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Introduction

▶ Let x1, . . . , xL be the set of L observations collected from a
random experiment.

▶ We indicate with p0(x1, . . . , xL) their joint “true” probability
density function (pdf).

▶ In point estimation, we are interested in evaluating some
functional of p0(x1, . . . , xL), say ν(p0).

▶ However, p0(x1, . . . , xL) is generally unknown, at least to
some extent.

▶ The lack of a priori knowledge on p0(x1, . . . , xL) can be
formalized in the concept of statistical models.
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Parametric models

▶ The most widely used statistical models are the parametric
ones.

▶ A parametric model Pθ is defined as a set of pdfs that are
parametrized by a finite-dimensional parameter vector θ:

Pθ ≜ {pX (x1, . . . , xL|θ),θ ∈ Θ ⊆ Rq} .

▶ The underlying parametric assumption is that there exists
θ0 ∈ Θ, such that:

Pθ ∋ pX (x1, . . . , xL|θ0) = p0(x1, . . . , xL). (A1)

▶ The (lack of) knowledge about the random experiment of
interest is summarized in θ that needs to be estimated.
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The Maximum Likelihood (ML) estimator

▶ We suppose that our observations x1, . . . , xL are iid with
“true” distribution p0(x), i.e. xl ∼ p0, ∀l .

▶ The Maximum Likelihood (ML) estimator, defined on the
parametric model Pθ, is given by:

θ̂L,ML ≜ argmax
θ∈Θ

∏L

l=1
pX (xl |θ), xl ∼ p0.

▶ The ML estimator is a cornerstone of the parametric
estimation due to the following two optimality properties:

1. Consistency,

2. Asymptotic Gaussianity and efficiency.

▶ To well understand them, first we need to introduce the Fisher
Information Matrix (FIM) I(θ).
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Fisher Information and Cramér-Rao Bound

▶ “Under some regularity conditions” 1, and under Assumption
(A1), the FIM is defined as:

I(θ) ≜ E
{
∇θ ln pX (x|θ)∇T

θ ln pX (x|θ)
}

≜ −E
{
∇θ∇T

θ ln pX (x|θ)
}
, x ∼ p0.

Cramér-Rao Bound: Any unbiased estimator θ̂L of θ0, derived in
Pθ from {xl ∼ p0}Ll=1 iid observations, satisfies:

L · E
{
(θ̂L − θ0)(θ̂L − θ0)

T
}
≥ I(θ0)

−1 ≜ CRB(θ0),

where the unbiasedness condition must hold, i.e. ∀L ∈ N :

E0{θ̂L} ≜
∫

θ̂L(x1, . . . , xL)p0(x1, . . . , xL)dx1, . . . , dxL = θ0.

1
Due to the limited time of the talk, we will not discuss them here. Moreover, we will omit to repeat this

“magic” sentence in the following derivations.
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The optimality of the ML estimator

▶ Why is the ML estimator so popular in applications?

Under Assumption (A1), the ML estimator θ̂L,ML is:

1.
√
L-consistent:

√
L
(
θ̂L,ML − θ0

)
= OP(1).

2

2. Asymptotically Gaussian and efficient:

√
L
(
θ̂L,ML − θ0

)
d∼

L→∞
N (0, I(θ0)

−1) = N (0,CRB(θ0)),

where
d∼

L→∞
indicates the convergence in distribution.

2
Let xl be a sequence of random variables. Then xl = OP (1) if for any ϵ > 0, there exists a finite N > 0

and a finite L > 0, s.t. Pr {|xl | > N} < ϵ, ∀l > L (stochastic boundedness).
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Covariance/scatter matrix estimation

▶ Estimating the correlation structure, i.e. the covariance
matrix, of a dataset is a central problem in many applications:

1. Dimensionality reduction and Principal Component Analysis,

2. Signal/Image Denoising,

3. Adaptive detection in radar/sonar systems,

4. Graph signal processing,

5. ...

▶ A general working assumption (motivated by the CLT)
consists of assuming the data as Gaussian-distributed.

