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Machine Learning

has arrived
INn Science

Al ON THE RISE

The share of research

papers with titles or 25%
abstracts that mention Al Proportion
or machine-learning terms of articles

has risen to around 8%,
analysis of the Scopus
database suggests.
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Biggest Benefit:
Saving time
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A new era of
science without
understanding?
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Predict Tornadoes

Lagerquist, et al.

“Deep Learning on
Three-Dimensional Multiscale
Data for Next-Hour Tornado
Prediction.”

Monthly Weather Review
(2020)



Alpha Fold

Jumper et al.

“Highly Accurate Protein
Structure Prediction with
AlphaFold.”

Nature

(2020)



Predict Almond Yield
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Zhang et al.
“California
Almond Yield
Prediction at
the Orchard
Level with a
Machine
Learning
Approach.”
Frontiers in
Plant Science
(2019)



The role of prediction in science




Clash with other goals

e Machine learning....
o isjust curve fitting but does not guide actions
~Pearl
o predicts well but does not explain
~Shmueli
o does not help us reason about language and semantics
~Chomsky




Climbing up the ladder

reasoning

explanation

control

observation




All in all, we think it's justified to use ML in science...

- ML adapts your model to the world and not the world to your model
- ML can handle all data structures
- ML allows us to work on new questions
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...but we have to fix the following!

- Domain knowledge is overlooked

- Lack of interpretability and explanations
- No causal understanding

- Limited robustness

R
I
% \

- Other limitations:
- No uncertainty quantification
Garbage in, garbage out
Lack of standards for reporting model results
Lack of standards for reproducibility
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Infusing Domain
Knowledge
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Infuse Domain Knowledge
Obvious Less Obvious:

- Choice of target Model constraints

- Choice of features - Linearity
- Choice of task - Monotonicity
- Choice of data - Cyclicity

Multi-objective optimization
Think about inductive biases
Design the loss function

- Feature engineering

Domain Knowledge < Model is a two-way street. We
don’t only infuse domain knowledge but also get an
evaluation of it (for the prediction task).




Custom Loss

Example: Custom Loss

39 25 14 6 2 0

Predict Parkinson disease severity from
- -4 (severe slowing of movements) to
- 0 (okay) to
- +4 (severe excessive movements)

23 13 6 1 0 1

Value
1+ 28 18 10 5 1 0 1 4 8 100
75
Custom loss: >o0- 16 9 4 1 0 1 4 9 16 l50
. . 25
- L2 as starting point ) s @ 10
. . 0
- Asymmetry added: Underestimation of
severity expensive 2gm 3 1 0 1
- Penalty for wrong direction
- Scaled between 0 and 100 ‘' ¢ 1 pe
4~ 0 2 6 14
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deep learning." ECML (2019)

Goschenhofer, Jann, et al. "Wearable-based parkinson’s disease severity monitoring using ﬁ






Inherently Interpretable Models

(ves) Petalle <25 (o)
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Model-Specific Interpretability

INPUT

Analyse

OUTPUT



Model-Agnostic Interpretability

INPUT OUTPUT




Tools

Model-agnostic tools
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Molnar, Freiesleben,
Kdnig et al.

"Relating the partial
dependence plot and
permutation feature
importance to the data
generating process.",
World XAl Conference
(2023).
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Konig, Freiesleben &Grosse-Wentrup
"Improvement-Focused Causal Recourse",
AAAI

(2023).



Can ML help to learn causality?

1. Forming causal hypotheses from associations
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2. Estimating causal effects with causal graphs

ATE=E[Y | do(T) = 1] — E[Y | do(T) = 0] S-Learner, T-Learner, Double ML, etc.

3. Learning causal relations and variables using assumptions
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Robustness

b

. /// q(’ .//
A LY
v ibg

4




What means robustness?

Robustness target = what should be robust? (e.g. deployment perf.)
Modifier = to what is it robust? (e.g. deployment dist.)
Modifier domain = what changes do we expect? (e.g. natural shift)
Target tolerance = how stable must the target be? (e.g. e=1%)

Freiesleben & Grote
"Beyond Generalization:
A Theory of Robustness
in Machine Learning"
Synthese (2023).



How to deal with robustness?

e While (0!=1)
i) (Reactive) Analyze the source of the distribution shift, or
(Proactive) Anticipate new shifts
i)  Audit your model
iii)  Robustify your model




and generators

J

InNvariances

Data augmentation




Other Topics

- Representativeness
- Time and Space

- Ablation Studies

- Reproducibility

- Reporting Results

- 777




Open Book Coming Soon!

Supervised Machine

Christoph Molnar & Timo Freiesleben




