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I Conformal Prediction methods
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Conformal Prediction (CP)

CP provides uncertainty evaluation in the prediction of an algorithm

In a supervised problem

I Given a new observation
−→ Predict its associated response (point prediction)

In conformal prediction

I Given a new observation
−→ Construct a set containing the true response with high probability
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Conformal Prediction (CP)

Motivations

1. Point predictions are uncertain and not su�iciently conservative
Ex: We want to be conservative when diagnosing a disease

2. Non-conformal techniques have poor statistical guarantees
−→ CP allows the calibration of algorithms
(e.g. quantile regression)
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Conformal Prediction (CP)

Setup
n i.i.d. random variables Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) ∼ P

Goal
For Z = (X,Y ) ∼ P and a given α ∈ (0, 1), construct a prediction set
C(X) such that

P(Y ∈ C(X)) ≥ 1− α , (1)

for any distribution P and any sample size n.

−→ If C(X) satisfies equation (1), it is called marginally valid.

�estion: How to construct C(X) ?
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Some candidates for C

Two marginally valid sets

I C(X) = {y | y ≤ qY (1− α)} where qY (1− α) is the true quantile
of order (1− α) of the law of Y .
−→We need to know PY .

I C(X) = R, (1− α) · 100% of the time and C(X) = ∅ else.
−→ Not informative.

�estion: How to construct “a good” C(X) ?
(marginally valid and as small as possible)
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Conformal Prediction

Two important methods

I Split Conformal Prediction (Papadopoulos et al., 2002)
Good theoretical guarantees and very low computational cost

I Full Conformal Prediction (Vovk et al., 2005)
Be�er marginal theoretical guarantees but high computational cost

In practice −→ Split Conformal Prediction
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Split Conformal Prediction

Input: Z1, . . . , Zn, test point X , and α ∈ (0, 1).

1. Randomly split {1, . . . , n} into two equal-sized subsets I1 and I2
(A training set and a calibration set)

2. Learn a predictor f̂ on {Zi, i ∈ I1}

3. Compute scores Si = sf̂ (Xi, Yi) for i ∈ I2
Example: absolute residuals sf̂ (Xi, Yi) = |Yi − f̂(Xi)|

4. q̂k : the k-th smallest value in {Si}i∈I2 with k = d(1− α)(|I2|+ 1)e
(computation of the empirical quantile)

5. Return the set
Ĉ(X) = {y : s(y,X) ≤ q̂k}
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Main result on the split method

Theorem
(Vovk et al., 2005; Lei et al., 2018)

The set returns by the Split Conformal Prediction method satisfies

P(Y ∈ Ĉ(X)) ≥ 1− α , (2)

for any distribution P and any sample size n (distribution-free !).

Moreover, if we assume that the scores {Si}i∈I2 , S := s(X,Y ) are
continuous, then

P(Y ∈ Ĉ(X)) ≤ 1− α+
1

|I2|+ 1
, (3)

with |I2| the size of the second subset.
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Main result on the split method

�ick proof
When the scores are continuous:

rank(S) := 1 +
∑

i∈I2 1{Si ≤ S} ∼ U(1, . . . , |I2|+ 1)

−→ distribution-free statistic.

P(Y ∈ Ĉ(X)) = P(S ≤ q̂)
= P (rank(S) ≤ d(1− α)(|I2|+ 1)e)

=
d(1− α)(|I2|+ 1)e

|I2|+ 1
.

Finally

1− α ≤ d(1− α)(|I2|+ 1)e
|I2|+ 1

≤ 1− α+
1

|I2|+ 1
.
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Federating Learning

One-shot federated learning

I Some agents connected to a central server
Local datasets −→ Decentralized data set

I One-shot: only one round of communication between the agents and
the server is allowed
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Federating Learning and Conformal Prediction

Objective in FL

I Find how the agents need to collaborate to improve a particular
objective.

