d} \rightarrow$ main effects only!
\checkmark Total-order HSIC-ANOVA indices $\left(T_{i}^{\text {HSIC }}\right)_{1 \leq i \leq d} \rightarrow$ main effects + interactions.

$$
\forall 1 \leq i \leq d, \quad S_{i}^{\mathrm{HSIC}}:=\frac{\operatorname{HSIC}\left(X_{i}, Y\right)}{\operatorname{HSIC}(\mathbf{X}, Y)} \quad \text { and } \quad T_{i}^{\mathrm{HSIC}}:=1-\frac{\operatorname{HSIC}\left(\mathbf{X}_{-i}, Y\right)}{\operatorname{HSIC}(\mathbf{X}, Y)}
$$

$>$ Constraints imposed on the input kernels
\checkmark Each input kernel K_{i} must be an ANOVA kernel (\approx a constant kernel + an orthogonal kernel).

$$
K_{i}\left(x_{i}, x_{i}^{\prime}\right)=1+k_{i}\left(x_{i}, x_{i}^{\prime}\right) \quad \text { with } \quad \forall x_{i} \in \mathcal{X}_{i}, \quad \int_{\mathcal{X}_{i}} k_{i}\left(x_{i}, x_{i}^{\prime}\right) \mathrm{d} \mathbb{P}_{X_{i}}\left(x_{i}^{\prime}\right)=0
$$

$\checkmark \mathcal{H}_{i}=\mathbb{R} \oplus \boldsymbol{G}_{i}$ where $\boldsymbol{\mathcal { G }}_{i}$ is only composed of zero-mean functions (with respect to $\mathbb{P}_{X_{i}}$).

How to find ANOVA kernels?

For most parametric families of distributions, there is no well-known characteristic ANOVA kernel.

How to implement the HSIC-ANOVA decomposition in practice?

1. Transform each input distribution $\mathbb{P}_{X_{i}}$ into a standard uniform distribution $\boldsymbol{U}([0,1])$.

$$
U_{i}=F_{X_{i}}\left(X_{i}\right)
$$

Probability Integral Transform (PIT)

Density of the i-th input variable

Density of the uniform distribution
2. Assign a Sobolev kernel $K_{\text {Sob }}^{r}$ to each new input variable $U_{i}:=F_{X_{i}}\left(X_{i}\right)$.

$$
\forall u, u^{\prime} \in[0,1], \quad K_{\mathrm{Sob}}^{r}\left(u, u^{\prime}\right):=1+\sum_{i=1}^{r} \frac{B_{i}(u) B_{i}\left(u^{\prime}\right)}{(i!)^{2}}+\frac{(-1)^{r+1}}{(2 r)!} B_{2 r}\left(\left|u-u^{\prime}\right|\right)
$$

$\checkmark r \in \mathbb{N}^{*}$ is an integer parameter indicating the degree of smoothness of the RKHS.
\checkmark The functions $\left(B_{i}\right)_{i \geq 1}$ are the Bernoulli polynomials $\rightarrow \int_{0}^{1} B_{i}(u) \mathrm{d} u=0$.

A grey area around HSIC-ANOVA indices?

1. How do they measure sensitivity? How to distinguish between main effects and interactions?
2. Are they able to characterize independence?

GSA requirements	T_{i}	$\operatorname{HSIC}\left(X_{i}, Y\right)$	$S_{i}^{\text {HSIC }}$	$T_{i}^{\text {HSIC }}$
ANOVA decomposition \rightarrow RANKING			?	3
Characterize independence \rightarrow SCREENING			(?) ?	? ?
Estimation from GIVEN DATA				
Estimation from SMALL DATA				
Compatibility with DEPENDENT inputs				
INVARIANCE through monotonic transformations				

Is it relevant to talk about interactions for HSIC-ANOVA indices?

■ \qquad

Focus on HSIC-ANOVA interactions

A For most benchmark test cases, HSIC-ANOVA interactions are not significant.
Example \rightarrow the Ishigami function

$$
Y=g\left(X_{1}, X_{2}, X_{3}\right)=\sin \left(X_{1}\right)+\sin ^{2}\left(X_{2}\right)+X_{3}^{4} \sin \left(X_{1}\right) \quad \text { with } \quad X_{i} \sim \mathcal{U}([-\pi, \pi])
$$

$>$ Strong interaction between X_{1} and X_{3} in the variance-based ANOVA framework.
$>$ No interaction between X_{1} and X_{3} in the HSIC-ANOVA framework.

Counterexample \rightarrow Hand-made pathological functions (only for $d \approx 2$)

Hull function

$$
\begin{aligned}
g\left(x_{1}, x_{2}\right)= & -\tan \left[(2 \sqrt{2}) a\left|\frac{x_{1}+x_{2}-1}{\sqrt{2}}\right|-a\right] \\
& S_{1}^{\mathrm{HSIC}}=S_{2}^{\mathrm{HSIC}}=17 \% \\
& T_{1}^{\mathrm{HSIC}}=T_{2}^{\mathrm{HSIC}}=83 \%
\end{aligned}
$$

No clear explanation on why those functions lead to strong HSIC-ANOVA interactions.
The feature-based viewpoint on the HSIC allows to break the deadlock.

A detour through cross-covariance operators

1 HSIC indices
> Remember the reformulation of the HSIC as a sum of covariance terms (depending on the chosen kernels).

$$
\begin{array}{|cc|}
\hline \operatorname{HSIC}\left(X_{1}, Y\right)=\sum_{k} \sum_{l}\left|\operatorname{Cov}\left(v_{1 k}\left(X_{1}\right), w_{l}(Y)\right)\right|^{2} & \text { with } \begin{array}{|ll}
\begin{cases}\left(v_{1 k}\right)_{k} & \text { an ONB of } \mathcal{H}_{1} \\
\left(w_{l}\right)_{l} & \text { an ONB of } \mathcal{H}_{Y}\end{cases} \\
\text { dependence patterns captured by } K_{1} \text { and } K_{Y} & \text { catalogues of transformations }
\end{array} .
\end{array}
$$

A detour through cross-covariance operators

1 HSIC indices
> Remember the reformulation of the HSIC as a sum of covariance terms (depending on the chosen kernels).

$$
\begin{aligned}
& \operatorname{HSIC}\left(X_{1}, Y\right)=\sum_{k} \sum_{l}\left|\operatorname{Cov}\left(v_{1 k}\left(X_{1}\right), w_{l}(Y)\right)\right|^{2} \quad \text { with } \begin{array}{ll}
\begin{cases}\left(v_{1 k}\right)_{k} & \text { an ONB of } \mathcal{H}_{1} \\
\left(w_{l}\right)_{l} & \text { an ONB of } \mathcal{H}_{Y}\end{cases} \\
\hline
\end{array} \\
& \text { dependence patterns captured by } K_{1} \text { and } K_{Y} \\
& \text { catalogues of transformations }
\end{aligned}
$$