▶ However, this assumption is generally violated in practical
applications where the data may be better characterized by
heavy-tailed distributions.
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A set of heavy-tailed distributions

▶ A family of non-Gaussian/heavy-tailed distribution is the class
of Complex Elliptically Symmetric (CES) distributions.

▶ Thanks to their flexibility, CES distributions represent a
reliable data model in many applications. 3

▶ The complex Gaussian, Generalized Gaussian, K -distribution,
complex t-distribution and all the compound-Gaussian
distributions belong to the CES class.

▶ The CES model is particularly useful in applications with
impulsive noise and/or spiky data.

3
E. Ollila, D. E. Tyler, V. Koivunen and H. V. Poor, “Complex Elliptically Symmetric Distributions: Survey,

New Results and Applications”, IEEE Trans. on Signal Processing, vol. 60, no. 11, pp. 5597-5625, Nov. 2012.
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CES distributions (1/2)

▶ A CES distributed random vector x ∈ CN admits a pdf:

pX (x) = |Σ|−1h((x− µ)HΣ−1(x− µ)) ≜ CESN(µ,Σ, h).

▶ h ∈ H, h : R+
0 → R+ is the density generator,

▶ µ ∈ CN is the location vector,

▶ Σ ∈ MN is the (full rank) scatter matrix.

▶ Note that Σ and h are not jointly identifiable:

CESN(µ,Σ, h(t)) ≡ CESN(µ, cΣ, h(ct)), ∀c > 0.

▶ To avoid this identifiability problem, we introduce the shape
matrix as a normalized version of Σ:

V ≜ Σ/s(Σ).
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CES distributions (2/2)

▶ Typical examples of scale function s(·) are:

s(Σ) = [Σ]11, s(Σ) = tr(Σ)/N s(Σ) = |Σ|1/N .

▶ Not that, under finite second order moments, if the scale
s(Σ) = tr(Σ)/N is adopted, we have that:

C ≜ E{(x− µ)(x− µ)H} ≡ Σ = σ2V,

where:

1. C is the covariance matrix of the CES-distributed vector
x ∼ CESN(µ,Σ, h),

2. σ2 = tr(Σ)/N = E{xHx}/N is the statistical power of x.

▶ Unless otherwise stated, in the following we always implicitly
adopt the scale s(Σ) = tr(Σ)/N.
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The complex t-distribution

▶ We suppose to collect {xl}Ll=1, zero mean, iid observations
that we assume to be t-distributed.

▶ The pdf of t-distributed data can be obtained from the CES
family by specifying the density generator:

h0(t) =
1

πN

Γ(N + λ)

Γ(λ)

(
λ

η

)λ(λ

η
+ t

)−(N+λ)

,

1. λ: shape parameter controlling the data non-Gaussianity,
2. η: scale parameter controlling the data power σ2 = λ

η(λ−1) .

▶ To guarantee the finitness of the second order moments (i.e.
the existence of the covariance matrix), we need λ > 1.

▶ Note that for values of λ → 1 the data are heavy-tailed, while
for λ → ∞ the data tends to be Gaussian.
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The parametric t-model

▶ Under this (zero-mean) t-assumption, the parametric model
characterizing the random experiment is:

Pθ ≜
{
pX (x|θ) = |Σ|−1h0

(
xHΣ−1x

)
,θ ∈ Θ

}
.

▶ The parameter space is defined as:

θ ∈ Θ ≜ {θ = vec(V)|V = NΣ/tr(Σ)} .

▶ Optimal inference in this t-model will require the derivation of
the ML estimator for the three parameter in θ ∈ Θ.

▶ Note that θ ∈ Θ ⊆ CN2
is a complex-valued vector. In the

following, we will implicitly use the Wirtinger calculus.
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The parametric t-model: ML estimator for V

▶ The ML estimator of the scatter matrix Σ of CES-distributed
data can be expressed in term of a fixed-point equation. 4

▶ Then, an estimator of the constrained shape matrix V is given
by the convergence point of the iterative procedure: Σ̂(k+1) = N+λ

L

∑L
l=1

xHl xl

xHl [Σ̂(k)]
−1

xl+λ/η

V̂
(k+1)
SML ≜ NΣ̂(k+1)/tr(Σ̂(k+1))

,

where, as starting point, we use Σ(0) = IN .