Ex: Learn a regressor using all the data but without sharing them

Objective in FL + CP

I Improve the coverage/length of the final set computed by the server
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One-shot federated CP

Setup

1. m agents and a central server

2. n i.i.d. random variables per agent
−→ i-th data of agent j: Z(j)

i = (X
(j)
i , Y

(j)
i ) ∼ P

3. We assume f̂ is given (size of the calibration set is mn)

Goal
Construct Ĉ(X) such that

P(Y ∈ Ĉ(X)) ≥ 1− α , (4)

for any distribution P , any sample size, and in only one round of
communication (one-shot FL).

Problem: Split CP need to order all the scores −→ Impossible in one-shot.
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One-shot federated CP

The idea
In the split conformal method, we construct

Ĉ(X) = {y : s(y,X) ≤ q̂k} .

In One-shot FL, we also construct

Ĉ(X) = {y : s(y,X) ≤?} .

The main question
Which q̂

1. is computable in one round of communication (one-shot)

2. and gives a coverage ≥ 1− α ?
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Intuition

Two extreme cases

1. n = 1:
central server need to compute a "quantile" of order d(m+ 1)(1− α)e

2. m = 1:
Standard case, so we compute a "quantile" of order d(n+ 1)(1− α)e

And in the generalize case (n ≥ 1,m ≥ 1)?

Should we compute quantiles ?

−→ The answer is yes !
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How to construct Ĉ ?

Input: k ∈ {1, . . . ,m}, ` ∈ {1, . . . , n}, and α ∈ (0, 1)

1. For j in {1, . . . ,m}

Agent j computes local scores Sj
i = sf̂ (Xi, Yi) for i ∈ {1, . . . , n}

Agent sends Sj
(`) = the `-th smallest value in {Sj

i }
n
i=1 to the server

2. Central server computes the k-th smallest value in (S1
(`), . . . , S

m
(`)),

denoted Q̂(`,k)

3. Return
Ĉ`,k(X) = {y | s(y,X) ≤ Q̂(`,k)}
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One-shot federated CP

Formally, we compute the �antile-of-�antiles (QQ).

Which (`, k) we need to choose ?
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Main result

Theorem
For any (`, k) ∈ {1, . . . , n} × {1, . . . ,m}, the set

Ĉ`,k(X) = {y | s(y,X) ≤ Q̂(`,k)} satisfies:

P
(
Y ∈ Ĉ`,k(X)

)
≥M`,k (5)

, 1− 1

mn+ 1

m∑
j=k

(
m

j

)
n∑

I1,j=`

`−1∑
Ic1,j=0

(
n
i1

)
· · ·
(

n
im

)(
mn

i1+···+im

) .

Moreover, when the associated scores {Sj
i }

n,m
i,j=1 and S , s(X,Y ) have

continuous c.d.f, (5) is an equality.

−→ As in the centralized case, also a distribution-free bound !
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The final set with FedCP-QQ

From the theorem, we know that

P
(
Y ∈ Ĉ`,k(X)

)
≥M`,k

FedCP-QQ algorithm
FedCP-QQ computes Q̂(`∗,k∗) and returns Ĉ`∗,k∗(X) where

(`∗, k∗) = argmin
`,k
{M`,k :M`,k ≥ 1− α} .

−→ By construction,

P
(
Y ∈ Ĉ`∗,k∗(X)

)
≥ 1− α
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Remaining questions

1. How to compute M`,k?

2. Behavior of (`∗, k∗) when m or n −→ +∞?

3. Upper bound ?
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"Fast" algorithm to compute M

M`,k , 1− 1

mn+ 1

m∑
j=k

(
m

j

)
n∑

I1,j=`

`−1∑
Ic1,j=0

(
n
i1

)
· · ·
(

n
im

)(
mn

i1+···+im

) ,

We recognize the p.m.f. of a multivariate hypergeometric distribution:

n∑
I1,j=`

`−1∑
Ic1,j=0

(
n
i1

)
· · ·
(

n
im

)(
mn

i1+···+im

) 1{i1 + · · ·+ im = c}

= P(a1 ≤ H1 ≤ b1, · · · , am ≤ Hm ≤ bm)

where

(ai, bi) =

{
(`, n) if i ∈ {1, . . . , j}
(0, `− 1) if i ∈ {j + 1, . . . ,m} ,

and (H1, . . . , Hm) follows a multivariate hypergeometric distribution with
known parameters −→ fast evaluation with e.g. (Lebrun, 2013)
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Illustration of M