2 First-order HSIC-ANOVA indices

> Application of the above formula in the case where K_{1} is an ANOVA kernel.
\checkmark The RKHS induced by $K_{1}=1+k_{1}$ may be decomposed as $\mathcal{H}_{1}=\mathbb{R} \oplus \mathcal{G}_{1}$.
\checkmark All the functions in $\boldsymbol{\mathcal { G }}_{1}$ have zero mean (with respect to $\mathbb{P}_{X_{1}}$).
\checkmark An ONB $\left(v_{1 k}\right)_{k}$ of \mathcal{H}_{1} can be obtained by taking $\left\{\mathbb{1} ;\left(u_{1 k}\right)_{k}\right\}$ where $\left(u_{1 k}\right)_{k}$ is an ONB of \mathcal{G}_{1}.

$$
S_{1}^{\mathrm{HSIC}} \propto \operatorname{HSIC}\left(X_{1}, Y\right)=\sum_{k} \sum_{l}\left|\operatorname{Cov}\left(u_{1 k}\left(X_{1}\right), w_{l}(Y)\right)\right|^{2} \quad \text { with } \begin{cases}\left(u_{1 k}\right)_{k} & \text { an ONB of } \mathcal{G}_{1} \\ \left(w_{l}\right)_{l} & \text { an ONB of } \mathcal{H}_{Y}\end{cases}
$$

dependence patterns captured by k_{1} and K_{Y}

A detour through cross-covariance operators

3 HSIC-ANOVA decomposition

$>$ For the sake of clarity, it is assumed that $d=2$.
\checkmark No loss of generality. Everything remains true in higher dimension!

$$
\begin{aligned}
\operatorname{HSIC}(\boldsymbol{X}, Y)= & \sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}}(-1)^{|\boldsymbol{u}|-|\boldsymbol{v}|} \operatorname{HSIC}\left(\boldsymbol{X}_{\boldsymbol{v}}, Y\right) \\
= & \operatorname{HSIC}\left(X_{1}, Y\right)+\operatorname{HSIC}\left(X_{2}, Y\right)+\ldots \\
& \operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(X_{1}, Y\right)-\operatorname{HSIC}\left(X_{2}, Y\right) \quad \begin{array}{c}
\text { HSIC-ANOVA } \\
\text { interaction term }
\end{array}
\end{aligned}
$$

Now, let us rewrite the left-hand term in the HSIC-ANOVA decomposition.

A detour through cross-covariance operators

3 HSIC-ANOVA decomposition

$>$ For the sake of clarity, it is assumed that $d=2$.
\checkmark No loss of generality. Everything remains true in higher dimension!

$$
\begin{aligned}
\operatorname{HSIC}(\boldsymbol{X}, Y)= & \sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}}(-1)^{|\boldsymbol{u}|-|\boldsymbol{v}|} \operatorname{HSIC}\left(\boldsymbol{X}_{\boldsymbol{v}}, Y\right) \\
= & \operatorname{HSIC}\left(X_{1}, Y\right)+\operatorname{HSIC}\left(X_{2}, Y\right)+\ldots \\
& \operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(X_{1}, Y\right)-\operatorname{HSIC}\left(X_{2}, Y\right)
\end{aligned}
$$

$>$ Step $\mathrm{A} \rightarrow$ Identify the input and output kernels
\checkmark For the random INPUT vector $\boldsymbol{X}=\left[X_{1}, X_{2}\right] \quad \rightarrow K_{1} \otimes K_{2}$ with RKHS $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
\checkmark For the random OUTPUT variable $Y \quad \rightarrow K_{Y} \quad$ with RKHS \mathcal{H}_{Y}

A detour through cross-covariance operators

3 HSIC-ANOVA decomposition

$>$ For the sake of clarity, it is assumed that $d=2$.
\checkmark No loss of generality. Everything remains true in higher dimension!

$$
\begin{aligned}
\operatorname{HSIC}(\boldsymbol{X}, Y)= & \sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}}(-1)^{|\boldsymbol{u}|-|\boldsymbol{v}|} \operatorname{HSIC}\left(\boldsymbol{X}_{\boldsymbol{v}}, Y\right) \\
= & \operatorname{HSIC}\left(X_{1}, Y\right)+\operatorname{HSIC}\left(X_{2}, Y\right)+\ldots \\
& \operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(X_{1}, Y\right)-\operatorname{HSIC}\left(X_{2}, Y\right)
\end{aligned}
$$

$>$ Step A \rightarrow Identify the input and output kernels.
$>$ Step B \rightarrow Find an ONB for each input RKHS.

$$
\left(v_{1 k}\right)_{k}=\left\{\mathbb{1} ;\left(u_{1 k}\right)_{k}\right\} \quad \text { and } \quad\left(v_{2 k}\right)_{k}=\left\{\mathbb{1} ;\left(u_{2 k}\right)_{k}\right\}
$$

A detour through cross-covariance operators

3 HSIC-ANOVA decomposition

$>$ For the sake of clarity, it is assumed that $d=2$.
\checkmark No loss of generality. Everything remains true in higher dimension!

$$
\begin{aligned}
\operatorname{HSIC}(\boldsymbol{X}, Y)= & \sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}}(-1)^{|\boldsymbol{u}|-|\boldsymbol{v}|} \operatorname{HSIC}\left(\boldsymbol{X}_{\boldsymbol{v}}, Y\right) \\
= & \operatorname{HSIC}\left(X_{1}, Y\right)+\operatorname{HSIC}\left(X_{2}, Y\right)+\ldots \\
& \operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(X_{1}, Y\right)-\operatorname{HSIC}\left(X_{2}, Y\right)
\end{aligned}
$$

$>$ Step A \rightarrow Identify the input and output kernels.
$>$ Step B \rightarrow Find an ONB for each input RKHS.
$>$ Step C \rightarrow Build an ONB of the product RKHS.

$$
\begin{aligned}
\left(v_{1 i} \otimes v_{2 j}\right)_{i, j \geq 0} & =\left\{\mathbb{1} \otimes \mathbb{1} ;\left(u_{1 i} \otimes \mathbb{1}\right)_{i \geq 1} ;\left(\mathbb{1} \otimes u_{2 j}\right)_{j \geq 1} ;\left(u_{1 i} \otimes u_{2 j}\right)_{i, j \geq 1}\right\} \\
& =\left\{\boldsymbol{x} \mapsto 1 ;\left(\boldsymbol{x} \mapsto u_{1 i}\left(x_{1}\right)\right)_{i \geq 1} ;\left(\boldsymbol{x} \mapsto u_{2 j}\left(x_{2}\right)\right)_{j \geq 1} ;\left(\boldsymbol{x} \mapsto u_{1 i}\left(x_{1}\right) u_{2 j}\left(x_{2}\right)\right)_{i, j \geq 1}\right\}
\end{aligned}
$$