▶ Constraining the ML estimator of the scatter matrix lead to a
sub-optimal estimator for the shape matrix, i.e. V̂SML.

4
E. Ollila, D. E. Tyler, V. Koivunen and H. V. Poor, “Complex Elliptically Symmetric Distributions: Survey,

New Results and Applications”, IEEE Trans. on Signal Processing, vol. 60, no. 11, pp. 5597-5625, Nov. 2012.
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The parametric t-model: performance

▶ Let θ0 = vec(V0) be the true parameter vector.

▶ The constrained joint Cramér-Rao Bound CRB(θ0) for θ ∈ Θ
has been derived in 5 and it is not reported here.

▶ We compare the performance of the joint ML algorithm for
the estimation of V0 in terms of Mean Squared Error (MSE)

εJML = ||E{vec(V̂SML − V0)vec(V̂SML − V0)
H}||F .

▶ As performance bound, we plot: εCRB = ||CRB(θ0)||F .

▶ Number of observations: finite sample regime L = 5N.

5
S. Fortunati,F. Gini and M. Greco, “Matched, mismatched, and robust scatter matrix estimation and

hypothesis testing in complex t-distributed data,” EURASIP J. Adv. Signal Process. 2016, 123 (2016).
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The parametric t-model: performance
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▶ Under the “matched model” Assumption (A1), the MSE of
V̂SML estimator is close to the CRB.
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The parametric t-model: performance
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▶ However, the SML is not fully efficient, i.e. its MSE is not
exactly equal to the CRB, for two main reasons:

1. The constraint on Σ has been imposed in a suboptimal way,
without relying on a constrained optimization procedure.

2. We are not in the asymptotic regime. In fact, we assumed
L = 5N, i.e. L does not tend to infinity for a given N.

▶ What if the model assumption is wrong?
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Model misspecification

▶ Classical “matched” assumption: the true data model and
the model assumed to derive the estimation algorithm are the
same, i.e. the model is correctly specified.

▶ All the results on the ML estimator and the CRB rely on this
implicit assumption.

▶ However, much evidence from everyday practice shows that
this assumption is often violated.

▶ Model misspecification: the assumed data model (i.e. the
data pdf) differs from the true model.
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Model misspecification

▶ There are two main reasons for model misspecification:

1. An imperfect knowledge of the true data model that leads to
a wrong specification of the data pdf.

2. The true data model is known but it is too involved to pursue
the optimal “matched” estimator.

▶ One may be forced (1) or may prefer (2) to derive an
estimator by assuming a simpler but misspecified data model.

▶ This suboptimal procedure may lead to some degradation in
the overall system performance.
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Formal description of the misspecification

▶ Our observations {xl}Ll=1 are iid with “true” distribution
p0(x) belonging to a possibly non-parametric model P.

▶ To characterize the statistical behavior of xl , ∀l , we adopt a
different parametric pdf, say xl ∼ fX (x|γ), with γ ∈ Γ ⊆ Rp.

▶ The adopted pdf fX (x|γ) is assumed to belong to a possibly
misspecified parametric model :

Fγ ≜ {fX (x|γ),γ ∈ Γ} .

▶ The classical “matched” assumption (A1) requires:

∃γ̄ ∈ Γ, fX (x|γ̄) = p0(x),

or, equivalently, that p0(x) ∈ Fγ .
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Formal description of the misspecification

▶ If the previous assumption is violated, the model Fγ is
misspecified. Formally: 6

∀γ ∈ Γ, fX (x|γ) ̸= p0(x),

or, equivalently, that p0(x) ∈ P ⊈ Fγ .

▶ This misspecified scenario raises two main questions:

1. How will the classical statistical properties of an estimator, e.g.
unbiasedness, consistency and efficiency, change in this
misspecified model framework?

