Understanding Dimension Reduction Algorithms

Yingfan Wang, Haiyang Huang

Dimension reduction (DR) algorithms

Input: high-dimensional data

Output: low-dimensional data that preserves...

- the graph structure?
- local neighborhoods?
- global structure?

Previous successful DR algorithms: t-SNE, UMAP, Largevis, TriMAP, ...

Our new algorithm: PaCMAP

Original Mammoth

Task: 3d to 2d. Global structure is important here!

MNIST dataset (handwritten digit image)

PaCMAP

Algorithm	Graph component	Loss function				
t-SNE	Edges (i, j)	Loss _{i,j} ^{t-SNE} = $p_{ij} \log \frac{p_{ij}}{q_{ij}}$, where $q_{ij} = \frac{\left(1 + \ \mathbf{y}_i - \mathbf{y}_j\ ^2\right)^{-1}}{\sum_{k \neq l} (1 + \ \mathbf{y}_k - y_l\ ^2)^{-1}}$				
UMAP	Edges (i, j)	$\operatorname{Loss}_{i,j}^{\operatorname{UMAP}} = \begin{cases} \bar{w}_{i,j} \log \left(1 + a \left(\ \mathbf{y}_i - \mathbf{y}_j\ _2^2 \right)^b \right)^{-1} & i, j \text{ neighbo} \\ \left(1 - \bar{w}_{i,j} \right) \log \left(1 - \left(1 + a \left(\ \mathbf{y}_i - \mathbf{y}_j\ _2^2 \right)^b \right)^{-1} \right) & \operatorname{Otherwise} \end{cases}$	ors			
TriMAP	Triplets (i, j, k) where Distance _{i,j} \leq Distance _{i,k}	$\operatorname{Loss}^{\operatorname{TM}}_{i,j,k} = \omega_{i,j,k} \frac{s(\mathbf{y}_i,\mathbf{y}_k)}{s(\mathbf{y}_i,\mathbf{y}_j) + s(\mathbf{y}_i,\mathbf{y}_k)}, \text{ where } s(\mathbf{y}_i,\mathbf{y}_j) = \left(1 + \ \mathbf{y}_i - \mathbf{y}_j\ ^2\right)^{-1}$				

t-SNE (van der Maaten and Hinton, 2008), UMAP (McInnes et al., 2018), TriMAP (Amid & Warmuth, 2019)

What elements of these algorithms are important?

What we knew before:

Certain properties of the loss function are important:

- Attraction: neighbors should be attracted. But not too close! (Crowding)
- Repulsion: farther points in original space should be far in low-dim space.

[Local Structure!]

After a huge amount of experimentation, we found that:

For local structure:

• Certain specific properties of the loss function are important.

- We must have forces on non-neighbors.
- The choice of which graph components to preserve is important.

Algo	rithm	Graph component	Loss function				
t-S	NE	Edges (i, j)	Loss _{i,j} ^{t-SNE} = $p_{ij} \log \frac{p_{ij}}{q_{ij}}$, where $q_{ij} = \frac{\left(1 + \ \mathbf{y}_i - \mathbf{y}_j\ ^2\right)^{-1}}{\sum_{k \neq l} (1 + \ \mathbf{y}_k - y_l\ ^2)^{-1}}$				
UM	IAP	Edges (i, j)	$\operatorname{Loss}_{i,j}^{\operatorname{UMAP}} = \begin{cases} \bar{w}_{i,j} \log \left(1 + a \left(\ \mathbf{y}_i - \mathbf{y}_j\ _2^2 \right)^b \right)^{-1} & i, j \text{ neighbors} \\ \left(1 - \bar{w}_{i,j} \right) \log \left(1 - \left(1 + a \left(\ \mathbf{y}_i - \mathbf{y}_j\ _2^2 \right)^b \right)^{-1} \right) & \operatorname{Otherwise} \end{cases}$				
TriN	ЛАР	Triplets (i, j, k) where Distance _{i,j} \leq Distance _{i,k}	$\operatorname{Loss}^{\operatorname{TM}}_{i,j,k} = \omega_{i,j,k} \frac{s(\mathbf{y}_i,\mathbf{y}_k)}{s(\mathbf{y}_i,\mathbf{y}_j) + s(\mathbf{y}_i,\mathbf{y}_k)}, \text{ where } s(\mathbf{y}_i,\mathbf{y}_j) = \left(1 + \ \mathbf{y}_i - \mathbf{y}_j\ ^2\right)^{-1}$				

t-SNE (van der Maaten and Hinton, 2008), UMAP (McInnes et al., 2018), TriMAP (Amid & Warmuth, 2019)

For local structure:

Certain specific properties of the loss function are important.