A detour through cross-covariance operators

3 HSIC-ANOVA decomposition

$>$ For the sake of clarity, it is assumed that $d=2$.
\checkmark No loss of generality. Everything remains true in higher dimension!

$$
\begin{aligned}
& \operatorname{HSIC}(\boldsymbol{X}, Y)=\sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}}(-1)^{|\boldsymbol{u}|-|\boldsymbol{v}|} \operatorname{HSIC}\left(\boldsymbol{X}_{\boldsymbol{v}}, Y\right) \\
& =\operatorname{HSIC}\left(X_{1}, Y\right)+\operatorname{HSIC}\left(X_{2}, Y\right)+\ldots \\
& \operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(X_{1}, Y\right)-\operatorname{HSIC}\left(X_{2}, Y\right) \\
& =\sum_{i} \sum_{j} \sum_{k}\left|\operatorname{Cov}\left(v_{1 i}\left(X_{1}\right) v_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2} \\
& =\underbrace{\sum_{i} \sum_{k}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right), w_{l}(Y)\right)\right|^{2}}_{\operatorname{HSIC}\left(X_{1}, Y\right)}+\underbrace{\sum_{j} \sum_{k}\left|\operatorname{Cov}\left(u_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2}}_{\operatorname{HSIC}\left(X_{1}, Y\right)}+\ldots \\
& \sum_{i} \sum_{j} \sum_{l}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right) u_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2}
\end{aligned}
$$

A detour through cross-covariance operators

3 HSIC-ANOVA decomposition

$>$ For the sake of clarity, it is assumed that $d=2$.
\checkmark No loss of generality. Everything remains true in higher dimension!

$$
\begin{aligned}
\operatorname{HSIC}(\boldsymbol{X}, Y) & =\sum_{\boldsymbol{u} \subseteq\{1, \ldots, d\}} \sum_{\boldsymbol{v} \subseteq \boldsymbol{u}}(-1)^{|\boldsymbol{u}|-|\boldsymbol{v}|} \operatorname{HSIC}\left(\boldsymbol{X}_{\boldsymbol{v}}, Y\right) \\
& =\operatorname{HSIC}\left(X_{1}, Y\right)+\operatorname{HSIC}\left(X_{2}, Y\right)+\ldots
\end{aligned}
$$

$\operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(X_{1}, Y\right)-\operatorname{HSIC}\left(X_{2}, Y\right) \quad$| ANOVA |
| :---: |
| viewpoint |

$$
\begin{aligned}
& =\sum_{i} \sum_{j} \sum_{k}\left|\operatorname{Cov}\left(v_{1 i}\left(X_{1}\right) v_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2} \\
& =\underbrace{\sum_{i} \sum_{k}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right), w_{l}(Y)\right)\right|^{2}}_{\operatorname{HSIC}\left(X_{1}, Y\right)}+\underbrace{\sum_{j} \sum_{k}\left|\operatorname{Cov}\left(u_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2}}_{\operatorname{HSIC}\left(X_{1}, Y\right)}+\ldots
\end{aligned}
$$

$$
\sum_{i} \sum_{j} \sum_{l}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right) u_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2}
$$

A detour through cross-covariance operators

```
4 HSIC-ANOVA indices
```

$$
S_{1}^{\mathrm{HSIC}}+S_{2}^{\mathrm{HSIC}}+\Delta_{12}^{\mathrm{HSIC}}=1
$$

$$
S_{1}^{\mathrm{HSIC}} \propto \sum_{i} \sum_{k}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right), w_{k}(Y)\right)\right|^{2}
$$

$$
\text { with } \begin{cases}\left(u_{1 i}\right)_{i} & \text { an ONB of } \mathcal{G}_{1} \\ \left(w_{k}\right)_{k} & \text { an ONB of } \mathcal{H}_{Y}\end{cases}
$$

dependence patterns captured by k_{1} and K_{Y}
$\Delta_{12}^{\mathrm{HSIC}} \propto \sum_{i} \sum_{j} \sum_{k}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right) u_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2} \quad$ with

$$
\begin{cases}\left(u_{1 i}\right)_{i} & \text { an ONB of } \mathcal{G}_{1} \\ \left(u_{2 j}\right)_{j} & \text { an ONB of } \mathcal{G}_{2} \\ \left(w_{k}\right)_{k} & \text { an ONB of } \mathcal{H}_{Y}\end{cases}
$$

dependence patterns captured by $k_{1} \otimes k_{2}$ and K_{Y}

A detour through cross-covariance operators

4 HSIC-ANOVA indices

$$
S_{1}^{\mathrm{HSIC}}+S_{2}^{\mathrm{HSIC}}+\Delta_{12}^{\mathrm{HSIC}}=1
$$

$$
S_{1}^{\mathrm{HSIC}} \propto \sum_{i} \sum_{k}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right), w_{k}(Y)\right)\right|^{2}
$$

$$
\text { with } \begin{cases}\left(u_{1 i}\right)_{i} & \text { an ONB of } \mathcal{G}_{1} \\ \left(w_{k}\right)_{k} & \text { an ONB of } \mathcal{H}_{Y}\end{cases}
$$

dependence patterns captured by k_{1} and K_{Y}
$\Delta_{12}^{\mathrm{HSIC}} \propto \sum_{i} \sum_{j} \sum_{k}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right) u_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2} \quad$ with $\begin{cases}\left(u_{2 j}\right)_{j} & \text { an ONB of } \mathcal{G}_{2} \\ \left(w_{k}\right)_{k} & \text { an ONB of } \mathcal{H}_{Y}\end{cases}$
dependence patterns captured by $k_{1} \otimes k_{2}$ and K_{Y}
$>$ Remember the simplest solution to compute HSIC-ANOVA indices.
\checkmark Uniform inputs
\checkmark Sobolev kernels for the inputs
\checkmark Gaussian kernel for the output

$$
\begin{array}{ll}
\rightarrow & U_{1} \perp U_{2} \sim \mathcal{U}([0,1]) \\
\rightarrow & K_{1}=K_{2}=K_{\mathrm{Sob}}^{r} \\
\rightarrow & K_{Y}=K_{\gamma}
\end{array}
$$

$$
\forall u, u^{\prime} \in[0,1], \quad K_{\mathrm{Sob}}^{r}\left(u, u^{\prime}\right):=1+\sum_{k=1}^{r} \frac{B_{k}(u) B_{k}\left(u^{\prime}\right)}{(k!)^{2}}+\frac{(-1)^{r+1}}{(2 r)!} B_{2 r}\left(\left|u-u^{\prime}\right|\right)
$$

More about
5 Sobolev kernels and their properties

■ \qquad

Sobolev kernels and their feature maps

Many questions at the beginning of this work...