2. Is it still possible to derive lower bounds on the error
covariance of any mismatched estimator?

6
S. Fortunati, F. Gini, M. S. Greco and C. D. Richmond, “Performance Bounds for Parameter Estimation

under Misspecified Models: Fundamental Findings and Applications”, IEEE Signal Processing Magazine, vol. 34,
no. 6, pp. 142-157, Nov. 2017.
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The pseudo-true parameter vector

▶ “Under some regularity conditions”, there exist a unique
interior point γ0 of Γ, such that:

γ0 ≜ argmin
γ∈Γ

{−E0{ln fX (x|γ)}} = argmin
γ∈Γ

{Dγ(p0 ∥ fX )} ,

where E0{g(x)} ≜
∫
g(x)p0(x)dx and

Dγ(p0 ∥ fX ) ≜
∫

ln

(
p0(x)

fX (x|γ)

)
p0(x)dx

is the Kullback-Leibler divergence (KLD) between the true
pdf and the assumed pdf.

▶ The pseudo-true parameter vector γ0 is the point the
minimizes the KLD between the true and the assumed pdfs.
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Information matrices under misspecification

▶ Let Aγ0 be the matrix defined as:

Aγ0 ≜ E0

{
∇γ∇T

γ ln fX (x|γ0)
}
, x ∼ p0.

▶ Let Bγ0 be the matrix defined as:

Bγ0 ≜ E0

{
∇γ ln fX (x|γ0)∇T

γ ln fX (x|γ0)
}
, x ∼ p0.

▶ If the model is correctly specified, i.e. if ∃γ̄ ∈ Γ such that
fX (x|γ̄) = p0(x), then:

1. γ0 = γ̄, i.e. the pseudo-true parameter is equal to the true one
(in the classical “matched” sense),

2. Bγ0 = −Aγ0 = I(γ̄), where I(γ̄) is the Fisher Information
Matrix for the (“matched” in this case) model Fγ .
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The Misspecified Cramér-Rao Bound

▶ Given our {xl ∼ p0}Ll=1 iid observations, let’s build an
estimator γ̂L assuming the possibly misspecified model Fγ .

▶ Misspecified (MS)-unbiasedness property: the estimator
γ̂L is said to be MS-unbiased iff:

E0{γ̂L} ≜
∫

γ̂L(x1, . . . , xL)p0(x1, . . . , xL)dx1, . . . , dxL = γ0.

Misspecified CRB: Any MS-unbiased estimator γ̂L of γ0, derived
in Fγ from {xl ∼ p0}Ll=1 iid observations, satisfies: 7,8,9

L · E0

{
(γ̂L − γ0)(γ̂L − γ0)

T
}
≥ A−1

γ0
Bγ0A

−1
γ0

≜ MCRB(γ0).

7
Q. H. Vuong, “Cramér-Rao bounds for misspecified models”, Working paper 652, Division of the Humanities

and Social Sciences, Caltech, October 1986.
8
S. Fortunati, F. Gini, M. S. Greco, “The Constrained Misspecified Cramér-Rao Bound”, IEEE Signal Process.

Letters, vol. 23, No. 5, pp. 718-721, May 2016.
9
S. Fortunati, “Misspecified Cramér-Rao Bounds for Complex Unconstrained and Constrained Parameters,”

EUSIPCO 2017, Kos, Greece, 28 Aug. 2017–2 Sept. 2017
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The Mismatched ML estimator (MML)

▶ The MML estimator, defined on the possibly misspecified
parametric model Fγ , is given by:

γ̂L,MML ≜ argmax
γ∈Γ

∏L

l=1
fX (xl |γ), xl ∼ p0.

Properties: the MML estimator γ̂L,MML is: 10,11

1.
√
L-MS-consistent:

√
L (γ̂L,MML − γ0) = OP(1).

