

Making Sense of Dependence: Efficient Black-box Explanations Using Dependence Measure

PAUL NOVELLO, THOMAS FEL, DAVID VIGOUROUX, NEURIPS 2022

Introduction – why explainability in Deep Learning?

- o Build trust in the model prediction
- O Make sure the model makes a prediction for a good reason
 - Identify bias or spurious effects learned by a model

Introduction – why explainability in Deep Learning?

- o Build trust in the model prediction
- O Make sure the model makes a prediction for a good reason
 - Identify bias or spurious effects learned by a model
 - Understand failure cases

Introduction – why explainability in Deep Learning?

- o Build trust in the model prediction
- O Make sure the model makes a prediction for a good reason
 - Identifiy bias or spurious effects learned by a model
 - Understand failure cases
- o Pattern mining: identify patterns in data

Thomas Fel – DEEL, Brown university, work in progress with Harvard university

A zoology of attribution methods

Vulpes vulpe

Occlusion sensitivity

Saliency

Integrated Gradients

DeconvNet

SmoothGrad

Guided Backpropagation

Grad-CAM

Gradient x Input

Grad-CAM++

A zoology of attribution methods

Saliency Maps Symonyan & al (2013)[1]

$$\Phi = \nabla f(x) \implies \phi_i = \frac{\partial f(x)}{\partial x_i}$$

In an infinitesimal neighborhood (often not feasible), what are my features that most impact the output score?

SmoothGrad Smilkov & al (2017)[2]

$$\Phi = \mathbb{E}_{\epsilon \sim \mathcal{N}(0, I\sigma)} [\nabla f(x + \epsilon)]$$

$$\Phi = \frac{1}{N} \sum_{i=0}^{N} \nabla f(x + \epsilon)$$

$$\Phi = \frac{1}{N} \sum_{i=0}^{N} \nabla f(x + \epsilon)$$

As the name suggests, averages the gradient at several points corresponding to small perturbations around the point of interest.

^[1] Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

^[2] SmoothGrad: removing noise by adding noise

A zoology of attribution methods

Integrated Gradients Sundarajan & al (2017)[1]

$$\Phi = (x - x_0) \int_0^1 \frac{\partial f(x_0 + \alpha(x - x_0))}{\partial x} d\alpha$$

$$\Phi = (x - x_0) \frac{1}{N} \sum_{i=0}^N \frac{\partial f(x_0 + \frac{i}{N}(x - x_0))}{\partial x}$$

Averaging the gradient values along the path from a baseline state to the current value. The baseline state is often set to zero.

Occlusion Ancona & al (2017)[2]

$$\phi_i = f(x) - f(x_{[x_i = x_0]})$$

Sweep a patch that occludes pixels over the images, and use the variations of the model prediction to deduce critical areas.

^[2] Towards better understanding of gradient-based attribution methods for Deep Neural Networks

A zoology of attribution methods

RISE Petsiuk & al (2018)[1]

$$\phi_i = \mathbb{E}[f(x \odot m)|m = 1]$$

$$\phi_i = \frac{1}{\mathbb{E}[m]N} \sum_{i=0}^{N} f(x \odot m_i) \odot m_i$$

Probing the model with randomly masked versions of the input image and obtaining the corresponding outputs to deduce critical areas.

[1] RISE: Randomized Input Sampling for Explanation of Black-box Models

black-box state of the art

A zoology of attribution methods

And many more ...

White-box

- Needs access to internal representations
- o Needs a backward pass
- o relatively fast

Black-box

- Only needs perturbations on the input space
- o Expensive: many forward passes are required

Black box: Patchwise Image Perturbation

How can we use these p samples?

Global sensitivity analysis

Let's consider a function
$$f: \begin{cases} \mathbb{R}^d & \to \mathbb{R} \\ X & \to Y = f(X) \end{cases}$$

Sensitivity analysis is concerned with measuring the **sensitivity** of Y to each **input vector** $X_i, i \in \{1, ..., d\}$. Here, $\mathbf{M} = \{X_1, ..., X_d\}$

Global sensitivity analysis is broadly used outside A.I.

- Classical statistics
- Industrial design optimization in engineering
- Physical modeling
- •

Global sensitivity analysis

Why Global?

GSA (as opposed to Local SA) considers the sensitivity of Y to X_i With respect to all its input domain.

Local

- Only considers the effect of X_i independently from one another
- Study the sensitivity of Y to small, local perturbations

Global

- Allows to draw general conclusions about the importance of a specific X_i
- Thorough analysis of the sensitivity of Y, including to interactions between X_i

Global sensitivity analysis

Some attribution methods perform SA without knowing it!