(1) What is the RKHS $\mathcal{H}_{\text {Sob }}^{r}$ induced by $K_{\text {Sob }}^{r}$?
(2) Is $K_{\text {Sob }}^{r}$ a characteristic kernel?
(3) Is there an explicit and easily interpretable feature $\operatorname{map} \varphi_{\text {Sob }}^{r}:[0,1] \rightarrow \mathcal{F}_{\text {Sob }}^{r}$?
(4) How to identify an ONB of $\mathcal{H}_{\text {Sob }}^{r}$? Is there a link with feature maps?
(5) How to choose r in practice?

Sobolev kernels and their feature maps

Many questions at the beginning of this work...

(1) What is the RKHS $\mathcal{H}_{\text {Sob }}^{r}$ induced by $K_{\text {Sob }}^{r}$? \rightarrow see Gu (2013) or Kuo et al. (2010)
$>$ A standard function space: the Sobolev space of order r defined on $[0,1]$ for the L^{2}-norm.

$$
H^{r}([0,1]):=\left\{h \in \mathbb{R}^{[0,1]} \mid \forall 0 \leq k \leq r, \quad D^{k} h \in L^{2}([0,1])\right\}
$$

$>$ A specific inner product:

$$
\langle f, g\rangle_{\mathcal{H}_{\text {Sob }}^{r}}:=\sum_{k=0}^{r-1}\left(\int_{0}^{1} D^{k} f(x) \mathrm{d} x\right)\left(\int_{0}^{1} D^{k} g(x) \mathrm{d} x\right)+\int_{0}^{1} D^{r} f(x) D^{r} g(x) \mathrm{d} x
$$

Sobolev kernels and their feature maps

Many questions at the beginning of this work...

(1) What is the RKHS $\mathcal{H}_{\text {Sob }}^{r}$ induced by $K_{\text {Sob }}^{r}$?
(2) Is $K_{\text {Sob }}^{r}$ a characteristic kernel?
> YES! Simply because $H^{r}([0,1])$ is uniformly dense in $C([0,1])$.
> Major consequence
\checkmark The HSIC-ANOVA indices based on Sobolev kernels are able to characterize independence.

$$
X_{i} \perp Y \Longleftrightarrow S_{i}^{\mathrm{HSIC}}=0 \Longleftrightarrow T_{i}^{\mathrm{HSIC}}=0
$$

!This is different from what happens for Sobol' indices.

$$
S_{i}=0 \nRightarrow X_{i} \perp Y \text { while } X_{i} \perp Y \Longleftrightarrow T_{i}=0
$$

Sobolev kernels and their feature maps

Many questions at the beginning of this work...

(1) What is the RKHS $\mathcal{H}_{\text {Sob }}^{r}$ induced by $K_{\text {Sob }}^{r}$?
(2) Is $K_{\text {Sob }}^{r}$ a characteristic kernel?
(3) Is there an explicit and easily interpretable feature map $\varphi_{\text {Sob }}^{r}:[0,1] \rightarrow \mathcal{F}_{\text {Sob }}^{r}$?

$$
K_{\mathrm{Sob}}^{r}\left(x, x^{\prime}\right)=\left\langle\varphi_{\mathrm{Sob}}^{r}(x), \varphi_{\mathrm{Sob}}^{r}\left(x^{\prime}\right)\right\rangle_{\mathcal{F}_{\mathrm{Sob}}^{r}}
$$

$>$ For $r=1$, the Mercer expansion of $K_{\text {Sob }}^{1}$ is actually known. \rightarrow Dick et al. $(2014,2015)$

$$
K_{\text {Sob }}^{1}\left(x, x^{\prime}\right):=1+\sum_{k=1}^{\infty} \frac{1}{(k \pi)^{2}} c_{k}(x) c_{k}\left(x^{\prime}\right) \quad \text { with } \quad c_{k}(x):=\sqrt{2} \cos (k \pi x)
$$

$>$ For $r \geq 2$, a series expansion of $K_{\text {Sob }}^{2}$ is also mentioned in the literature. \rightarrow Baldeaux et al. (2009)

$$
K_{\text {Sob }}^{r}\left(x, x^{\prime}\right):=1+\sum_{k=1}^{r} \frac{B_{k}(x) B_{k}\left(x^{\prime}\right)}{(k!)^{2}}+\sum_{k=1}^{\infty} \frac{1}{(2 k \pi)^{2 r}}\left[c_{2 k}(x) c_{2 k}\left(x^{\prime}\right)+s_{2 k}(x) s_{2 k}\left(x^{\prime}\right)\right] \quad \text { with } \quad\left\{\begin{array}{l}
c_{2 k}(x):=\sqrt{2} \cos (2 k \pi x) \\
s_{2 k}(x):=\sqrt{2} \sin (2 k \pi x)
\end{array}\right.
$$

Sobolev kernels and their feature maps

Many questions at the beginning of this work...

(1) What is the RKHS $\mathcal{H}_{\text {Sob }}^{r}$ induced by $K_{\text {Sob }}^{r}$?
(2) Is $K_{\text {Sob }}^{r}$ a characteristic kernel?
(3) Is there an explicit and easily interpretable feature map $\varphi_{\text {Sob }}^{r}:[0,1] \rightarrow \mathcal{F}_{\text {Sob }}^{r}$?
(4) How to identify an ONB of $\mathcal{H}_{\text {Sob }}^{r}$? Is there a link with feature maps?
$>$ Mercer expansion of $K_{\text {Sob }}^{1} \quad \rightarrow \quad K_{\text {Sob }}^{1}\left(x, x^{\prime}\right):=1+\sum_{k=1}^{\infty} \frac{1}{(k \pi)^{2}} c_{k}(x) c_{k}\left(x^{\prime}\right)$
$>$ ONB of the RKHS $\mathcal{H}_{\text {Sob }}^{1}$

$$
\left\{\mathbf{1} ;\left(\frac{c_{k}(\cdot)}{k \pi}\right)_{k \geq 1}\right\}
$$

$>$ Series expansion of $K_{\text {Sob }}^{r}$

$$
\rightarrow
$$

$$
K_{\mathrm{Sob}}^{r}\left(x, x^{\prime}\right):=1+\sum_{k=1}^{r} \frac{B_{k}(x) B_{k}\left(x^{\prime}\right)}{(k!)^{2}}+\sum_{k=1}^{\infty} \frac{1}{(2 k \pi)^{2 r}}\left[c_{2 k}(x) c_{2 k}\left(x^{\prime}\right)+s_{2 k}(x) s_{2 k}\left(x^{\prime}\right)\right]
$$

$>$ ONB of the RKHS $\mathcal{H}_{\text {Sob }}^{r}$

$$
\rightarrow \quad\left\{\mathbf{1} ;\left(\frac{B_{k}(\cdot)}{k!}\right)_{1 \leq k \leq r} ;\left(\frac{c_{2 k}(\cdot)}{(2 k \pi)^{r}}\right)_{k \geq 1} ;\left(\frac{s_{2 k}(\cdot)}{(2 k \pi)^{r}}\right)_{k \geq 1}\right\}
$$

Sobolev kernels and their feature maps

Many questions at the beginning of this work...

