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Motivation & Problem Statement

Motivating Example

Investigation of energy flow in cross-laminated timber structures

→ Goal: Update model parameters using available measurement data.
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Motivation & Problem Statement

Structural Dynamics 101

We start with a space-discretized, linear, time invariant structural system with equation of
motion

Ku(t) +Cu̇(t) +Mü(t) = f(t) (1)

where K, C and M are the stiffness, mass and damping matrix and u(t) and f(t) denote the
vector of degrees of freedom and the load vector. We apply the Fourier transform operator to
the equation of motion and obtain

Kũ(ω) + iωCũ(ω)− ω2Mũ(ω) = f̃(ω) (2)

The solution to this equation is

ũ(ω) =
(
K+ iωC− ω2M

)−1︸ ︷︷ ︸
H̃(ω)

f̃(ω) (3)
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Motivation & Problem Statement

Structural Dynamics 101

The frequency response for a single degree of freedom system reads

h̃(ω) =
1

k − ω2m+ iωc
(4)

The rational dependency on the frequency can be clearly observed:

ω

ωn

m

f(t)

u(t)

c

h̃(ω)

k
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Motivation & Problem Statement

Problem Statement

Given a set of system observations and corresponding forward models

DO = {yO,i|i = 1, . . . , nO} , (5)

M = {Mi (x) |i = 1, . . . , nO} , (6)

find an updated set of model inputs x ∈ Rd that best match the observations in some sense.
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Problem Statement

Given a set of system observations and corresponding forward models

DO = {yO,i|i = 1, . . . , nO} , (5)

M = {Mi (x) |i = 1, . . . , nO} , (6)

find an updated set of model inputs x ∈ Rd that best match the observations in some sense.
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Motivation & Problem Statement

Problem Statement

Bayes’ rule states that
f(x|DO) = c−1

E L(x|DO)f(x) . (7)

The posterior distribution f(X|DO) is seldom available in closed-form.

→ Infer posterior distribution through sampling or approximation

→ Resort to point estimates, such as the mode, i.e., the maximum-a-posteriori (MAP)
estimate

Inference or estimation thus require repeated evaluation of the likelihood function, which
require an evaluation of each of the forward models Mi(x).

Solution

→ Replace forward models by surrogates.
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Motivation & Problem Statement

Accelerate Estimation and Sampling

To accelerate estimation we aim to surrogate the frequency response functions:

→ Application of polynomial chaos expansion (PCE) to frequency response function (FRF)
models in [2, 3].

→ Due to slow convergence rates in PCE, PCE-based rational approximations in [4, 7, 8].

→ Stochastic frequency transformation and sparse PCE representation of the FRFs in [10].

→ Multi-output Gaussian process model for uncertainty quantification of FRF models in [5].
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Polynomial Chaos Expansion based Rational Approximations

Rational Approximation

Consider a numerical model M (X) with outcome space C. X is a random vector with
outcome space Rd and given joint probability density function and models a set of uncertain
parameters that represent the model input.

Definition

We define the rational approximation R(X;p,q) as

R(X;p,q) =
P (X;p)

Q(X;q)
=

∑np−1
i=0 piψp,i(X)∑nq−1
i=0 qiψq,i(X)
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Polynomial Chaos Expansion based Rational Approximations

Rational Approximation

Definition

We define the rational approximation R(X;p,q) as

R(X;p,q) =
P (X;p)

Q(X;q)
=

∑np−1
i=0 piψp,i(X)∑nq−1
i=0 qiψq,i(X)

P (X;p) and Q(X;p) are truncated polynomial chaos expansions with np and nq terms,
respectively.

p =
[
p0, . . . , pnp−1

]
∈ Cnp and q =

[
q0, . . . , qnq−1

]
∈ Cnq denote the vectors of

coefficients of the numerator and denominator polynomial, respectively.