Local

Examples:

Occlusion

• Saliency

$$\Phi = \nabla f(x) \implies \phi_i = \frac{\partial f(x)}{\partial x_i}$$

Global

Examples:

• RISE

Sobol

• • •

Flashback: Sobol attribution method

Sobol method measures the importance of X_i by assessing its contribution to the variance of Y (ANOVA).

Flashback: Sobol attribution method [1]

Sobol method measures the importance of X_i by assessing its contribution to the variance of Y (ANOVA).

Each patch X_i gets an importance score which is the total Sobol index S_i of the corresponding X_i . Assesses the importance of X_i and of all its interactions.

$$\mathbf{M} = \{X_1, ..., X_d\}$$

 \mathcal{S}_i

[1] Thomas Fel et al, Neurips 2021

Aı

Another approach: GSA using dependence

Idea: if Y is sensitive to X_i , then those two random variables are dependent

How to measure the dependence between two random variables?

- Let \mathbb{P}_{X_i} be the probability distribution of X_i
- Let \mathbb{P}_Y be the probability distribution of Y
- Let $\|\cdot\|$ be some distance defined on probability distributions

$$\|\mathbb{P}_{X_i}\mathbb{P}_Y - \mathbb{P}_{X_i,Y}\| = 0 \Rightarrow \mathbb{P}_{X_i}\mathbb{P}_Y = \mathbb{P}_{X_i,Y} \Rightarrow X_i \perp Y$$

MMD and RKHS

One can measure the dependence between Y and X_i by assessing $\|\mathbb{P}_{X_i}\mathbb{P}_Y - \mathbb{P}_{X_i,Y}\|$

How to select $\|\cdot\|$? Two ingredients:

- Reproducing Kernel Hilbert Space (RKHS) is a space where we can construct representations (called embeddings) of random variables.
- The Maximum Mean Discrepancy (MMD) is a distance defined in a Restricted Kernel Hilbert Space (RKHS). It can be used to measure the distance between the embedding of two distributions.

MMD and RKHS

- Reproducing Kernel Hilbert Space (RKHS) is a space where we can construct representations (called embeddings) of random variables.
 - Let $k: \mathbb{R}^2 \to \mathbb{R}$ be a kernel
 - The embedding of $x \in \mathcal{X}$ In the RKHS \mathcal{F} , $\Phi : \mathcal{X} \to \mathcal{F}$ is defined by:

$$\Phi(x) := x' \to k(x, x')$$

• The Maximum Mean Discrepancy (MMD) is a distance defined in a Restricted Kernel Hilbert Space (RKHS). It can be used to measure the distance between the embedding of two distributions.

$$\gamma(P_{X_i}, P_Y) = MMD(P_{X_i}, P_Y) = \|\mu_{P_{X_i}} - \mu_{P_Y}\|_{\mathcal{H}}$$

Where $\mu_{P_{X_i}}$ is the mean embedding of X_i defined by $\mu_{P_{X_i}} := x' \to \int k(x, x') dP_{X_i}(x)$

Hilbert Schmidt Independence Criterion

- Let $k: \mathbb{R}^2 \to \mathbb{R}$ be a kernel used for embedding X_i , defining RKHS \mathcal{F}
- Let $l: \mathbb{R}^2 \to \mathbb{R}$ be a kernel used for embedding Y, defining RKHS \mathcal{G}
- Define a kernel $v: \mathbb{R}^4 \to \mathbb{R}^2$; $(x, x'), (y, y') \to k(x, x')l(y, y')$ and thus a RKHS \mathcal{H}

Hilbert Schmidt Independence Criterion is a measure of dependence defined on \mathcal{H} by

$$HSIC(X_i, Y) = \gamma^2(\mathbb{P}_{X_i}\mathbb{P}_Y, \mathbb{P}_{X_i, Y})$$

Hilbert Schmidt Independence Criterion

• Let $k: \mathbb{R}^2 \to \mathbb{R}$ be a kernel used for embedding X_i

• Let $l: \mathbb{R}^2 \to \mathbb{R}$ be a kernel used for embedding Y

(defines RKHSs \mathcal{G} and \mathcal{F})

HSIC can be efficiently estimated using:

$$\mathcal{H}_{X_i,Y}^p = \frac{1}{(p-1)^2} \operatorname{tr}(KHLH)$$

where $H, L, K \in \mathbb{R}^{p \times p}$,

$$K_{jk} = k(X_i^j, X_i^k), L_{j,k} = l(Y^j, Y^k) \text{ and } H_{jk} = \delta(j = k) - p^{-1}$$

For an estimation with p samples $\{X_i^1,...,X_i^p\}$ of X_i

Hilbert Schmidt Independence Criterion

Hilbert Schmidt Independence Criterion:

$$HSIC(X_i, Y) = \gamma^2(\mathbb{P}_{X_i}\mathbb{P}_Y, \mathbb{P}_{X_i, Y})$$

Estimated with
$$\mathcal{H}^p_{X_i,Y} = \frac{1}{(p-1)^2} \operatorname{tr}(KHLH)$$

Advantages of HSIC

Why using a different sensitivity measure?

