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Presentation outline

➢ Brief introduction to data assimilation and deep learning

➢ A review paper of algorithms that combine machine learning and data assimilation

➢ Latent data assimilation 

▪ Reduced order modelling with DL 

▪ Latent DA in a unified latent space (with application in wildfire)

▪ Latent DA in heterogeneous latent spaces (with application in CFD)

▪ Latent DA with latent space alignment (with application in CFD and microfluidics)

➢ Voronoi-tessellation Inverse operator for VariatIonal Data assimilation (VIVID)

➢ A python package to integrate machine learning functions in variational data assimilation

➢ Future work



DA and ML have distinct concepts and assumptions, yet they can be applied to overlapping tasks [1].

[1] Geer, Alan J. Philosophical Transactions of the Royal Society A

Input Output

Let us consider a simple shallow water CFD test case

predict

velocity height

Brief introduction of data assimilation and machine learning

Prior state (estimation) observations True state



[1] Cybenko, G., 1989. Mathematics of control

Supervised deep learningData assimilation

Universal approximation theorem[1]

Collect historical dataDefine an optimization problem

Bayes formula

Optimization

Error estimation
Transformation

Forward

A neural network with a single hidden layer
can approximate any continuous function

Brief introduction of data assimilation and machine learning



Combining data assimilation and deep learning ?

Data assimilationSupervised deep learning

Offline: Pure data-driven with 
observation or simulation data

Pros

Cons

• Efficient online prediction
• Less assumption/knowledge 

required

• Active learning with real-
time observations

• Uncertainty quantification
• Handling noisy data

Online: Finding compromise 
between predictive model and 
observations

• Large training data
• Less explainability
• Non realistic predictions

• Time consuming for online 
correction

• Mathematical assumptions 
required

✓ Efficient?
✓ Accurate?
✓ Noisy data?
✓ Multi-domain data?

Objectives



The first review paper of machine learning with data assimilation

Cheng, S. et al., 2023. IEEE/CAA Journal of Automatica Sinica.

➢ How to accelerate DA using ML?

➢ How to handle sparse and position varying 
observations?

➢ How to learn the state-observation mapping?

➢ How to enhance ML predictions using online data?

➢ How to predict error covariances using ML?



Cheng, S. et al., 2023. IEEE/CAA Journal of Automatica Sinica.

The first review paper of machine learning with data assimilation

➢ DA using ML techniques
▪ ML to correct model errors in DA

▪ ML and DA for parameter estimations*

▪ Error specification in DA: traditional and ML methods*
▪ End-to-end learning of DA systems

➢ ML assisted by DA and UQ
▪ UQ for ML approaches

▪ ML and DA with reduced order modelling*
▪ ML for dynamical systems assisted by DA

▪ ML with DA for partially observed dynamical system*

➢ Other approaches, challenges & perspectives
▪ Forecasting Multi-scale dynamical systems

▪ Mode-switching dynamics

▪ Learning state-observation mapping in data assimilation* *mentioned in this talk



Latent data assimilation

Methods and applications 



Latent data assimilation: data-driven reduced order model

• Physics-based models can be computationally expensive for high-dimensional dynamical systems 
(weather prediction, natural hazards)

• Physics-based models can be unaccurate and unflexible (difficult to introduce new variables)

❖ Mainstream data-drive predictive models consist of data compression and recurrent predictions  



Latent data assimilation: data compression (Autoencoder)

denote the state vectors in the full and the latent space,  is the training dataset.

Let          denote the encoder and decoder networks, i.e.,                   and                     where      is the reconstruction

An autoencoder aims to obtain a low-dimensional representation while losing less information as possible

This can be achieved by a joint training of encoder and decoder with a fixed latent space dimension using MSE loss

Different structures of encoder and decoder:

➢ Image data: convolutional autoencoder

➢ Unstructured data: graph autoencoder

➢ Generative model: variational autoencoder



Latent data assimilation: prediction in the reduced space

The prediction is made in the latent space using Recurrent Neural Networks (RNN). The 
prediction can decoded back to the full physical space.