The "rainbow" plot

Triplet i, j (neighbor), k (further)

Principles for a good loss for DR

- 1) Monotonicity: pull neighbors closer, push farther points away (go left, go up)
- 2) Except along the bottom, gradient should go mainly to the left (broadly attract neighbors, further points are far enough), sufficient attraction
- 3) Along bottom, gradient goes mainly up (further point is too close) with large gradient
- 4) Along vertical axis, small magnitude (neighbor is close enough)
- 5) Weak pull on far neighbors: gradients should become small as distance to neighbor j

$$Loss = log(1 + exp(\frac{d_{ij}^2 - d_{ik}^2}{10})$$

$$Loss = \frac{d_{ij}^2 + 1}{d_{ik}^2 + 1}$$

$$Loss = -\frac{d_{ik}^2 + 1}{d_{ii}^2 + 1}$$

$$Loss = log(1 + exp(d_{ij}^2) + exp(-d_{ik}^2))$$

Too much repulsion Insufficient attraction

No gradient on repulsion

Insufficient local attraction

After a huge amount of experimentation, we found that:

For local structure:

• Certain specific properties of the loss function are important.

- We must have forces on non-neighbors.
- The choice of which graph components to preserve is important.

$$\sum_{(i,j) \in \mathcal{T}_{ ext{neighbors}}} l^{ ext{attract}}(i,j) + \sum_{(i,k) \in \mathcal{T}_{ ext{further}}} l^{ ext{repulse}}(i,k)$$

- We must have forces on non-neighbors.
- The choice of which graph components to preserve is important.

MN: mid-near FP: further point

$$Loss^{PaCMAP} = w_{neighbors}Loss_{neighbors} + w_{MN}Loss_{MN} + w_{FP}Loss_{FP}$$

$$Loss_{neighbors} = \frac{\tilde{d}_{ij}}{10 + \tilde{d}_{ij}}, \quad Loss_{MN} = \frac{\tilde{d}_{ik}}{10000 + \tilde{d}_{ik}}, \quad Loss_{FP} = \frac{1}{1 + \tilde{d}_{il}}$$

attractive

mild attractive

Neighbors: Mid-near pairs: Further points: repulsive

- We must have forces on non-neighbors.
- The choice of which graph components to preserve is important.

$$Loss^{PaCMAP} = w_{neighbors} Loss_{neighbors} + w_{MN} Loss_{MN} + w_{FP} Loss_{FP}$$

$$\label{eq:Loss_neighbors} \begin{split} \text{Loss}_{\text{neighbors}} &= \frac{\tilde{d}_{ij}}{10 + \tilde{d}_{ij}}, \quad \text{Loss}_{MN} = \frac{\tilde{d}_{ik}}{10000 + \tilde{d}_{ik}}, \quad \text{Loss}_{FP} = \frac{1}{1 + \tilde{d}_{il}} \\ \text{Neighbors:} & \quad \text{Mid-near pairs:} & \quad \text{Further points:} \\ \text{attractive} & \quad \text{mild attractive} & \quad \text{repulsive} \end{split}$$

The weights change on a schedule:

Period 1: $w_{\text{neighbors}}$ is medium, w_{MN} is huge, w_{FP} is medium

Period 2: $w_{\text{neighbors}}$ is large, w_{MN} is small, w_{FP} is medium

Period 3: $w_{\text{neighbors}}$ is medium, w_{MN} is 0, w_{FP} is medium

 0.699 ± 0.007

 0.718 ± 0.005

 0.665 ± 0.002

 0.866 ± 0.010

 0.872 ± 0.003

 0.666 ± 0.003

 0.727 ± 0.001

 0.619 ± 0.001

 0.741 ± 0.002

 0.894 ± 0.005

 0.752 ± 0.002

DATASET (SIZE)	BASELINE	T-SNE	LARGEVIS	UMAP	TRIMAP	PACMAP
COIL-20 (1.4K) COIL-100 (7.2K)	0.972 0.989	0.909 ± 0.015 0.911 ± 0.004	0.799 ± 0.020 0.707 ± 0.014	0.844 ± 0.004 0.879 ± 0.007	0.778 ± 0.010 0.737 ± 0.019	$0.942 \pm 0.009 \\ 0.933 \pm 0.009$
USPS (9K)	0.949	0.959 ± 0.002	0.957 ± 0.001	0.956 ± 0.002	0.946 ± 0.001	0.958 ± 0.001

SVM accuracy (measures local structure preservation)

TASET (SIZE) BASELINE 1-SNE LARGEVIS UMAP TRIMAP

IL-20 (1.4K) 0.972 0.909
$$\pm$$
 0.015 0.799 \pm 0.020 0.844 \pm 0.004 0.778 \pm 0.010

