Supervised Machine Learning in Science

Justification and puzzle pieces for machine learning in science

Christoph Molnar & Timo Freiesleben

UQSay #64, Nov 2nd 2023

Machine Learning has arrived in Science

AI ON THE RISE

The share of research papers with titles or abstracts that mention AI or machine-learning terms has risen to around 8%, analysis of the Scopus database suggests.

- Computer science
- Physical sciences
- Life sciences
- Social sciences
- Health and medicine
- Total

Source: https://www.nature.com/articles/d41586-023-02980-0

Predict Tornadoes

Lagerquist, et al.
"Deep Learning on
Three-Dimensional Multiscale
Data for Next-Hour Tornado
Prediction."
Monthly Weather Review
(2020)

Alpha Fold

Jumper et al.
"Highly Accurate Protein
Structure Prediction with
AlphaFold."
Nature
(2020)

Predict Almond Yield

Zhang et al.
"California
Almond Yield
Prediction at
the Orchard
Level with a
Machine
Learning
Approach."
Frontiers in
Plant Science
(2019)

The role of prediction in science

Clash with other goals

- Machine learning....
 - is just curve fitting but does not guide actions
 Pearl
 - predicts well but does not explain~Shmueli
 - does not help us reason about language and semantics~Chomsky

Climbing up the ladder

All in all, we think it's justified to use ML in science...

- ML adapts your model to the world and not the world to your model
- ML can handle all data structures
- ML allows us to work on new questions

- Other justifications:
 - time-efficiency
 - computationally cheaper than solving differential equations
 - basis for theory building

...but we have to fix the following!

- Domain knowledge is overlooked
- Lack of interpretability and explanations
- No causal understanding
- Limited robustness

- Other limitations:
 - No uncertainty quantification
 - Garbage in, garbage out
 - Lack of standards for reporting model results
 - Lack of standards for reproducibility

Infuse Domain Knowledge

Obvious

- Choice of target
- Choice of features
- Choice of task
- Choice of data
- Feature engineering

Less Obvious:

- Model constraints
 - Linearity
 - Monotonicity
 - Cyclicity
- Multi-objective optimization
- Think about inductive biases
- Design the loss function

Domain Knowledge ⇔ Model is a two-way street. We don't only infuse domain knowledge but also get an evaluation of it (for the prediction task).

Example: Custom Loss

Predict Parkinson disease severity from

- -4 (severe slowing of movements) to
- 0 (okay) to
- +4 (severe excessive movements)

Custom loss:

- L2 as starting point
- Asymmetry added: Underestimation of severity expensive
- Penalty for wrong direction
- Scaled between 0 and 100

100 75

50 25

Goschenhofer, Jann, et al. "Wearable-based parkinson's disease severity monitoring using deep learning." ECML (2019)

Inherently Interpretable Models

Model-Specific Interpretability

Model-Agnostic Interpretability

Molnar, Freiesleben, König et al. "Relating the partial dependence plot and permutation feature importance to the data generating process.", World XAI Conference (2023).

König, Freiesleben & Grosse-Wentrup "Improvement-Focused Causal Recourse", *AAAI* (2023).

Can ML help to learn causality?

1. Forming causal hypotheses from associations

2. Estimating causal effects with causal graphs

ATE=
$$\mathbb{E}[Y \mid do(T) = 1] - \mathbb{E}[Y \mid do(T) = 0]$$

S-Learner, T-Learner, Double ML, etc.

3. Learning causal relations and variables using assumptions

What means robustness?

Robustness target = what should be robust? (e.g. deployment perf.)

Modifier = to what is it robust? (e.g. deployment dist.)

Modifier domain = what changes do we expect? (e.g. natural shift)

Target tolerance = how stable must the target be? (e.g. ε=1%)

Freiesleben & Grote "Beyond Generalization: A Theory of Robustness in Machine Learning" Synthese (2023).

How to deal with robustness?

- While (0!=1)
 - i) (Reactive) Analyze the source of the distribution shift, or (Proactive) Anticipate new shifts
 - ii) Audit your model
 - iii) Robustify your model

Data augmentation, invariances, and generators

Other Topics

- Representativeness
- Time and Space
- Ablation Studies
- Reproducibility
- Reporting Results
- ???

Open Book Coming Soon!