ψp,i and ψq,i denote some multivariate orthonormal polynomials built from the
Wiener-Askey family.
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Polynomial Chaos Expansion based Rational Approximations

Estimation and Fitting of the Rational Approximation

The task of fitting the surrogate model can be cast into a regression problem. Here, we apply

Ordinary least squares regression

Bayesian regression with sparsity inducing priors

The regression approach is based on measure of misfit. Two natural measures for the rational
polynomial chaos expansion are

ε = M(X)− P (X,p)

Q(X,q)
(8)

ε̃ = εQ(X,q) = M(X)Q(X,q)− P (X,p) (9)
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Least-Squares Estimation for PCE-based Rational Approximation

Least-Squares Estimation

→ Determine the unknown coefficients in the rational approximation using a set of samples
{xk, k = 1, . . . , N} of the input parameters X and corresponding model evaluations
{M(xk), k = 1, . . . , N}.

→ Minimize a sample estimate of the modified mean-square error:

ẽrr = E
[
|M (X)Q (X;q)− P (X;p)|2

]
. (10)
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Least-Squares Estimation

→ Determine the unknown coefficients in the rational approximation using a set of samples
{xk, k = 1, . . . , N} of the input parameters X and corresponding model evaluations
{M(xk), k = 1, . . . , N}.

→ Minimize a sample estimate of the modified mean-square error:

ẽrr = E
[
|M (X)Q (X;q)− P (X;p)|2

]
. (10)

The minimizer is the solution of the following homogeneous linear system of equations [8][
ΨT

PΨP −ΨT
P diag (y)ΨQ

−ΨT
Q diag (y)ΨP ΨT

Q diag (y ◦ y)ΨQ

] [
p
q

]
=

[
0
0

]
. (11)

Matrices ΨP ∈ RN×np and ΨQ ∈ RN×nq have as (i, j)-element ψj(xi) and vector y ∈ CN

has as i-element the model evaluation M (xi).
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Least-Squares Estimation for PCE-based Rational Approximation

Simple Example

1
1.5 −20

0

20−40

−20

0

x Re(M)

Im
(M

)

PCE M(x) Samples

PCE with m = 5.

M (x) =
1

x− 1 + i0.02x
.

Problem settings:

X follows a lognormal distribution with
mean µX = 1 and standard deviation
σX = 0.2.

Number of samples N chosen three times
the number of polynomials, i.e.,
N = 3(m+ 1), where m is the
polynomial order.
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Least-Squares Estimation for PCE-based Rational Approximation

Simple Example
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Sparse Bayesian Learning of PCE-based Rational Approximations

Bayesian Formulation

Instead of casting the problem into a deterministic regression formulation, we develop a
Bayesian learning strategy in [6].
→ The coefficients in the rational approximation are treated as probabilistic and Bayes’
theorem is applied:

f(p,q|y) = c−1
E L(p,q|y)f(p,q) . (12)
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→ The coefficients in the rational approximation are treated as probabilistic and Bayes’
theorem is applied:

f(p,q|y) = c−1
E L(p,q|y)f(p,q) . (12)

→ Likelihood function L(p,q|y) ∼ fY(y|p,q) in [6] is derived assuming the following
additive error model

M(xk) = R(xk;p,q) + εk . (13)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Bayesian Formulation

Illustration of the error model

R(xk)

M(xk)

εk

Re

Im

CN (R(xk), β
−1, 0)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Bayesian Formulation

Instead of casting the problem into a deterministic regression formulation, we develop a
Bayesian learning strategy in [6].
→ The coefficients in the rational approximation are treated as probabilistic and Bayes’
theorem is applied:

f(p,q|y) = c−1
E L(p,q|y)f(p,q) . (12)

→ Likelihood function L(p,q|y) ∼ fY(y|p,q) in [6] is derived assuming the following
additive error model

M(xk) = R(xk;p,q) + εk . (13)

→ However, we can also consider the linearized residual formulation with

Q(xk;q)M(xk) = P (xk;p) + ε̃k . (14)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Bayesian Formulation

Illustration of the error model

P (xk)

Q(xk)M(xk)

ε̃k

Re

Im

CN (R(xk), β
−1, 0)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Likelihood Formulation for Linearized Residual

Under the above error model, the expectation and covariance of the data are

E [y|p,q] = Q−1Ψpp , (12)