(1) What is the RKHS $\mathcal{H}_{\text {Sob }}^{r}$ induced by $K_{\text {Sob }}^{r}$?
(2) Is $K_{\text {Sob }}^{r}$ a characteristic kernel?
(3) Is there an explicit and easily interpretable feature map $\varphi_{\text {Sob }}^{r}:[0,1] \rightarrow \mathcal{F}_{\text {Sob }}^{r}$?
(4) How to identify an ONB of $\mathcal{H}_{\text {Sob }}^{r}$? Is there a link with feature maps?

5 How to choose r in practice?
$>$ Taking $r=1$ is recommended!
$>$ For $r \geq 2, K_{\text {Sob }}^{r}\left(x, x^{\prime}\right) \approx 1+k_{\text {lin }}\left(x, x^{\prime}\right) \rightarrow$ poor numerical performance for screening!

Sobolev kernels and their feature maps

Many questions at the beginning of this work...

(1) What is the RKHS $\mathcal{H}_{\text {Sob }}^{r}$ induced by $K_{\text {Sob }}^{r}$?
(2) Is $K_{\text {Sob }}^{r}$ a characteristic kernel?
(3) Is there an explicit and easily interpretable feature map $\varphi_{\text {Sob }}^{r}:[0,1] \rightarrow \mathcal{F}_{\text {Sob }}^{r}$?
(4) How to identify an ONB of $\mathcal{H}_{\text {Sob }}^{r}$? Is there a link with feature maps?
(5) How to choose r in practice?

:T What is the point of these theoretical results?

$>$ Remember the pure interaction term $\Delta_{12}^{\text {HSIC }}$.
$>$ Apply with $K_{1}=K_{2}=K_{\text {Sob }}^{1}$ now that an ONB of $\mathcal{H}_{\text {Sob }}^{1}$ is explicitly known.

$$
\Delta_{12}^{\mathrm{HSIC}} \propto \sum_{i} \sum_{j} \sum_{k}\left|\operatorname{Cov}\left(u_{1 i}\left(X_{1}\right) u_{2 j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2}=\sum_{i}^{\infty} \sum_{j}^{\infty} \sum_{k} \frac{1}{i j \pi^{2}}\left|\operatorname{Cov}\left(c_{i}\left(X_{1}\right) c_{j}\left(X_{2}\right), w_{k}(Y)\right)\right|^{2}
$$

This provides the hint to design a toy case.

How to exacerbate HSIC-ANOVA interactions?

> Back to the Ishigami function
\checkmark Additional term chosen to boost HSIC-ANOVA interactions.

$$
Y=g\left(U_{1}, U_{2}, U_{3}\right)=\text { ishigami }\left(X_{1}, X_{2}, X_{3}\right)+\gamma \cos \left(\pi U_{1}\right) \cos \left(\pi U_{2}\right) \quad \text { with } \quad \begin{gathered}
U_{i} \sim \boldsymbol{U}([0,1]) \\
X_{i}=\pi\left(2 U_{i}-1\right)
\end{gathered}
$$

> Design parameter

$$
\checkmark \gamma=0
$$

> Estimation of sensitivity measures
\checkmark Sample size $n=500$
$\checkmark \quad$ R 2 -HSIC indices + HSIC-ANOVA indices

	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{2}}$	\boldsymbol{U}_{3}
R^{2}-HSIC	0.19	0.03	0.01
First-order	0.77	0.13	0.07
Total-order	0.79	0.14	0.08

How to exacerbate HSIC-ANOVA interactions?

> Back to the Ishigami function
\checkmark Additional term chosen to boost HSIC-ANOVA interactions.

$$
Y=g\left(U_{1}, U_{2}, U_{3}\right)=\text { ishigami }\left(X_{1}, X_{2}, X_{3}\right)+\gamma \cos \left(\pi U_{1}\right) \cos \left(\pi U_{2}\right) \quad \text { with } \quad \begin{gathered}
U_{i} \sim \boldsymbol{U}([0,1]) \\
X_{i}=\pi\left(2 U_{i}-1\right)
\end{gathered}
$$

$>$ Design parameter

$$
\checkmark \quad \gamma=10
$$

> Estimation of sensitivity measures
\checkmark Sample size $n=500$
$\checkmark \quad$ R 2 -HSIC indices + HSIC-ANOVA indices

	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{2}}$	\boldsymbol{U}_{3}
\mathbf{R}^{2}-HSIC	0.05	0.08	0.01
First-order	0.25	0.40	0.02
Total-order	0.56	0.71	0.04

How to exacerbate HSIC-ANOVA interactions?

> Back to the Ishigami function
\checkmark Additional term chosen to boost HSIC-ANOVA interactions.

$$
Y=g\left(U_{1}, U_{2}, U_{3}\right)=\text { ishigami }\left(X_{1}, X_{2}, X_{3}\right)+\gamma \cos \left(\pi U_{1}\right) \cos \left(\pi U_{2}\right) \quad \text { with } \quad \begin{gathered}
U_{i} \sim \boldsymbol{U}([0,1]) \\
X_{i}=\pi\left(2 U_{i}-1\right)
\end{gathered}
$$

$>$ Design parameter

$$
\checkmark \gamma=100
$$

> Estimation of sensitivity measures
\checkmark Sample size $n=500$
$\checkmark \quad$ R 2 -HSIC indices + HSIC-ANOVA indices

	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{2}}$	\boldsymbol{U}_{3}
R^{2}-HSIC	0.05	0.05	0.01
First-order	0.28	0.23	0.04
Total-order	0.72	0.66	0.05

How to use HSIC-ANOVA in practice?

1. How to build a test of independence? How to extend to the existing test procedures?
2. Is there any advantage to using the total-order HSIC-ANOVA index?

