Understanding Dimension Reduction Algorithms Yingfan Wang, Haiyang Huang # Dimension reduction (DR) algorithms Input: high-dimensional data Output: low-dimensional data that preserves... - the graph structure? - local neighborhoods? - global structure? Previous successful DR algorithms: t-SNE, UMAP, Largevis, TriMAP, ... Our new algorithm: PaCMAP # Original Mammoth Task: 3d to 2d. Global structure is important here! # MNIST dataset (handwritten digit image) **PaCMAP** | Algorithm | Graph component | Loss function | | | | | |-----------|---|--|-----|--|--|--| | t-SNE | Edges (i, j) | Loss _{i,j} ^{t-SNE} = $p_{ij} \log \frac{p_{ij}}{q_{ij}}$, where $q_{ij} = \frac{\left(1 + \ \mathbf{y}_i - \mathbf{y}_j\ ^2\right)^{-1}}{\sum_{k \neq l} (1 + \ \mathbf{y}_k - y_l\ ^2)^{-1}}$ | | | | | | UMAP | Edges (i, j) | $\operatorname{Loss}_{i,j}^{\operatorname{UMAP}} = \begin{cases} \bar{w}_{i,j} \log \left(1 + a \left(\ \mathbf{y}_i - \mathbf{y}_j\ _2^2 \right)^b \right)^{-1} & i, j \text{ neighbo} \\ \left(1 - \bar{w}_{i,j} \right) \log \left(1 - \left(1 + a \left(\ \mathbf{y}_i - \mathbf{y}_j\ _2^2 \right)^b \right)^{-1} \right) & \operatorname{Otherwise} \end{cases}$ | ors | | | | | TriMAP | Triplets (i, j, k) where Distance _{i,j} \leq Distance _{i,k} | $\operatorname{Loss}^{\operatorname{TM}}_{i,j,k} = \omega_{i,j,k} \frac{s(\mathbf{y}_i,\mathbf{y}_k)}{s(\mathbf{y}_i,\mathbf{y}_j) + s(\mathbf{y}_i,\mathbf{y}_k)}, \text{ where } s(\mathbf{y}_i,\mathbf{y}_j) = \left(1 + \ \mathbf{y}_i - \mathbf{y}_j\ ^2\right)^{-1}$ | | | | | t-SNE (van der Maaten and Hinton, 2008), UMAP (McInnes et al., 2018), TriMAP (Amid & Warmuth, 2019) # What elements of these algorithms are important? ## What we knew before: ## Certain properties of the loss function are important: - Attraction: neighbors should be attracted. But not too close! (Crowding) - Repulsion: farther points in original space should be far in low-dim space. **[Local Structure!]** After a huge amount of experimentation, we found that: #### For local structure: • Certain specific properties of the loss function are important. - We must have forces on non-neighbors. - The choice of which graph components to preserve is important. | Algo | rithm | Graph component | Loss function | | | | | |------|-------|---|--|--|--|--|--| | t-S | NE | Edges (i, j) | Loss _{i,j} ^{t-SNE} = $p_{ij} \log \frac{p_{ij}}{q_{ij}}$, where $q_{ij} = \frac{\left(1 + \ \mathbf{y}_i - \mathbf{y}_j\ ^2\right)^{-1}}{\sum_{k \neq l} (1 + \ \mathbf{y}_k - y_l\ ^2)^{-1}}$ | | | | | | UM | IAP | Edges (i, j) | $\operatorname{Loss}_{i,j}^{\operatorname{UMAP}} = \begin{cases} \bar{w}_{i,j} \log \left(1 + a \left(\ \mathbf{y}_i - \mathbf{y}_j\ _2^2 \right)^b \right)^{-1} & i, j \text{ neighbors} \\ \left(1 - \bar{w}_{i,j} \right) \log \left(1 - \left(1 + a \left(\ \mathbf{y}_i - \mathbf{y}_j\ _2^2 \right)^b \right)^{-1} \right) & \operatorname{Otherwise} \end{cases}$ | | | | | | TriN | ЛАР | Triplets (i, j, k) where Distance _{i,j} \leq Distance _{i,k} | $\operatorname{Loss}^{\operatorname{TM}}_{i,j,k} = \omega_{i,j,k} \frac{s(\mathbf{y}_i,\mathbf{y}_k)}{s(\mathbf{y}_i,\mathbf{y}_j) + s(\mathbf{y}_i,\mathbf{y}_k)}, \text{ where } s(\mathbf{y}_i,\mathbf{y}_j) = \left(1 + \ \mathbf{y}_i - \mathbf{y}_j\ ^2\right)^{-1}$ | | | | | | | | | | | | | | t-SNE (van der Maaten and Hinton, 2008), UMAP (McInnes et al., 2018), TriMAP (Amid & Warmuth, 2019) #### For local structure: Certain specific properties of the loss function are important. # The "rainbow" plot Triplet i, j (neighbor), k (further) # Principles for a good loss for DR - 1) Monotonicity: pull neighbors closer, push farther points away (go left, go up) - 2) Except along the bottom, gradient should go mainly to the left (broadly attract neighbors, further points are far enough), sufficient attraction - 3) Along bottom, gradient goes mainly up (further point is too close) with large gradient - 4) Along vertical axis, small magnitude (neighbor is close enough) - 5) Weak pull on far neighbors: gradients should become small as distance to neighbor j $$Loss = log(1 + exp(\frac{d_{ij}^2 - d_{ik}^2}{10})$$ $$Loss = \frac{d_{ij}^2 + 1}{d_{ik}^2 + 1}$$ $$Loss = -\frac{d_{ik}^2 + 1}{d_{ii}^2 + 1}$$ $$Loss = log(1 + exp(d_{ij}^2) + exp(-d_{ik}^2))$$ Too much repulsion Insufficient attraction No gradient on repulsion Insufficient local attraction After a huge amount of experimentation, we found that: #### For local structure: • Certain specific properties of the loss function are important. - We must have forces on non-neighbors. - The choice of which graph components to preserve is important. $$\sum_{(i,j) \in \mathcal{T}_{ ext{neighbors}}} l^{ ext{attract}}(i,j) + \sum_{(i,k) \in \mathcal{T}_{ ext{further}}} l^{ ext{repulse}}(i,k)$$ - We must have forces on non-neighbors. - The choice of which graph components to preserve is important. MN: mid-near FP: further point $$Loss^{PaCMAP} = w_{neighbors}Loss_{neighbors} + w_{MN}Loss_{MN} + w_{FP}Loss_{FP}$$ $$Loss_{neighbors} = \frac{\tilde{d}_{ij}}{10 + \tilde{d}_{ij}}, \quad Loss_{MN} = \frac{\tilde{d}_{ik}}{10000 + \tilde{d}_{ik}}, \quad Loss_{FP} = \frac{1}{1 + \tilde{d}_{il}}$$ attractive mild attractive Neighbors: Mid-near pairs: Further points: repulsive - We must have forces on non-neighbors. - The choice of which graph components to preserve is important. $$Loss^{PaCMAP} = w_{neighbors} Loss_{neighbors} + w_{MN} Loss_{MN} + w_{FP} Loss_{FP}$$ $$\label{eq:Loss_neighbors} \begin{split} \text{Loss}_{\text{neighbors}} &= \frac{\tilde{d}_{ij}}{10 + \tilde{d}_{ij}}, \quad \text{Loss}_{MN} = \frac{\tilde{d}_{ik}}{10000 + \tilde{d}_{ik}}, \quad \text{Loss}_{FP} = \frac{1}{1 + \tilde{d}_{il}} \\ \text{Neighbors:} & \quad \text{Mid-near pairs:} & \quad \text{Further points:} \\ \text{attractive} & \quad \text{mild attractive} & \quad \text{repulsive} \end{split}$$ ## The weights change on a schedule: Period 1: $w_{\text{neighbors}}$ is medium, w_{MN} is huge, w_{FP} is medium Period 2: $w_{\text{neighbors}}$ is large, w_{MN} is small, w_{FP} is medium Period 3: $w_{\text{neighbors}}$ is medium, w_{MN} is 0, w_{FP} is medium 0.699 ± 0.007 0.718 ± 0.005 0.665 ± 0.002 0.866 ± 0.010 0.872 ± 0.003 0.666 ± 0.003 0.727 ± 0.001 0.619 ± 0.001 0.741 ± 0.002 0.894 ± 0.005 0.752 ± 0.002 | DATASET (SIZE) | BASELINE | T-SNE | LARGEVIS | UMAP | TRIMAP | PACMAP | |-----------------------------------|----------------|--|--|--|-------------------------------------|--------------------------------------| | COIL-20 (1.4K)