Cov [y|p,q] = Q−1Σε̃ε̃Q
−H , (13)

where Q = diag(Ψqq). Since y depends linearly on ε̃k, the likelihood will have a Gaussian
distribution with the moments as in Eqs. (12) and (13). With Σε̃ε̃ = β−1IN , we find

f(y|p,q) =
(
β

π

)N

det
(
QHQ

)
exp

{
−β (Qy −Ψpp)

H (Qy −Ψpp)
}
. (14)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Prior Assumptions

The prior distributions for both sets of coefficients are modeled as complex proper Gaussian
distributions, i.e.,

f(p|αp) = CN (p|0,Λ−1
pp ,0) ,

f(q|αq) = CN (q|0,Λ−1
qq ,0) ,

with

Λpp = diagαp and Λqq = diagαq

αp =
[
αp,0; . . . ;αp,np−1

]
and αq =

[
αq,0; . . . ;αq,nq−1

]
→ Assume independence between the individual hyperparameters.

→ Specify hyperpriors (Gamma) over αp, αq and β according to [1, 9].
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Sparse Bayesian Learning of PCE-based Rational Approximations

Bayesian Formulation

Illustration of the hierarchical Bayesian model

C

y = M(X)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Bayesian Formulation

Illustration of the hierarchical Bayesian model

p

q

a, b

β

c, d C

CC
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αp

αq
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Sparse Bayesian Learning of PCE-based Rational Approximations

Posterior Distribution

The posterior distribution under these model assumptions cannot be computed in closed-form,
since the required integration can not be solved directly.

→ For linear models, an analytic solution is identifiable.

→ Analytically determine the posterior distribution of p conditional on q and all
hyperparameters:

f(p|y,q,αp, β) =
1

πnp det Σ̃pp|y
exp

{(
p− µ̃p|y

)
Σ̃−1

pp|y
(
p− µ̃p|y

)}
, (15)

with posterior covariance matrix

Σ̃pp|y =
(
Λpp + βΨT

pΨp

)−1
, (16)

and posterior mean
µ̃p|y = βΣ̃pp|yΨ

T
pQy . (17)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Posterior Distribution

The posterior distribution under these model assumptions cannot be computed in closed-form,
since the required integration can not be solved directly.

→ For linear models, an analytic solution is identifiable.

→ Analytically determine the posterior distribution of p conditional on q and all
hyperparameters:

f(p|y,q,αp, β) =
1

πnp det Σ̃pp|y
exp

{(
p− µ̃p|y

)
Σ̃−1

pp|y
(
p− µ̃p|y

)}
, (15)

with posterior covariance matrix

Σ̃pp|y =
(
Λpp + βΨT

pΨp

)−1
, (16)

and posterior mean
µ̃p|y = βΣ̃pp|yΨ

T
pQy . (17)
C

f(p|y,q,αp,β)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Posterior Distribution

The posterior distribution of the denominator coefficients can only be expressed up to
proportionality as

f(q|y,αp,αq, β) ∝ f(y|q,αq)f(q|αq) . (18)

F. Schneider (TUM) UQSay 11. May 2023



Sparse Bayesian Learning of PCE-based Rational Approximations

Posterior Distribution

The posterior distribution of the denominator coefficients can only be expressed up to
proportionality as

f(q|y,αp,αq, β) ∝ f(y|q,αq)f(q|αq) . (18)

f(y|q,αq) can be found analytically as

f(y|q,αq) =
det

(
QQ

)
πN det

(
C̃
) exp

{
−yHQC̃−1Qy

}
, (19)

where C̃ = β−1IN +ΨpΛ
−1
pp Ψ

H
p and f(q|αq) denotes the prior distribution of the

denominator coefficients.
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Sparse Bayesian Learning of PCE-based Rational Approximations

Posterior Distribution

The posterior distribution of the denominator coefficients can only be expressed up to
proportionality as

f(q|y,αp,αq, β) ∝ f(y|q,αq)f(q|αq) . (18)

f(y|q,αq) can be found analytically as

f(y|q,αq) =
det

(
QQ

)
πN det

(
C̃
) exp

{
−yHQC̃−1Qy

}
, (19)

where C̃ = β−1IN +ΨpΛ
−1
pp Ψ

H
p and f(q|αq) denotes the prior distribution of the

denominator coefficients.