GSA requirements	T_{i}	$\operatorname{HSIC}\left(X_{i}, Y\right)$	$S_{i}^{\text {HSIC }}$	$T_{i}^{\text {HSIC }}$
ANOVA decomposition \rightarrow RANKING				
Characterize independence \rightarrow SCREENING				
Estimation from GIVEN DATA				
Estimation from SMALL DATA				
Compatibility with DEPENDENT inputs INVARIANCE through monotonic transformations				

- Does all this benefit

Testing independence with HSIC-ANOVA indices

$>$ A test of independence consists in testing the null hypothesis $\left(H_{0}^{i}\right): X_{i} \perp Y$.

$$
X_{i} \perp Y \quad \Longleftrightarrow \quad S_{i}^{\mathrm{HSIC}}=0 \quad \Longleftrightarrow \quad T_{i}^{\mathrm{HSC}}=0
$$

$\Longleftrightarrow \quad$| $\operatorname{HSIC}\left(X_{i}, Y\right)=0$ |
| :--- |
| with $K_{\text {Sob }}^{1} \otimes K_{Y}$ |

Numerator of the first-order index

$$
\begin{aligned}
& \operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(\boldsymbol{X}_{-i}, Y\right)=0 \\
& \quad \text { with } K_{\text {Sob }}^{1} \otimes \ldots \otimes K_{\text {Sob }}^{1} \otimes K_{Y}
\end{aligned}
$$

Numerator of the total-order index

Testing independence with HSIC-ANOVA indices

$>$ A test of independence consists in testing the null hypothesis $\left(H_{0}^{i}\right): X_{i} \perp Y$.

$$
X_{i} \perp Y \quad \Longleftrightarrow \quad S_{i}^{\mathrm{HSIC}}=0 \quad \Longleftrightarrow \quad T_{i}^{\mathrm{HSC}}=0
$$

$$
\begin{aligned}
& \operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(\boldsymbol{X}_{-i}, Y\right)=0 \\
& \quad \text { with } K_{\text {Sob }}^{1} \otimes \ldots \otimes K_{\text {Sob }}^{1} \otimes K_{Y}
\end{aligned}
$$

Numerator of the total-order index

Apply existing test procedures with $K_{i}=K_{\text {Sob }}^{1}$

Is there a reason to hope for higher statistical power?

Actually, NO!

Testing independence with HSIC-ANOVA indices

$>$ A test of independence consists in testing the null hypothesis $\left(H_{0}^{i}\right): X_{i} \perp Y$.

$$
X_{i} \perp Y \quad \Longleftrightarrow \quad S_{i}^{\mathrm{HSIC}}=0 \quad \Longleftrightarrow \quad T_{i}^{\mathrm{HSC}}=0
$$

$$
\begin{aligned}
& \operatorname{HSIC}(\boldsymbol{X}, Y)-\operatorname{HSIC}\left(\boldsymbol{X}_{-i}, Y\right)=0 \\
& \quad \text { with } K_{\text {Sob }}^{1} \otimes \ldots \otimes K_{\text {Sob }}^{1} \otimes K_{Y}
\end{aligned}
$$

Numerator of the total-order index

Apply existing test procedures with $K_{i}=K_{\text {Sob }}^{1}$

Computing this test statistic is slightly more expensive.
Is there a reason to hope for higher statistical power?

Testing independence with the total-order index

> The distribution of $\widehat{\mathcal{T}}_{i}\left(\boldsymbol{Z}_{\text {obs }}\right)$ under $\left(H_{0}^{i}\right)$ can be simulated from the available data.
A. All the columns of the DoE are required to compute the test statistic.

Testing independence with the total-order index

> The distribution of $\widehat{\mathcal{T}}_{i}\left(\boldsymbol{Z}_{\text {obs }}\right)$ under $\left(H_{0}^{i}\right)$ can be simulated from the available data.

.
All the columns of the DoE are required to compute the test statistic.

$>$ Permuting $\boldsymbol{Y}_{\text {obs }}$ leads to eliminate dependence between the joint observations $\left(\boldsymbol{X}^{(k)}, Y^{(k)}\right)$.
\checkmark This boils down to testing $\left(H_{0}\right): \boldsymbol{X} \perp Y$ and this is not what is desired!

Testing independence with the total-order index

> The distribution of $\widehat{\mathcal{T}}_{i}\left(\mathbb{Z}_{\text {obs }}\right)$ under $\left(H_{0}^{i}\right)$ can be simulated from the available data.
Instead, the trick is to permute the observations of the input variable.

Testing independence with the total-order index

$>$ The distribution of $\widehat{\mathcal{T}}_{i}\left(\mathbb{Z}_{\text {obs }}\right)$ under $\left(H_{0}^{i}\right)$ can be simulated from the available data.
Instead, the trick is to permute the observations of the input variable.

Testing independence with the total-order index

> The distribution of $\widehat{\mathcal{T}}_{i}\left(\mathbb{Z}_{\text {obs }}\right)$ under $\left(H_{0}^{i}\right)$ can be simulated from the available data.
Instead, the trick is to permute the observations of the input variable.

Permutation-based test procedure

- Step $\mathbf{A} \rightarrow$ Perform a sequence $\left\{\sigma_{b}\right\}_{1 \leq b \leq B}$ of random permutations on the i-th column of $\boldsymbol{X}_{\text {obs }}$.
- Step B \rightarrow Compute the value $\hat{\mathcal{T}}_{i}^{\sigma_{b}}$ of the test statistic for each permuted design.
- $\underline{\text { Step } \mathrm{C}} \rightarrow$ Derive a non-parametric estimate of the p -value $p_{i}:=\mathbb{P}\left(\widehat{\boldsymbol{T}}_{i}>\widehat{\boldsymbol{T}}_{i}\left(\boldsymbol{Z}_{\text {obs }}\right)\right)$.