2. Asymptotically Gaussian and MS-efficient:

√
L (γ̂L,MML − γ0)

d∼
L→∞

N (0,A−1
γ0

Bγ0A
−1
γ0

) = N (0,MCRB(γ0)),

10
P. J. Huber, “The behavior of Maximum Likelihood Estimates under Nonstandard Conditions,” Proc. of the

Fifth Berkeley Symposium in Mathematical Statistics and Probability. Berkley: University of California Press, 1967
11

H. White, “Maximum likelihood estimation of misspecified models”, Econometrica vol.50,pp.1-25, Jan. 1982.
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A common misspecified scenario in CES data

▶ Our iid observations {xl ∼ p0}Ll=1 are CES-distributed, that is
p0 ∼ CESN(µ,Σ0, h0).

▶ The “true” density generator is supposed to be the one of the

t-distribution: h0(t) =
1
πN

Γ(N+λ)
Γ(λ)

(
λ
η

)λ (
λ
η + t

)
.

▶ The practitioner decides to built a ML estimator for Σ0 on
the misspecified Gaussian model Fγ , such that:

Fγ =
{
fX (x|γ) = |Σ|−1g

(
xHΣ−1x

)
,γ ∈ Γ

}
.

where g(t) = (πσ2
X )

−N exp
(
−t/σ2

X

)
and

γ ∈ Γ ≜
{
γ = (vec(V)T , σ2

X )
T |V = NΣ/tr(Σ)

}
,

▶ Clearly, ∀γ ∈ Γ, fX (x|γ) ̸= p0(x): model mismatch!
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Misspecified scatter matrix estimation

▶ Let’s recall the Sample Covariance Matrix, i.e. the ML
estimator under Gaussian assumption as:

SCM ≜
1

L

∑L

l=1
xlx

H
l .

▶ The Mismatched ML (MML) estimator can be derived as:{
V̂MML = N

tr(SCM)SCM

σ̂2
X = 1

N·L
∑L

l=1 x
H
l V̂

−1
MMLxl

.

▶ The practitioner should now answer the following questions:

1. Is V̂MML a MS-consistent estimator for V0 = NΣ0/tr(Σ0)?

2. Is it efficient wrt the MCRB?

3. Is its performance loss wrt the matched case acceptable?
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Misspecified scatter matrix estimation

▶ To answer the first question, we need to evaluate the
pseudo-true parameter vector

γ0 ≜ argmin
γ∈Γ

{Dγ(p0 ∥ fX )} ,

where p0 is the t-distribution and fX is the Gaussian one.

▶ It can be shown 12 that γ0 = (vec(V0)
T , σ2

0)
T then:

1.
√
L
(
V̂MML − V0

)
= OP(1),

2.
√
L
(
σ̂2
X − σ2

0

)
= OP(1), where σ2

0 = λ0

η0(λ0−1) .

▶ The practitioner can use V̂MML since it converge to the true
shape matrix!

12
S. Fortunati, F. Gini, M. S. Greco, “The Misspecified Cramér-Rao Bound and its Application to the Scatter

Matrix estimation in Complex Elliptically Symmetric distributions,” IEEE Trans. Signal Processing, vol. 64, no. 9,
pp. 2387-2399, 2016.
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Misspecified estimation performance: Bounds
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▶ For small values of λ (highly non-Gaussian data), the
estimation losses due to model mismatching rapidly increase!
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Misspecified estimation performance: MSE
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▶ The MSE of V̂MML is slightly below the MCRB because of the
residual bias.

▶ How can we overcome the misspecification?
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Semiparametric models

▶ A semiparametric model Pθ,h is a set of pdfs characterized by
a finite-dimensional parameter θ ∈ Θ along with a function,
i.e. an infinite-dimensional parameter, h ∈ H:

Pθ,h ≜ {pX (x1, . . . , xL|θ, h),θ ∈ Θ ⊆ Cq, h ∈ H} .

▶ Usually, θ is the (finite-dimensional) parameter of interest
while h can be considered as a nuisance parameter.

▶ Most of the SP inference problems can be cast in the
semiparametric framework:

1. Inference in CES distributions (as we will see here),

2. Estimation with missing data,

3. Non-linear regression and inverse problems,

4. Time series analysis, ...
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CES distributions as semiparametric model

▶ The CES distributions family is a perfect example of
semiparametric model.