- o The estimator $\mathcal{H}^p_{X_i,Y}$ can estimate HSIC in $\mathcal{O}(1/\sqrt{p})$ with only p samples while Sobol estimator needs $p \times (d+2)$ samples to reach the same accuracy.
- o Bringing in RKHS theory opens up many research perspectives!

Practical Advantages: Efficiency

Illustration of the convergence speed of HSIC estimator against Sobol and RISE (Forwards = p)

How to evaluate the quality of explanations?

Fidelity metrics. Example: Deletion

The better the explanation, the quicker the score should drop when removing important regions.

13/03/2023

First Results: Fidelity Metrics (Deletion)

	Method	ResNet50	VGG16	EfficientNet	MobileNetV2
White-box	Saliency [43]	0.158	0.120	0.091	0.113
	GradInput [42]	0.153	0.116	0.084	0.110
	IntegGrad. [52]	0.138	0.114	0.078	0.096
	SmoothGrad [45]	0.127	0.128	0.094	0.088
	GradCAM++ [41]	0.124	0.125	0.112	0.106
	VarGrad [41]	0.134	0.229	0.224	0.097
Black-box	LIME [37]	0.186	0.258	0.186	0.148
	Kernel Shap [29]	0.185	0.165	0.164	0.149
	RISE [32]	0.114	0.106	0.113	0.115
	Sobol [11]	0.121	0.109	0.104	0.107
	\mathcal{H}_i^p eff. (ours)	0.106	0.100	0.095	0.094
	\mathcal{H}_i^p acc. (ours)	0.105	0.099	0.094	0.093

First Results: Fidelity Metrics (Insertion)

	Method	ResNet50	VGG16	<i>EfficientNet</i>	MobileNetV2
Ins. (†)					
White-box	Saliency [43]	0.357	0.286	0.224	0.246
	GradInput [42]	0.363	0.272	0.220	0.231
	IntegGrad. [52]	0.386	0.276	0.248	0.258
	SmoothGrad [45]	0.379	0.229	0.172	0.246
	GradCAM++ [41]	0.497	0.413	0.316	0.387
	VarGrad [41]	0.527	0.241	0.222	0.399
Black-box	LIME [37]	0.472	0.273	0.223	0.384
	Kernel Shap [29]	0.480	0.393	0.367	0.383
	RISE [32]	0.554	0.485	0.439	0.443
	Sobol [11]	0.370	0.313	0.309	0.331
	\mathcal{H}_i^p eff. (ours)	0.470	0.387	0.357	0.381
	\mathcal{H}_i^p acc. (ours)	<u>0.481</u>	0.395	<u>0.366</u>	0.392

Practical Advantages: Efficiency

·						
	Method	ResNet50	VGG16	EfficientNet	MobileNetV2	Exec. time (s)
White-box	Saliency [43]	0.158	0.120	0.091	0.113	0.360
	GradInput [42]	0.153	0.116	0.084	0.110	0.023
	IntegGrad. [52]	0.138	0.114	0.078	0.096	1.024
	SmoothGrad [45]	0.127	0.128	0.094	0.088	0.063
	GradCAM++ [41]	0.124	0.125	0.112	0.106	0.127
	VarGrad [41]	0.134	0.229	0.224	0.097	0.097
Black-box	LIME [37]	0.186	0.258	0.186	0.148	6.480
	Kernel Shap [29]	0.185	0.165	0.164	0.149	4.097
	RISE [32]	0.114	0.106	0.113	0.115	8.427
	Sobol [11]	0.121	0.109	0.104	0.107	5.254
	\mathcal{H}_i^p eff. (ours)	0.106	0.100	0.095	0.094	0.956
	\mathcal{H}_i^p acc. (ours)	0.105	0.099	0.094	0.093	<u>1.668</u>

Explanations of Bounding Boxes

Method	Deletion (\downarrow)	Insertion (↑)	μ Fidelity (\uparrow)	Exec. time (s)
D-RISE [36]	0.074	0.634	0.442	155
Kernel Shap. [32]	0.070	0.646	0.476	192
\mathcal{H}_i^p (ours)	0.088	0.658	0.568	34