RNNs have recurrent connections that allow them to retain information over time, 
making them better suited for time series predictions. RNN can be used for sequence-
to-sequence predictions with        input steps and           output steps 

Training Prediction

Input sequence

Output sequence



Latent data assimilation: motivation of DA

Predictions can be done fast

However, error can be accumulated in this 
iterative procedure

Solution: data assimilation with real-time 
observations



Latent data assimilation: data assimilation in the reduced space
Data assimilation (DA) combines prior model prediction       with real-time encoded observations (with a 

transition function     )  to produce an updated (posterior) estimate of the current state.

DA is often used for high-dimensional dynamical systems such as weather prediction, so the prior and the 

observation error are often supposed to be centered Gaussian (with covariances      and      ). 

The distribution of prior states could be constrained when training  compression and predictive models but it 

may lead to high offline computational cost.

Bayes formula leads to the following DA objective function:

Latent data assimilation

encoding prediction
observations

is the latent analysed state

Cheng, S., Prentice, I.C., Huang, Y., Jin, Y., Guo, Y.K. and Arcucci, R., 2022, Journal of Computational Physics



Latent data assimilation: data assimilation in the reduced space

A simple case when the observation can be encoded to the same latent space after preprocessing

Thus the transition function become linear

DA can be solved by Best Linear Unbiased operator (BLUE) 

with the Kalman gain matrix  

Runing posterior covariance tuning is fast in the reduced space

DI01[1] method aims to fine tune the weight of covariance matrices

solution

Covariance tuning

[1] Desroziers, G. and Ivanov, S., 2001. Quarterly Journal of the Royal Meteorological Society.

The algorithm converges when 



[1] Cheng, S., Prentice, I.C., Huang, Y., Jin, Y., Guo, Y.K. and Arcucci, R., 2022. Journal of Computational Physics

Latent data assimilation: application in wildfire nowcasting

Comparison of online prediction time

[2] Cheng, S., Jin, Y., Harrison, S.P., Quilodrán-Casas, C., Prentice, I.C., Guo, Y.K. and Arcucci, R., 2022. Remote Sensing

Latent data assimilation has been applied to both non-parametric[1] and 
parametric[2] wildfire spread models 

simulation Deep learning
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Zhong, C., Cheng, S., Kasoar, M. and Arcucci, R., 2023. Natural Hazards and Earth System Sciences

Latent data assimilation: application in wildfire nowcasting

Jules-inferno Global wildfire model



Latent data assimilation: Multi-domain data?

velocity height

How to use the observation of water height to correct the prediction of velocity?

Different autoencoders will be required for state and 
observation data

Transition function in the full space:

Thus 

Complex transformation operator with many parameters



Generalised latent data assimilation: algorithm

Supposing the transition function in the full space is known

Thus 

We aim to build a surrogate transition function, s.t., 

Polynomial function is chosen for its smoothness and computational efficiency

in a neighbourhood of

[1]Cheng, S., Chen, J., Anastasiou, C., Angeli, P., Matar, O.K., Guo, Y.K., Pain, C.C. and Arcucci, R., 2023. Journal of Scientific Computing

Predictive model

Observation available



Appendix: Generalised latent data assimilation: approximation 
error
We are interested in the relative approximation error , that is

Lemma 1[1]. 

[1] Emschwiller, M., Gamarnik, D., Kızıldağ, E.C. and Zadik, I., 2020.

[2] Talagrand, O., 1998. ECMWF Workshop

: number of training samples, : input dimension, : number of FC layers, : desired error

Using polynomial function to approximate an FC Neural network with the ReLu function,  

Lemma 2[2]. 

[3] Cheng, S. et al, 2023. Journal of Scientific Computing

We find an upper bound of the approximation error[3]

As an important corollary, 



Generalised latent data assimilation: application in multiphase flow

CFD (40 hours) DL (1 minute) GLA (40 minutes)

Cheng, S., Chen, J., Anastasiou, C., Angeli, P., Matar, O.K., Guo, Y.K., Pain, C.C. and Arcucci, R., 2023. Journal of Scientific Computing

Dimension and parameters of the pipe and the two-phase flow



Challenges

➢ GLA is relatively slow due to the online training of surrogate transition function

➢ Can we apply latent data assimilation when non-explicit transition function is known?