▶ The (zero-mean and iid) CES semiparametric model can be
obtained from the parametric one by relaxing the unrealistic
assumption on the a-priori knowledge of the density generator:

Pθ,h ≜
{
pX (x|θ) = |Σ|−1h

(
xHΣ−1x

)
,θ ∈ Θ, h ∈ H

}
,

where the parameter of interest is

θ ∈ Θ ≜ {θ = vec(V)|V = NΣ/tr(Σ)} ,

while h ∈ H is a nuisance function.
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Inference in semiparametric model

▶ Semiparametric inference requires sophisticated tools in
functional analysis and asymptotic statistics (e.g. the
Hájek–Le Cam convolution theorem).

▶ Here, only a very short and non-exhaustive introduction will
be provided aiming at highlighting some crucial results.

▶ As rigorously discussed in 13, any semiparametric infernce
scheme is based on the following key ingredients:

1. The score vector of the parameter of interest s(x;θ, h),

2. The nuisance tangent space Th,

3. The efficient score vector s̄(x;θ, h).

13
P.J. Bickel, C.A.J Klaassen, Y. Ritov and J.A. Wellner, Efficient and Adaptive Estimation for Semiparametric

Models, Johns Hopkins University Press, 1993.
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The basic ingredients

▶ The score vector of the parameter of interest is defined as in
the parametric case as:

s(x;θ, h) ≜ ∇θ ln pX (x|θ, h).

▶ To define the nuisance tangent space Th and the associated
projection operator Π(·|Th) we need the notion of regular
parametric sub-models.

▶ The efficient score vector is defined as the residual of
s(x;θ, h) after projecting it on the nuisance tangent space Th:

s̄(x;θ, h) ≜ s(x;θ, h)− Π(s(x;θ, h)|Th),

▶ Let us finally introduce the efficient information matrix as:

Ī(θ|h) ≜ E0{s̄(x;θ, h)s̄(x;θ, h)T}.
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A lower bound in semiparametric estimation

▶ Let {xl}Ll=1 be a set of iid observations, such that
xl ∼ p0(x;θ0, h0) ∈ Pθ,h ∀l .

▶ The class of Regular and Asymptotically Linear (RAL)
estimators is defined as:

1.
√
L-consistent:

√
L
(
θ̂L − θ0

)
= OP(1),

2. Asymptotically normal:
√
L(θ̂L − θ0)

d∼
L→∞

N (0,Ξ(θ0, h0)).

▶ The ML and all the robust estimators belong to this class.

Semiparametric CRB (SCRB): Any RAL estimator θ̂L of θ0,
derived in Pθ,h from {xl ∼}Ll=1 iid observations, satisfies: 14

Ξ(θ0, h0) ≥ Ī(θ0|h0)−1 ≜ SCRB(θ0|h0).

14
P.J. Bickel, C.A.J Klaassen, Y. Ritov and J.A. Wellner, Efficient and Adaptive Estimation for Semiparametric

Models, Johns Hopkins University Press, 1993.
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Efficient semiparametric estimators

▶ Let us focus on the efficient estimation of the parameter of
interest θ ∈ Θ in the presence of the unknown function h ∈ H.

▶ Clearly, Maximum Likelihood estimation is not an option.

▶ Is there any other “optimal” procedure for deriving
asymptotically efficient estimates other then the ML one?

▶ The answer is positive and it is given by the semiparametric
rank-based (R-) Le Cam’s “one step” estimators. 15,16,17

15
L. Le Cam, “Locally asymptotically normal families of distributions,” University of California Publications

Statist., vol. 3, 1960, pp. 37-98.
16

P.J. Bickel, C.A.J Klaassen, Y. Ritov and J.A. Wellner, Efficient and Adaptive Estimation for Semiparametric
Models, Johns Hopkins University Press, 1993.

17
M. Hallin, B. J. M. Werker, “Semi-parametric efficiency, distribution-freeness and invariance,” Bernoulli, vol.

9, no. 1, pp. 137-165, 2003.
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Semiparametric efficient R-estimators

▶ Let {xl ∼ p0(x;θ0, h0)}Ll=1 be a set of iid observations.