Explanation of Yolov4 on COCO dataset

Shortcoming of HSIC: interactions

Let
$$A = \{l_1, ..., l_{|A|}\} \in \mathcal{P}_d$$
 i.e. a subset of $\{1, ..., d\}$

For **Sobol** indices, we have

$$S_A = \sum_{B \subset A} (-1)^{|A| - |B|} \frac{Var \mathbb{E}(Y|X_B)}{Var Y}$$

When $A = \{i, j\}$, $S_A = S_{i,j}$ can be simply obtained with

$$\mathcal{S}_{i,j} = egin{array}{c} ext{Not possible} \ ext{with HSIC} \end{array} egin{array}{c} \mathcal{S}_i - \mathcal{S}_j \ ext{(but expensive...)} \end{array}$$

Why considering interactions?

$$Y = f(X_1, X_2, X_3) = \begin{cases} 1 & \text{if } X_1 \in [0, 1], X_2 \in [1, 2], X_3 \in [0, 1], \\ 1 & \text{if } X_1 \in [0, 1], X_2 \in [0, 1], X_3 \in [1, 2], \\ 0 & \text{otherwise.} \end{cases}$$

Why considering interactions?

$$Y = f(X_1, X_2, X_3) = \begin{cases} 1 & \text{if } X_1 \in [0, 1], X_2 \in [1, 2], X_3 \in [0, 1], \\ 1 & \text{if } X_1 \in [0, 1], X_2 \in [0, 1], X_3 \in [1, 2], \\ 0 & \text{otherwise.} \end{cases}$$

- \circ X_1 is clearly important to explain Y
- \circ X_2 and X_3 are more difficult to interpret:

$$HSIC(\mathbf{x}_2, \mathbf{y}) = 0$$
 and $HSIC(\mathbf{x}_3, \mathbf{y}) = 0$

...whereas they clearly have an effect on. Y!

We have to look at interactions

ANOVA-like orthogonal decomposition of HSIC

In [1], an ANOVA like decomposition property is constructed for HSIC:

Let
$$A = \{l_1, ..., l_{|A|}\} \in \mathcal{P}_d$$
 i.e. a subset of $\{1, ..., d\}$

$$HSIC_A = \sum_{B \subset A} (-1)^{|A| - |B|} HSIC(X_B, Y)$$

When $A = \{i, j\}$, $HSIC_A = HSIC_{i,j}$ can be simply obtained with

$$HSIC_{i,j} = HSIC((X_i, X_j), Y) - HSIC(X_i, Y) - HSIC(X_j, Y)$$

...for a certain choice of kernel k_A

ANOVA-like orthogonal decomposition of HSIC

...for a certain choice of kernel k_A

$$k_{A}(X_{A}, X'_{A}) = \prod_{i \in A} (1 + k_{0}(X_{i}, X'_{i}))$$
with
$$k_{0}(X, X') = k(X, X') - \frac{\int k(X, t)dP(t) \int k(X', t)dP(t)}{\int \int k(s, t)dP(s)dP(t)}$$

Difficult to compute

Proposition: if the kernel is constructed as

$$k_{A}(X_{A}, X'_{A}) = \prod_{i \in A} (1 + k_{0}(X_{i}, X'_{i}))$$
with
$$k_{0}(X, X') = k(X, X') \frac{\int k(X, t) dP(t) \int k(X', t) dP(t)}{2 \int \int k(s, t) dP(s) dP(t)}$$

Interactions can be computed using orthogonal decomposition!

ANOVA-like orthogonal decomposition of HSIC

Proposition: if the kernel is constructed as

$$k_A(X_A, X_A') = \prod_{i \in A} (1 + k_0(X_i, X_i'))$$

with
$$k_0(X, X') = \delta(X = X') - \frac{1}{2}$$

Interactions can be computed using orthogonal decomposition!

Advantages of HSIC

Why using a different sensitivity measure?

- The estimator $\mathcal{H}_{X_i,Y}^p$ can estimate HSIC in $\mathcal{O}(1/\sqrt{p})$ with only p samples while Sobol estimator needs $p \times (d+2)$ samples to reach the same accuracy.
- o Bringing in RKHS theory opens up many research perspectives!

Example: now, can assess pairwise interactions!

Practical Advantages: ANOVA decomposition

Conclusion and take away

Context

- Black box attribution methods based on patch perturbations are versatile and convenient ways of obtaining explanations
- They suffer from high computational costs because they need many forward passes
- Global sensitivity analysis is a promising approach to exploit these perturbation
- The current SOTA GSA based attribution method uses analysis of variance with Sobol indices.

We propose to use GSA based on dependence measures (HSIC)

- Needs less forward to obtain good explanations
- Theoretical advantages of RKHS
- Can assess patch-wise interactions