CFD simulations

Camera observations

An example of drop interactions in microfluidics
Where transition function between simulation and 
observation is difficult to obtain 



MEDLA: Multi-domain encoder-decoder neural networks for latent
data assimilation

Main idea: encoding multi-domain data into a same latent space

state

state

obs

LA [Cheng 2022; Peyron, 2022; Maulik 2022]

GLA/LSDA [Cheng 2022; Razak 2022]

MEDLA



MEDLA: Multi-domain encoder-decoder neural networks for latent
data assimilation

Main idea: encoding multi-domain data into a same latent space

state

state

obs

LA [Cheng 2022; Peyron, 2022; Maulik 2022]

GLA/LSDA [Cheng 2022; Razak 2022]

MEDLA

Alternative training (with a 

decreasing learning rate)

Epoch k



MEDLA: Multi-domain encoder-decoder neural networks for latent
data assimilation

Main idea: encoding multi-domain data into a same latent space

state

state

obs

LA [Cheng 2022; Peyron, 2022; Maulik 2022]

GLA/LSDA [Cheng 2022; Razak 2022]

MEDLA

Alternative training (with a 

decreasing learning rate)

Epoch k+1



MEDLA: Multi-domain encoder-decoder neural networks for latent
data assimilation

Main idea: encoding multi-domain data into a same latent space

state

state

obs

LA [Cheng 2022; Peyron, 2022; Maulik 2022]

GLA/LSDA [Cheng 2022; Razak 2022]

MEDLA

Alternative training (with a 

decreasing learning rate)

Epoch k

learning rate



Appendix: MEDLA: Multi-domain encoder-decoder neural networks for latent
data assimilation

Two encoders with a shared decoder, with separate loss functions

And a fine tuning loss

MEDLA algorithm

⋮

⋮

Alternative 
training 

Fine tuning



MEDLA in 2D Burgers’ equation

We first test MEDLA with single-domain observation with a different scale. 
Conventional latent DA can handle this but will introduce extra error due to 
interpolation.

Cheng, S., Zhuang, Y., Kahouadji, L., Liu, C., Chen, J., Matar, O.K. and Arcucci, R., 2023. In preparation



MEDLA in microfluidics CFD simulations

Camera 
observations

We have tested MEDLA with multi-domain observation which is difficult 
for conventional latent DA to handle.

camera Prediction + correction

Cheng, S., Zhuang, Y., Kahouadji, L., Liu, C., Chen, J., Matar, O.K. and Arcucci, R., 2023. In preparation



Conclusion and future challenges in latent data assimilation

MEDLA shows great advantage with dense observations in multi-
scale and multi-domain systems

Future challenges (also for other DA+ML approaches)

• Sparse data
• Flexible sensor positions
• Flexible sensor numbers



Voronoi-tessellation Inverse operator for 
VariatIonal Data assimilation



Motivation

➢ Sparse data

➢ Flexible sensor positions

➢ Flexible sensor numbers

➢ Ill-defined problem



Solution using deep learning

Voronoi tessellation-assisted CNN[1]

Masked autoencoder[2]

[1] Fukami, K., Maulik, R., Ramachandra, N., Fukagata, K. and Taira, K., 2021. Nature Machine Intelligence

[2] He, K., Chen, X., Xie, S., Li, Y., Dollár, P. and Girshick, R., 2022. CVPR.



How Voronoi tessellation-assisted CNN can help DA?

Cheng, S., Liu, C., Guo, Y. and Arcucci, R., 2023. Journal of computational physics

Introducing the prior helps to avoid Ill-defined problems



Voronoi-tessellation Inverse operator for VariatIonal Data assimilation 

Cheng, S., Liu, C., Guo, Y. and Arcucci, R., 2023.Journal of computational physics

Online inference

Variational DA



Voronoi-tessellation Inverse operator for VariatIonal Data assimilation 

Cheng, S., Liu, C., Guo, Y. and Arcucci, R., 2023. Journal of computational physics

prior DA DL VIVID
Robustness tests



Cheng, S., Liu, C., Guo, Y. and Arcucci, R., 2023. Journal of computational physics

Voronoi-tessellation Inverse operator for VariatIonal Data assimilation 

Number of iterations in the minimization of 3dvar



Voronoi-tessellation Inverse operator for VariatIonal Data assimilation 

Cheng, S., Liu, C., Guo, Y. and Arcucci, R., 2023. under review at Journal of computational physics

VIVID can be easily coupled with reduced order models



A python package to integrate machine learning 
functions in variational data assimilation



❖ All workflows need to build the combination of data assimilation and deep learning from 
scratch.