▶ In the seminal paper 18, a rank-based (R-) class of one step
estimators has been proposed:

θ̂L,R = θ̂⋆
L + L−1/2Υ̂−1

θ̂⋆
L

∆̃θ̂⋆
L
.

▶ θ⋆
L is a sub-optimal (consistent, not efficient) estimator of θ,

▶ Υ̂θ̂⋆
L
is a rank-based,

√
L-consistent estimator of the efficient

information matric Ī(θ0|h0),

▶ ∆̃θ⋆
L
≜

∑L
l=1 φ̃(xl ,θ

⋆
L), where φ̃ is a distributionally-free,

rank-based approximation of the efficient score vector.

▶ No non-parametric estimator ĥL of h ∈ H is required!

18
M. Hallin, B. J. M. Werker, “Semi-parametric efficiency, distribution-freeness and invariance,” Bernoulli, vol.

9, no. 1, pp. 137-165, 2003.
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Semiparametric efficient R-estimators

▶ An R-estimator built on Pθ,h satisfies the same optimality
properties of the ML estimator built on Pθ!

19

Under any possible h ∈ H, the R-estimator θ̂L,R is:

1.
√
L-consistent:

√
L
(
θ̂L,R − θ0

)
= OP(1).

2. Asymptotically Gaussian and “efficient”:

√
L
(
θ̂L,R − θ0

)
d∼

L→∞
N (0, Ī(θ0|h0)−1) = N (0,SCRB(θ0|h0)).

▶ Note: A classical alternative to R-estimators are the robust
M-estimators. However, the M-estimators are not efficient!

19
M. Hallin, B. J. M. Werker, “Semi-parametric efficiency, distribution-freeness and invariance,” Bernoulli, vol.

9, no. 1, pp. 137-165, 2003.
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R-estimators and SCRB for the CES model

▶ The R-estimator in real elliptical data has been proposed by
Hallin, Oja and Paindaveine in 20.

▶ Our recent works aimed:

▶ Extension to complex-valued CES-distributed data,

▶ Discussion about optimal setting,

▶ Robustness to outliers,

▶ Extensive comparison with other robust estimators,

▶ Application to classical array processing estimation problems.

20
M. Hallin, H. Oja, and D. Paindaveine, “Semiparametrically efficient rank-based inference for shape II.

Optimal R-estimation of shape,” The Annals of Statistics, vol. 34, no. 6, pp. 2757–2789, 2006.
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Semiparametric estim. performance: Bounds
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▶ The SCRB is in between the “unrealistic” CRB and the
MCRB as expected.
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Semiparametric estimation performance: MSE
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▶ Regarding the MSE of the estimators:

1. The popular M-Tyler’s covariance estimator is not efficient.

2. The R-estimator is (almost) semiparametrically efficient!
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Concluding remarks

▶ In this talk, the estimation of the (normalized) covariance
matrix has been addressed under three different frameworks:

1. Parametric : perfect knowledge of the functional form of the
density generator,

2. Misspecified : wrong assumption on the density generator.
3. Semiparaemtric : no assumption on the density generator.

▶ For the tree cases, we investigate the efficiency:

1. Parametric : SML estimator and CRB,
2. Misspecified : MML estimator and MCRB.
3. Semiparaemtric : R-estimator and SCRB.

An R-estimator is able to reach almost the SCRB !
Consequently, it is the best estimator when density generator

is unknown!
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Future works

▶ Short-term perspectives:

1. Rigorous analysis of the almost efficiency of the R-estimator
(Chernoff-Savage result),

2. Derivation of an R-estimator of the eigenspace of the scatter
matrix.

▶ Medium-term perspectives:

1. Semiparametric Mahalanobis distance,

2. Applications to clustering and distance learning.

▶ Long-term perspectives:

1. Semiparametric statistics and missing data,

2. Applications to array processing, image reconstruction, ecc...
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R-estimators and SCRB for the CES model

1. S. Fortunati, F. Gini, M. S. Greco, A. M. Zoubir and and M. Rangaswamy, “Semiparametric Inference and
Lower Bounds for Real Elliptically Symmetric Distributions”, IEEE Transactions on Signal Processing, vol.
67, no. 1, pp. 164-177, 1 Jan.1, 2019.