→ Maximum a posteriori approximation: f(q|y,αp,αq, β) ≈ δ (q− q∗).

→ Laplace approximation: f(q|y,αp,αq, β) ≈ CN
(
q
∣∣∣q∗, (−Hqq)

−1
)
.
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Sparse Bayesian Learning of PCE-based Rational Approximations

Approximating the Posterior Distribution of q

Instead of concentrating all probability in the posterior distribution at the MAP value, we can
consider Laplace approximation. Under this approximation the logarithm of the posterior
distribution is expressed through a second-order Taylor expansion.

Laplace Approximation

z∗

g(z) ∝ f(z)
log g(z)

ĥ(z)

h(z) = log g(z)

f(z)

f̂(z) ∝ exp
(
ĥ(z)

)

z∗ z∗ z∗
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Sparse Bayesian Learning of PCE-based Rational Approximations

Laplace Approximation in Complex Variables

Denote by g(x) some PDF that is known up to its normalization constant. The PDF of
interest fX(x) is then

fX(x) =
g(x)∫

Cn g(x) dx
. (20)

A second-order expansion in complex-variables is applied using generalized calculus leading to

ln g(x) ≈ ln g(x0) +
∂ ln g(x)

∂x

∣∣∣∣
x=x0

(x− x0) +
1

2
(x− x0)

HHxx (x− x0) , (21)

where x = [x;x] and Hxx is the augmented Hessian matrix, which can be written in block
form as

Hxx =

 ∂
∂x

(
∂ ln g(x0)

∂x

)H
∂
∂x

(
∂ ln g(x0)

∂x

)H

∂
∂x

(
∂ ln g(x0)

∂x

)H
∂
∂x

(
∂ ln g(x0)

∂x

)H

 (22)
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Denote by g(x) some PDF that is known up to its normalization constant. The PDF of
interest fX(x) is then
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Sparse Bayesian Learning of PCE-based Rational Approximations

Laplace Approximation in Complex Variables

A second-order expansion in complex-variables is applied using generalized calculus leading to

ln g(x) ≈ ln g(x0) +
∂ ln g(x)

∂x

∣∣∣∣
x=x0

(x− x0) +
1

2
(x− x0)

HHxx (x− x0) , (20)

where x = [x;x] and Hxx is the augmented Hessian matrix, which can be written in block
form as

Hxx =

[
Hxx 0

0 Hxx

]
(21)

For x0 = x∗ (MAP), the PDF of X is approximately proper complex normal with mean x∗ and
covariance matrix Σxx = − (Hxx)

−1.
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Sequential Solution Strategy

In order to find suitable choices for the remaining parameters, our strategy is as follows:

1 Find the maximum a-posteriori (MAP) estimate for the denominator coefficients, q∗,

q∗ = argmax
q∈Cnq

f(y|q,αp, β)f(q|αq) . (22)

and approximate the posterior distribution of q as a proper complex Gaussian distribution
with mean q∗ and covariance matrix Σqq|y = − (Hqq)

−1.
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Sequential Solution Strategy

In order to find suitable choices for the remaining parameters, our strategy is as follows:

1 Find the maximum a-posteriori (MAP) estimate for the denominator coefficients, q∗,

q∗ = argmax
q∈Cnq

f(y|q,αp, β)f(q|αq) . (22)

and approximate the posterior distribution of q as a proper complex Gaussian distribution
with mean q∗ and covariance matrix Σqq|y = − (Hqq)

−1.

2 Under the approximation compute the evidence conditional on the hyperparameters as

f(y|αp,αq, β) ≈ f(y|q∗,αp, β)f(q
∗|αq)π

n det (−Hqq)
−1 (23)
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Sparse Bayesian Learning of PCE-based Rational Approximations

Sequential Solution Strategy

In order to find suitable choices for the remaining parameters, our strategy is as follows:

1 Find the maximum a-posteriori (MAP) estimate for the denominator coefficients, q∗,

q∗ = argmax
q∈Cnq

f(y|q,αp, β)f(q|αq) . (22)

and approximate the posterior distribution of q as a proper complex Gaussian distribution
with mean q∗ and covariance matrix Σqq|y = − (Hqq)

−1.