COIL-100 (7.2K) | 0.972
0.989 | 0.909 ± 0.015
0.911 ± 0.004 | 0.799 ± 0.020
0.707 ± 0.014 | 0.844 ± 0.004
0.879 ± 0.007 | 0.778 ± 0.010 0.737 ± 0.019 | $0.942 \pm 0.009 \\ 0.933 \pm 0.009$ | | USPS (9K) | 0.949 | 0.959 ± 0.002 | 0.957 ± 0.001 | 0.956 ± 0.002 | 0.946 ± 0.001 | 0.958 ± 0.001 | SVM accuracy (measures local structure preservation) TASET (SIZE) BASELINE 1-SNE LARGEVIS UMAP TRIMAP IL-20 (1.4K) 0.972 0.909 $$\pm$$ 0.015 0.799 \pm 0.020 0.844 \pm 0.004 0.778 \pm 0.010 IL-100 (7.2K) 0.989 0.911 \pm 0.004 0.707 \pm 0.014 0.879 \pm 0.007 0.737 \pm 0.019 PS (9k) 0.940 0.950 \pm 0.002 0.957 \pm 0.001 0.956 \pm 0.002 0.946 \pm 0.001 0.698 ± 0.016 0.577 ± 0.012 0.654 ± 0.013 0.722 ± 0.045 0.701 ± 0.038 0.645 ± 0.002 0.715 ± 0.002 0.600 ± 0.007 0.679 ± 0.019 COIL-20 (1.4K) USPS (9K) COIL-100 (7.2K) MAMMOTH (10K) MNIST (70K) F-MNIST (70K) KDD CUP99 (4M) 20Newsgroups (18K) S-CURVE WITH HOLE (9.5K) Mouse scrna-seq (20K) FLOW CYTOMETRY (3M) COIL-20 (1.4K) $$0.972$$ 0.909 ± 0.015 0.799 ± 0.020 0.844 ± 0.004 0.778 ± 0.010 0.942 ± 0.009 COIL-100 (7.2K) 0.989 0.911 ± 0.004 0.707 ± 0.014 0.879 ± 0.007 0.737 ± 0.019 0.933 ± 0.009 USPS (9K) 0.949 0.959 ± 0.002 0.957 ± 0.001 0.956 ± 0.002 0.946 ± 0.001 0.958 ± 0.001 MAMMOTH (10K) 0.961 0.927 ± 0.009 0.923 ± 0.011 0.941 ± 0.003 0.900 ± 0.004 0.933 ± 0.004 20Name of power (18k) 0.702 0.425 ± 0.014 0.444 ± 0.012 0.421 ± 0.003 0.900 ± 0.004 0.447 ± 0.006 | OIL-100 (7.2K) | 0.989 | 0.911 ± 0.004 | 0.707 ± 0.014 | 0.879 ± 0.007 | 0.737 ± 0.019 | $0.933 \pm$ | |------------------|-------|-------------------|-------------------|-------------------|-------------------|----------------| | SPS (9K) | 0.949 | 0.959 ± 0.002 | 0.957 ± 0.001 | 0.956 ± 0.002 | 0.946 ± 0.001 | 0.958 ± | | АММОТН (10K) | 0.961 | 0.927 ± 0.009 | 0.923 ± 0.011 | 0.941 ± 0.003 | 0.900 ± 0.004 | 0.933 = | | NEWSGROUPS (18K) | 0.792 | 0.435 ± 0.014 | 0.444 ± 0.012 | 0.431 ± 0.013 | 0.410 ± 0.007 | 0.447 ± | | NIST (70K) | 0.926 | 0.967 ± 0.002 | 0.965 ± 0.004 | 0.970 ± 0.001 | 0.960 ± 0.001 | $0.974 \pm$ | | 20NEWSGROUPS (18K)
MNIST (70K)
F-MNIST (70K) | 0.792
0.926
0.854 | 0.435 ± 0.014
0.967 ± 0.002
0.754 ± 0.003 | $0.444 \pm 0.012 \\ 0.965 \pm 0.004 \\ 0.748 \pm 0.003$ | 0.431 ± 0.013
0.970 ± 0.001
0.742 ± 0.003 | 0.410 ± 0.007
0.960 ± 0.001
0.729 ± 0.001 | 0.447 ± 0.006
0.974 ± 0.001
0.752 ± 0.004 | | |--|-------------------------|---|---|---|---|---|--| | Random triplet accuracy (measures global structure preservation) | | | | | | | | | DATASET (SIZE) | | T-SNE | LargeVis | UMAP | TRIMAP | PACMAP | | 0.649 ± 0.014 0.568 ± 0.011 0.669 ± 0.002 0.800 ± 0.013 0.816 ± 0.001 0.664 ± 0.002 0.727 ± 0.002 0.614 ± 0.001 0.740 ± 0.001 t-SNE version: opt-SNE (Belkina et al., 2019) built on Multi-core t-SNE (Ulyanov et al., 2016) 0.659 ± 0.006 0.633 ± 0.002 0.640 ± 0.002 0.838 ± 0.004 0.874 ± 0.001 0.704 ± 0.002 0.728 ± 0.001 0.600 ± 0.001 0.777 ± 0.001 0.857 ± 0.001 0.660 ± 0.007 0.735 ± 0.011 0.630 ± 0.021 0.668 ± 0.011 0.834 ± 0.041 0.766 ± 0.024 0.632 ± 0.001 0.719 ± 0.003 0.601 ± 0.007 0.657 ± 0.011 (Ran out of memory or time, >24 hrs) # Thanks!