2. S. Fortunati, F. Gini, M. S. Greco, A. M. Zoubir and and M. Rangaswamy, “Semiparametric CRB and
Slepian-Bangs Formulas for Complex Elliptically Symmetric Distributions”, IEEE Transactions on Signal
Processing, vol. 67, no. 20, pp. 5352-5364, 15 Oct.15, 2019.

3. S. Fortunati, A. Renaux, F. Pascal,“Robust semiparametric efficient estimators in complex elliptically
symmetric distributions”, IEEE Transactions on Signal Processing, vol. 68, pp. 5003-5015, 2020.

4. S. Fortunati, A. Renaux, F. Pascal,“Joint Estimation of Location and Scatter in Complex Elliptical
Distributions: A robust semiparametric and computationally efficient R-estimator of the shape matrix”,
Journal of Signal Processing Systems, July 2021.

5. S. Fortunati, A. Renaux, F. Pascal, “Properties of a new R-estimator of shape matrices”, EUSIPCO 2020,
Amsterdam, the Netherlands, August 24-28, 2020.

6. S. Fortunati, A. Renaux, F. Pascal, “Robust Semiparametric DOA Estimation in non-Gaussian
Environment”, 2020 IEEE Radar Conference, Florence, Italy, September 21-25, 2020

7. S. Fortunati, A. Renaux, F. Pascal, “Robust Semiparametric Joint Estimators of Location and Scatter in
Elliptical Distributions”, IEEE International Workshop on Machine Learning for Signal Processing, Aalto
University, Espoo, Finland, September 21-24, 2020.

8. All the code about real and complex R-estimator is provided in my GitHub page.

https://github.com/StefanoFor
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Thanks for your attention!
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Backup slides



49

Semiparametric models: Missing data

▶ Let z ≜ (xT , yT )T be a complete dataset, where:
▶ x is the observed (available) dataset.
▶ y is the unobservable (missing) dataset.

▶ Problem: Estimate θ ∈ Θ from the observed dataset x when
the pdf pY of the missing data y is unknown.

▶ The pdf pX of the observed dataset can be expressed as:

pX (x|θ) =
∫
Y
pX ,Y (x, y|θ)dy =

∫
Y
pX |Y (x|y,θ)pY (y)dy.

▶ The set of all the pdfs of the observed dataset x is a
semiparametric mixture model of the form :

Pθ,pZ ≜ {pX |pX (x|θ, pY ),θ ∈ Θ, pY ∈ K} .
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Semiparametric models: Non-linear regression

▶ Let us consider the general non-linear regression model:

x = f (z,θ) + ϵ,

▶ θ ∈ Θ: parameter vector to be estimated,
▶ f ∈ F : possibly unknown non-linear function,
▶ z: random vector with possibly unknown pdf pZ ∈ K,
▶ ϵ: random noise with possibly unknown pdf pϵ ∈ E

▶ The set of all pdfs for x is a semiparametric model of the form:

Pθ,f ,pZ ,pϵ ≜ {pX (x|θ, f , pZ , pϵ),θ ∈ Θ, f ∈ F , pZ ∈ K, pϵ ∈ E} .

▶ This model is a general form of a semiparametric regression
model.
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Semiparametric models: Autoregressive
processes

▶ Consider the AR(p) process:

xn =

p∑
i=1

θixn−i + wn, n ∈ (−∞,∞)

▶ θ ≜ [θ1, . . . , θp]: parameter vector to be estimated.
▶ wn: i.i.d. innovations with unknown pdf pw ∈ W,

▶ Let x ∈ RN a vector of N observations from an AR(p).

▶ The set of all possible pdfs for x ∈ RN is a semiparametric
model:

Pθ,pw ≜ {pX |pX (x|θ, pw ),θ ∈ Θ, pw ∈ W} .
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