IL-100 (7.2K) 0.989 0.911 \pm 0.004 0.707 \pm 0.014 0.879 \pm 0.007 0.737 \pm 0.019

PS (9k) 0.940 0.950 \pm 0.002 0.957 \pm 0.001 0.956 \pm 0.002 0.946 \pm 0.001

 0.698 ± 0.016

 0.577 ± 0.012

 0.654 ± 0.013

 0.722 ± 0.045

 0.701 ± 0.038

 0.645 ± 0.002

 0.715 ± 0.002

 0.600 ± 0.007

 0.679 ± 0.019

COIL-20 (1.4K)

USPS (9K)

COIL-100 (7.2K)

MAMMOTH (10K)

MNIST (70K)

F-MNIST (70K)

KDD CUP99 (4M)

20Newsgroups (18K)

S-CURVE WITH HOLE (9.5K)

Mouse scrna-seq (20K)

FLOW CYTOMETRY (3M)

COIL-20 (1.4K)

$$0.972$$
 0.909 ± 0.015
 0.799 ± 0.020
 0.844 ± 0.004
 0.778 ± 0.010
 0.942 ± 0.009

 COIL-100 (7.2K)
 0.989
 0.911 ± 0.004
 0.707 ± 0.014
 0.879 ± 0.007
 0.737 ± 0.019
 0.933 ± 0.009

 USPS (9K)
 0.949
 0.959 ± 0.002
 0.957 ± 0.001
 0.956 ± 0.002
 0.946 ± 0.001
 0.958 ± 0.001

 MAMMOTH (10K)
 0.961
 0.927 ± 0.009
 0.923 ± 0.011
 0.941 ± 0.003
 0.900 ± 0.004
 0.933 ± 0.004

 20Name of power (18k)
 0.702
 0.425 ± 0.014
 0.444 ± 0.012
 0.421 ± 0.003
 0.900 ± 0.004
 0.447 ± 0.006

OIL-100 (7.2K)	0.989	0.911 ± 0.004	0.707 ± 0.014	0.879 ± 0.007	0.737 ± 0.019	$0.933 \pm$
SPS (9K)	0.949	0.959 ± 0.002	0.957 ± 0.001	0.956 ± 0.002	0.946 ± 0.001	0.958 ±
АММОТН (10K)	0.961	0.927 ± 0.009	0.923 ± 0.011	0.941 ± 0.003	0.900 ± 0.004	0.933 =
NEWSGROUPS (18K)	0.792	0.435 ± 0.014	0.444 ± 0.012	0.431 ± 0.013	0.410 ± 0.007	0.447 ±
NIST (70K)	0.926	0.967 ± 0.002	0.965 ± 0.004	0.970 ± 0.001	0.960 ± 0.001	$0.974 \pm$

20NEWSGROUPS (18K) MNIST (70K) F-MNIST (70K)	0.792 0.926 0.854	0.435 ± 0.014 0.967 ± 0.002 0.754 ± 0.003	$0.444 \pm 0.012 \\ 0.965 \pm 0.004 \\ 0.748 \pm 0.003$	0.431 ± 0.013 0.970 ± 0.001 0.742 ± 0.003	0.410 ± 0.007 0.960 ± 0.001 0.729 ± 0.001	0.447 ± 0.006 0.974 ± 0.001 0.752 ± 0.004	
Random triplet accuracy (measures global structure preservation)							
DATASET (SIZE)		T-SNE	LargeVis	UMAP	TRIMAP	PACMAP	

 0.649 ± 0.014

 0.568 ± 0.011

 0.669 ± 0.002

 0.800 ± 0.013

 0.816 ± 0.001

 0.664 ± 0.002

 0.727 ± 0.002

 0.614 ± 0.001

 0.740 ± 0.001

t-SNE version: opt-SNE (Belkina et al., 2019) built on Multi-core t-SNE (Ulyanov et al., 2016)

 0.659 ± 0.006

 0.633 ± 0.002

 0.640 ± 0.002

 0.838 ± 0.004

 0.874 ± 0.001

 0.704 ± 0.002

 0.728 ± 0.001

 0.600 ± 0.001

 0.777 ± 0.001

 0.857 ± 0.001

 0.660 ± 0.007

 0.735 ± 0.011

 0.630 ± 0.021

 0.668 ± 0.011

 0.834 ± 0.041

 0.766 ± 0.024

 0.632 ± 0.001

 0.719 ± 0.003

 0.601 ± 0.007

 0.657 ± 0.011

(Ran out of memory or time, >24 hrs)

Thanks!