• Existing data assimilation tools

➢ OpenDA, ADAO 

❖ Defect: Suited for explicit prediction and observation functions

❖ Cannot handle prediction and observation models represented by neural networks

TorchDA: performing data assimilation with deep learning transition functions

A joint work with J.Min and R.Arcucci

Implemented Algorithms

➢ Kalman Filter

➢ Ensemble Kalman Filter (EnKF)

➢ 3D Variational (3DVar)

➢ 4D Variational (4DVar)



params_dict = { 

    "algorithm": deepda.Algorithms.Var4D, 

    "observation_model": H, 

    "background_covariance_matrix": B, 

    "observation_covariance_matrix": R, 

    "background_state": xb, 

    "observations": y, 

    "forward_model": forwardModel_wrap, 

    "output_sequence_length": gap + 1, 

    "observation_time_steps": time_obs, 

    "gaps": [gap] * (len(time_obs) - 1), 

    "learning_rate": 7.5e-3, 

    "args": (rayleigh, prandtl, b), 

} 

results_4dvar = deepda.CaseBuilder().set_parameters(params_dict).execute() 

parameters = deepda.Parameters( 

    algorithm=deepda.Algorithms.EnKF, 

    device=deepda.Device.CPU, 

    observation_time_steps=time_obs, 

    gaps=gaps, 

    num_ensembles=Ne, 

    observation_model=H, 

    output_sequence_length=lstm_model.out_seq_length, 

    forward_model=lstm_model, 

    background_covariance_matrix=P0, 

    observation_covariance_matrix=R, 

    background_state=xtT[0], 

    observations=y.T, 

) 

 

run_case = deepda.CaseBuilder(parameters=parameters) 

# run_case = deepda.CaseBuilder().set_parameters(parameters) 

results = run_case.execute() 

xEnKF = results["average_ensemble_all_states"] 

x_ens = results["each_ensemble_all_states"] 

case_to_run = ( 

    deepda.CaseBuilder() 

    .set_observation_model(H) 

    .set_background_covariance_matrix(B) 

    .set_observation_covariance_matrix(R) 

    .set_learning_rate(5) 

    .set_max_iterations(300) 

    .set_algorithm(deepda.Algorithms.Var3D) 

    .set_device(deepda.Device.GPU) 

) 

Runtime Code Snippets (How to use the package?)

TorchDA: performing data assimilation with deep learning transition functions

Recommended

A joint work with J.Min and R.Arcucci



A joint work with J.Min and R.Arcucci

TorchDA: performing data assimilation with deep learning transition functions

3Dvar 4Dvar

Main idea: encoding multi-domain 
data into a same latent space



Generative AI for wildfire

These are generated data[1] (not from simulation or observations)

• Most of the generations are reasonable

• The generative model ‘understand’ the impact of vegetation 
density and slope

[1] Cheng, S., Guo, Y. and Arcucci, R., 2023. IEEE Transactions on Emerging Topics in Computational Intelligence.

I have also supervised a UROP project in developing a new VAE model in chemical engineering[2]

[2] Zhu, K., Cheng, S., Kovalchuk, N., Simmons, M., Guo, Y.K., Matar, O.K. and Arcucci, R., 2023. Physical Chemistry Chemical Physics.

Vector quantized variational autoencoder: discretized 
latent space



Future work



Physics-informed multi-modal machine learning with data assimilation

• Efficiency of deep learning
• Accuracy and flexibility of Data 

assimilation
• Explainability and generalizability 

of PINNS

Benefits

• Multi-modality, multi-scale data
• Unexplicit prior knowledge  (e.g., 

vegetation type, ecoregion 
location)

• Difficult to train due to physics 
constraints in the full space

Challenges

Physics knowledge (e.g., ocean dynamic equations, wildfire spread rules…) can be integrated in ROM, 
prediction and DA.

Data loss + physics loss



Contrastive learning
Help mutli-modal data fusion with 
latent geometry optimization
Examples in Vision-language unsupervised traning

Conditional autoencoding
Enforcing prior knowledge in the 
latent representation
Without explicit equations

Physics-informed multi-modal machine learning with data assimilation



Thank you for your attention

sibo.cheng@imperial.ac.uk


	Diapositive 1 Integrating machine learning and data assimilation for high-dimensional dynamical systems: methods and applications
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43
	Diapositive 44
	Diapositive 45
	Diapositive 46