Figure: m = 10, n = 20; (No need to compute all values of M )

B The server computes M`,k for all ` and k (only once for given m and n)

B �ick search because values are ordered by column and row.
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Asymptotic behavior of (`∗, k∗)

1. When, n −→ +∞, `∗/(n+ 1) −→ (1− α)
i.e. the agents compute the "true" quantile of order (1− α)

2. When min(m,n) −→ +∞, k∗/(m+ 1) −→ 1/2
i.e. the server compute the median

Asymptotically, agents send quantiles of order (1− α) and the server takes
the median of these quantiles.
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Empirical upper bound

Lower bound −→ Our theorem. And the upper bound ?

Figure: Comparison of the exact value of P(Y ∈ Ĉ`∗,k∗ (X)) (blue) with the upper
bound when: data are centralized (orange), there is only one agent (red). Parameters
are α = 0.1,m = {5, 20}, and n = {10, . . . , 100}.

−→ Upper bound in 1− α+O(1/(mn+ 1))?
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Training-conditional coverage in centralized CP

For the marginal guarantee:

P(Y ∈ Ĉ(X)) ≥ 1− α , (6)

the probability is taken on (X,Y ) and Dn = (Xi, Yi)
n
i=1.

Problem
In practice, we only have access to one data set

−→We want guarantee for this particular data set
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Training-conditional coverage in CP

Definition
The conditional miscoverage rate is:

α(Dn) = P(Y /∈ Ĉ(X) | Dn) (7)

Remark: E(1− α(Dn)) = P(Y ∈ Ĉ(X)) ≥ 1− α

Marginal guarantees control only the expectation and not the variance

For given α and δ in (0, 1), we want guarantee of the form:

P(α(Dn) ≤ α+ · · · ) ≥ 1− δ . (8)
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Training-conditional coverage in centralized CP

Theorem
(Vovk, 2012)

In the i.i.d. se�ing, for any distribution P and any δ ∈ [0, 0.5),

P

(
α(Dn) ≤ α+

√
log(1/δ)

2|I2|

)
≥ 1− δ , (9)

where Ĉ(X) is returned by the split conformal method.

And in Federated Learning?
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A result on training-conditional FL

Definition
The (FL) conditional miscoverage rate is

α`,k(Dmn) = P
(
Y /∈ Ĉ`,k(X) | Dmn

)
,

Theorem
If δ ∈ (0, 0.5] and ` · k ≥ (1− α) ·mn, then the conditional miscoverage
rate is controlled as follows:

P

(
α`,k(Dmn) ≤ α+

√
log(1/δ)

2mn

)
≥ 1− δ . (10)

Remark 1: No lower bound...

Remark 2: ` = n, k = d(1− α)me works but too large

Remark 3: Condition not necessarily verified by (`∗, k∗)
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Y /∈ Ĉ`,k(X) | Dmn

)
,

Theorem
If δ ∈ (0, 0.5] and ` · k ≥ (1− α) ·mn, then the conditional miscoverage
rate is controlled as follows:

P

(
α`,k(Dmn) ≤ α+

√
log(1/δ)

2mn

)
≥ 1− δ . (10)

Remark 1: No lower bound...

Remark 2: ` = n, k = d(1− α)me works but too large

Remark 3: Condition not necessarily verified by (`∗, k∗)



28/40

A result on training-conditional FL

Definition
The (FL) conditional miscoverage rate is

α`,k(Dmn) = P
(
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Why di�icult ?