2 Under the approximation compute the evidence conditional on the hyperparameters as

f(y|αp,αq, β) ≈ f(y|q∗,αp, β)f(q
∗|αq)π

n det (−Hqq)
−1 (23)

3 Maximize the evidence under the Laplace approximation in Eq. (23) at the given MAP
estimate q∗ (type-II-maximum likelihood).
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Sparse Bayesian Learning of PCE-based Rational Approximations

Sequential Solution Strategy

In order to find suitable choices for the remaining parameters, our strategy is as follows:

1 Find the maximum a-posteriori (MAP) estimate for the denominator coefficients, q∗,

q∗ = argmax
q∈Cnq

f(y|q,αp, β)f(q|αq) . (22)

and approximate the posterior distribution of q as a proper complex Gaussian distribution
with mean q∗ and covariance matrix Σqq|y = − (Hqq)

−1.

2 Under the approximation compute the evidence conditional on the hyperparameters as

f(y|αp,αq, β) ≈ f(y|q∗,αp, β)f(q
∗|αq)π

n det (−Hqq)
−1 (23)

3 Maximize the evidence under the Laplace approximation in Eq. (23) at the given MAP
estimate q∗ (type-II-maximum likelihood).

4 Repeat 1. - 3. and prune non-significant terms until convergence.
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Numerical Example
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Numerical Example Transmissibility of Frame Structure

Mechanical Model

We consider a single storey frame structure and aim at approximating the frequency response
function at f = 5, 1Hz.

ub(t)

u(t)

lg

hcEc, Ic

Ag, ρg

ub(t)

Ec, Ic

M (X;ω) =
ũ (X;ω)

ũb (X;ω)
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Numerical Example Transmissibility of Frame Structure

Mechanical Model

The input random variables X = [Ec, Ic, hc, ρg, Ag, lg, ζ] are assumed to be independent and
marginally distributed as follows.

Table 1: Distribution Parameters

Parameter Mean value Coefficient of variation

Columns’ Young’s modulus Ec 3 · 1010 N
m2 0.1

Columns’ moment of inertia Ic
π(0.3m)4

64
0.1

Columns’ height hc 4m 0.1

Girder’s density ρg 2.5 · 103 kgm−3 0.05
Girder’s cross-sectional area Ag 0.3m · 0.5m 0.1
Girder’s length lg 10m 0.1

Damping Ratio ζ 0.02 0.3

The nominal eigenfrequency of the system is fn = 5.5Hz.
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Surrogate Model

The surrogate model parameters are chosen as follows.

Table 2: Surrogate Parameters

Parameter Value

Maximum polynomial degrees mp = mq 3
Hyperbolic truncation qp = qq 1
Number of polynomial terms Npol 240
Size of training set Ntrain 30, 60, . . . , 240
Size of test set Ntest 105

Number of repetitions Nrep 50

Model accuracy is assessed through the relative empirical error

erremp =

∑Ntest
i=1 |M(xi;ω)−R(xi;ω)|2

V̂ar [M(xi;ω)]
. (24)
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Relative Empirical Error Comparison
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Degree of Sparsity
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Conclusion & Outlook

Conclusion

Uncertainty Quantifcation and a Bayesian framework for model updating in structural
dynamics based on frequency response data is presented.

To reduce the computational burden, the model responses are emulated using a rational
polynomial chaos expansion surrogate model.

The coefficients are found through an iterative algorithm that maximizes the model
evidence. We exploit the linearity in the numerator polynomials and describe the posterior
distribution of the numerator polynomials conditional on all other parameters analytically.

A Laplace approximation is incorporated to find a more accurate representation of the
posterior distribution of the denominator coefficients. Through this, a measure of the
uncertainty in each coefficient is reflected in the posterior distribution.

The Bayesian learning framework allows to obtain a measure of the uncertainty in the
surrogate prediction that can be utilized in an Bayesian Bayesian optimization framework.
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Conclusion & Outlook

Outlook

We are currently working on an active-learning approach to estimating the rational PCE
model in an Bayesian inference problem.

Investigate alternative sparsity inducing hierarchical prior structures.

Extend the applicability of rational PCE to real-valued data.
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