Simulation of the test statistic under the null hypothesis

- Default value: $\quad B \approx 10^{3}$
- Complexity: $\quad\left(d^{2}+7 B d\right) n^{2}$

Permutation scheme

$+$

$$
\boldsymbol{X}_{\mathrm{obs}}^{\sigma_{b}}:=\left\{\left(X_{i}^{\left(\sigma_{b}(k)\right)}, \boldsymbol{X}_{-i}^{(k)}\right)\right\}_{k} \quad \boldsymbol{Y}_{\mathrm{obs}}
$$

Numerical study of the statistical power

> Back to the Ishigami function
\checkmark Additional term chosen to boost HSIC-ANOVA interactions.

$$
Y=g\left(U_{1}, U_{2}, U_{3}\right)=\text { ishigami }\left(X_{1}, X_{2}, X_{3}\right)+\gamma \cos \left(\pi U_{1}\right) \cos \left(\pi U_{2}\right) \quad \text { with } \quad \begin{gathered}
U_{i} \sim \mathcal{U}([0,1]) \\
X_{i}=\pi\left(2 U_{i}-1\right)
\end{gathered}
$$

$>$ Design parameter

$$
\checkmark \gamma=0
$$

> Study of the statistical power
\checkmark Sample size $n=50$
\checkmark Number of replicates $M=200$

	U_{1}	\boldsymbol{U}_{2}	\boldsymbol{U}_{3}
HSIC	0.88	0.07	0.22
Total-order	0.87	0.19	0.19

> Separation rate
\checkmark Distributions of $\widehat{\boldsymbol{T}}_{i}\left(\boldsymbol{Z}_{\text {obs }}\right)$ under $\left(H_{0}^{i}\right)$ et $\left(H_{1}^{i}\right)$

Numerical study of the statistical power

> Back to the Ishigami function
\checkmark Additional term chosen to boost HSIC-ANOVA interactions.

$$
Y=g\left(U_{1}, U_{2}, U_{3}\right)=\text { ishigami }\left(X_{1}, X_{2}, X_{3}\right)+\gamma \cos \left(\pi U_{1}\right) \cos \left(\pi U_{2}\right) \quad \text { with } \quad U_{i} \sim \boldsymbol{U}([0,1])
$$

$>$ Design parameter

$$
\checkmark \gamma=10
$$

$>$ Study of the statistical power
\checkmark Sample size $n=50$
\checkmark Number of replicates $M=200$

	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{3}}$
HSIC	0.59	0.63	0.05
Total-order	0.92	0.94	0.07

- Same power when $S_{i}^{\text {HSIC }} \approx T_{i}^{\text {HSIC }}$

$$
\text { Jame power wnens } s_{i} \approx I_{i}
$$

> Separation rate
\checkmark Distributions of $\widehat{\boldsymbol{T}}_{i}\left(\boldsymbol{Z}_{\text {obs }}\right)$ under $\left(H_{0}^{i}\right)$ et $\left(H_{1}^{i}\right)$

Numerical study of the statistical power

> Back to the Ishigami function
\checkmark Additional term chosen to boost HSIC-ANOVA interactions.

$$
Y=g\left(U_{1}, U_{2}, U_{3}\right)=\text { ishigami }\left(X_{1}, X_{2}, X_{3}\right)+\gamma \cos \left(\pi U_{1}\right) \cos \left(\pi U_{2}\right) \quad \text { with } \quad U_{i} \sim \boldsymbol{U}([0,1])
$$

$>$ Design parameter

$$
\checkmark \gamma=100
$$

$>$ Study of the statistical power
\checkmark Sample size $n=50$
\checkmark Number of replicates $M=200$

	$\boldsymbol{U}_{\mathbf{1}}$	$\boldsymbol{U}_{\mathbf{2}}$	$\boldsymbol{U}_{\mathbf{3}}$
HSIC	0.65	0.70	0.07
Total-order	1.00	1.00	0.06

(Same power when $S_{i}^{\text {HSIC }} \approx T_{i}^{\text {HSIC }}$
> Separation rate
\checkmark Distributions of $\widehat{\boldsymbol{T}}_{i}\left(\boldsymbol{Z}_{\text {obs }}\right)$ under $\left(H_{0}^{i}\right)$ et $\left(H_{1}^{i}\right)$

Benefits brought by HSIC-ANOVA indices in GSA

\bigcirc
HSIC-ANOVA indices are fully transparent sensitivity measures able to perform screening and ranking!In many situations, the test of independence based on T_{i}^{HSIC} is more powerful!

GSA requirements	T_{i}	$\operatorname{HSIC}\left(X_{i}, Y\right)$	$S_{i}^{\text {HSIC }}$	$T_{i}^{\text {HSIC }}$
ANOVA decomposition \rightarrow RANKING			$\sqrt{ }$	\checkmark
Characterize independence \rightarrow SCREENING		$\sqrt{ }$		
Estimation from GIVEN DATA		$\sqrt{ }$	$\sqrt{ }$	
Estimation from SMALL DATA		V	$\sqrt{ }$	\checkmark
Compatibility with DEPENDENT inputs		$\sqrt{ }$	X	
INVARIANCE through monotonic transformations		X		

Conclusion

> The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the advantages of Sobol' indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).

Conclusion

> The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the advantages of Sobol' indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).
> The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
\checkmark For the standard uniform distribution, it is recommended to take the Sobolev kernel $K_{\text {Sob }}^{1}$.
\checkmark For other distributions, orthogonalization techniques can be used to build suitable kernels.

Conclusion

> The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the advantages of Sobol' indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).
$>$ The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
> The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.
\checkmark The first-order index S_{1}^{HSIC} scans all possible dependence patterns between X_{1} and Y.
\checkmark The second-order index $S_{12}^{\text {HSIC }}$ also scans all possible dependence patterns between $\left(X_{1}, X_{2}\right)$ and Y.

Conclusion

> The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the advantages of Sobol' indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).
> The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
> The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.
> Variable selection can be performed with test procedures based on HSIC-ANOVA indices.
\checkmark For the first-order index $S_{1}^{\text {HSIC }} \rightarrow$ The existing test procedures can be applied directly.
\checkmark For the total-order index $T_{1}^{\text {HSIC }} \rightarrow$ The existing test procedures need to be adapted!

Conclusion

> The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the advantages of Sobol' indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).
> The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
> The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.
> Variable selection can be performed with test procedures based on HSIC-ANOVA indices.
$>$ Using the total-order HSIC-ANOVA indices leads to more powerful test procedures.

Conclusion

> The very recent HSIC-ANOVA indices have enabled significant progress in GSA since they combine the advantages of Sobol' indices (variance-based GSA) and those of HSIC indices (kernel-based GSA).
> The HSIC-ANOVA decomposition requires the use of characteristic ANOVA kernels for the input variables.
> The way sensitivity is measured by HSIC-ANOVA indices is driven by the kernel feature maps.
> Variable selection can be performed with test procedures based on HSIC-ANOVA indices.
> Using the total-order HSIC-ANOVA indices leads to more powerful test procedures.