In the standard case, proof of Bian and Barber (2022, Theorem 1) based on:

{
Y ∈ Ĉ(X)

}
=
{
S ≤ S(`)

} Rank()
=

{
n∑

i=1

1{Si < S} < `

}
In our case,

{
Y ∈ Ĉ`,k(X)

}
=
{
S ≤ Q̂(`,k)

}
Rank()
=

{
m∑

j=1

n∑
i=1

1{S(j)
i < S} <

m∑
j=1

n∑
i=1

1{S(j)
i ≤ Q̂(`,k)}

}

⊇

{
m∑

j=1

n∑
i=1

1{S(j)
i < S} < ` · k

}

Problem: Taking the bound on the rank is too strong.
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Summary of theoretical results

Our theoretical results shows that

I Marginal coverage is possible in one-shot

I Training-conditional coverage is also possible

I Guarantees are closed to the one obtained when data are centralized

And empirically ?
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One result on a real regression problem

Comparison of FedCP-QQ with

I Central (standard case):
Split CP when data are centralized

I FedCP-Avg (Li et al., 2020):
Each agent returns a quantile and the server takes the average of
these quantiles (no theoretical guarantee)

Remark: There was no method with CP guarantees in one-shot FL
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One result on a real regression problem

Metrics

On 20 random training-test splits we compute:

I Coverage (on the test set)

I Length of the returned set

B 1− α = 0.9

B s(x, y) = |f̂(x)− y|
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One result on a real regression problem

Figure: Coverage (le�) and average length (right) of prediction intervals for 20
random training-calibration-test splits. The miscoverage is α = 0.1. The white circle
represents the mean.

−→ FedCP-QQ gives prediction sets with coverage and length very similar
to those obtained in a centralized se�ing
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In the paper: Real experiments

Evaluation on 5 regression data sets

1. Physicochemical properties of protein tertiary structure (bio)

2. Bike sharing (bike)

3. Communities and crimes (community)

4. Tennessee’s student teacher achievement ratio (star)

5. Concrete compressive strength (concrete)

Used methods

1. Split-CP with ridge regression

2. CQR with quantile Regression Forests (RF)

3. CQR with Neural Networks (NN)

Code available at: https://github.com/yromano/cqr

https://github.com/yromano/cqr
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In the paper: results on all the data sets

0.80 0.85 0.90 0.95 1.00
coverage

Ridge FedCP-QQ

Ridge Central

Ridge FedCP-Avg

RF FedCP-QQ

RF Central

RF FedCP-Avg

NN FedCP-QQ

NN Central

NN FedCP-Avg

All data sets

0.80 0.85 0.90 0.95 1.00
coverage
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Ridge Central

Ridge FedCP-Avg

RF FedCP-QQ

RF Central

RF FedCP-Avg

NN FedCP-QQ

NN Central

NN FedCP-Avg

All data sets

Figure: Empirical coverages of prediction intervals (α = 0.1) constructed by various
methods. On the le�, when m� n. On the right, when m� n. Our method is
shown in bold font. The white circle represents the mean.

−→ Same conclusions
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Summary

1. We propose an e�icient method based on the quantile-of-quantiles to
return a valid set in a one-shot federated learning se�ing

2. An analysis of the method for conditional training coverage
(≈When the dataset is fixed)

3. We show that our method returns prediction sets very similar to those
obtained in a centralized se�ing

−→ FedCP-QQ is well-suited to perform CP in a one-shot FL se�ing
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Additional results in the paper

In the paper, we also provide

1. A result when data are heterogeneous
(When agent does not have data from the same P )

2. A private version of the algorithm based on Di�erential Privacy

3. An extension when the agents have not the same number of data
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Future directions

1. Be�er theoretical guarantees (in particular for training-conditional)

2. Consider the heterogeneous case

3. Robustness to outliers, Byzantine nodes
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For more information

One-Shot Federated Conformal Prediction, P. Humbert, B. Le Bars, A.
Bellet, and S. Arlot. ICML 2023.

Code is available at: https://github.com/pierreHmbt/FedCP-QQ

Thanks!

https://github.com/pierreHmbt/FedCP-QQ
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