Publications

$>$ Preprint $\quad \rightarrow \quad$ https://cea.hal.science/cea-04320711/document
$>$ Conference paper $\rightarrow \quad$ https://cea.hal.science/cea-03701170v1/document

Codes

$>$ Two dedicated routines the R package sensitivity

\checkmark sensiHSIC	\rightarrow	$\underline{h t t p s: / / r d r r . i o / c r a n / s e n s i t i v i t y / m a n / s e n s i H S I C . h t m l ~}$
\checkmark testHSIC	\rightarrow	$\underline{\text { https://rdrr.io/cran/sensitivity/man/testHSIC.html }}$

References

Key papers (1/4)

- Baldeaux, J. \& Dick, J. (2009). QMC rules of arbitrary high order: reproducing kernel Hilbert space approach. Constructive Approximation, 30, 495-527.
- Becker W. (2020). Metafunctions for benchmarking in sensitivity analysis, Reliability Engineering \& System Safety, 204, 107189.
- Berlinet, A. \& Thomas-Agnan, C. (2011). Reproducing kernel Hilbert spaces in probability and statistics. Springer Science \& Business Media.
- Broto, B., Bachoc, F. \& Depecker, M. (2020). Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution. SIAM/ASA Journal on Uncertainty Quantification, 8(2), 693-716.
- Chatterjee, S. (2021). A new coefficient of correlation. Journal of the American Statistical Association, 116(536), 2009-2022.
- Da Veiga, S. (2015). Global sensitivity analysis with dependence measures. Journal of Statistical Computation and Simulation, 85(7), 1283-1305.
- Da Veiga, S. (2021). Kernel-based ANOVA decomposition and Shapley effects - Application to global sensitivity analysis. Preprint arXiv:2101.05487.
- Da Veiga, S., Gamboa, F., Lagnoux, A., Klein, T. \& Prieur, C. (2023). New estimation of Sobol' indices using kernels. Preprint arXiv:2303.17832.
- De Lozzo, M. \& Marrel, A. (2016). New improvements in the use of dependence measures for sensitivity analysis and screening. Journal of Statistical Computation and Simulation, 86(15), 3038-3058.
- Devroye, L., Györfi, L., Lugosi, G. \& Walk, H. (2018). A nearest neighbor estimate of the residual variance. Electronic Journal of Statistics, 12, 1752-1778.
- Dick, J., Nuyens, D. \& Pillichshammer, F. (2014). Lattice rules for nonperiodic smooth integrands. Numerische Mathematik, 126, 259-291.
- Dick, J., Hinrichs, A. \& Pillichshammer, F. (2015). Proof techniques in quasi-Monte Carlo theory. Journal of Complexity, 31(3), 327-371.

Key papers (2/4)

- El Amri, M. R. \& Marrel, A. (2022). Optimized HSIC-based tests for sensitivity analysis: Application to thermal-hydraulic simulation of accidental scenario on nuclear reactor. Quality and Reliability Engineering International, 38(3), 1386-1403.
- El Amri, M. R. \& Marrel, A. (2023). More powerful HSIC-based independence tests, extension to space-filling designs and functional data. Preprint available at: https://cea.hal.science/cea-03406956/
- Gamboa, F., Janon, A., Klein, T., Lagnoux, A. \& Prieur, C. (2016). Statistical inference for Sobol' pick-freeze Monte Carlo method. Statistics, 50(4), 881-902.
- Gamboa, F., Gremaud, P., Klein, T. \& Lagnoux, A. (2022). Global sensitivity analysis: A novel generation of mighty estimators based on rank statistics. Bernoulli, 28(4), 2345-2374.
- Ginsbourger, D., Roustant, O., Schuhmacher, D., Durrande, N. \& Lenz, N. (2016). On ANOVA decompositions of kernels and Gaussian random field paths. In Monte Carlo and Quasi-Monte Carlo Methods: MCQMC, Leuven, Belgium, April 2014 (pp. 315330). Springer International Publishing.
- Gretton, A., Bousquet, O., Smola, A., \& Schölkopf, B. (2005). Measuring statistical dependence with Hilbert-Schmidt norms. In Algorithmic Learning Theory: 16th International Conference, ALT 2005, Singapore, October 8-11, 2005. Proceedings 16 (pp. 63-77). Springer Berlin Heidelberg.
- Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B. \& Smola, A. (2006). A kernel method for the two-sampleproblem. Advances in Neural Information Processing Systems, 19.
- Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B. \& Smola, A. (2007). A kernel statistical test of independence. Advances in Neural Information Processing Systems, 20.
- Gu, C. (2013). Smoothing Spline ANOVA Models (Vol. 297). Springer Science \& Business Media.
- Hoeffding, W. (1992). A class of statistics with asymptotically normal distribution. Breakthroughs in Statistics: Foundations and Basic Theory, 308-334.
- looss, B. \& Marrel, A. (2019). Advanced methodology for uncertainty propagation in computer experiments with large number of inputs. Nuclear Technology, 205(12), 1588-1606.

Key papers (3/4)

- Janon, A., Klein, T., Lagnoux, A., Nodet, M. \& Prieur, C. (2014). Asymptotic normality and efficiency of two Sobol' index estimators. ESAIM: Probability and Statistics, 18, 342-364.
- Kuo, F., Sloan, I., Wasilkowski, G. \& Woźniakowski, H. (2010). On decompositions of multivariate functions. Mathematics of computation, 79(270), 953-966.
- Marrel, A., looss, B. \& Chabridon, V. (2022). The ICSCREAM methodology: Identification of penalizing configurations in computer experiments using screening and metamodel - Applications in thermal-hydraulics. Nuclear Science and Engineering, 196(3), 301-321.
- Mazo, G. \& Tournier, L. (2023). An inference method for global sensitivity analysis.
- McKay, M. D. (1996). Variance-based methods for assessing uncertainty importance in NUREG-1150 analyses. Los Alamos National Laboratory LA-UR-96-2695.
- Muandet, K., Fukumizu, K., Sriperumbudur, B. \& Schölkopf, B. (2017). Kernel mean embedding of distributions: A review and beyond. Foundations and Trends in Machine Learning, 10(1-2), 1-141.
- Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer physics communications, 145(2), 280-297.
- Sarazin, G., Marrel, A., Da Veiga, S. \& Chabridon, V. (2022, June). Test d'indépendance basé sur les indices HSIC-ANOVA d'ordre total. In 53èmes Journées de Statistique de la SFdS.
- Serfling, R. J. (2009). Approximation Theorems of Mathematical Statistics. John Wiley \& Sons.
- Sobol', I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational Experiment, 1, 407-414.
- Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-3), 271-280.

Key papers (4/4)

- Steinwart, I. \& Christmann, A. (2008). Support Vector Machines. Springer Science \& Business Media.
- Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied Mathematics.
- Zhang, Q., Filippi, S., Gretton, A. \& Sejdinovic, D. (2018). Large-scale kernel methods for independence testing. Statistics and Computing, 28, 113-130.

[^0]: Focus on SCREENING \rightarrow preliminary GSA for variable selection (and thus dimension reduction).

