

Reliability assessment of structural dynamic systems by importance sampling

Oindrila Kanjilal, Iason Papaioannou, Daniel Straub

Engineering Risk Analysis Group, TU München

E-mail: oindrila.kanjilal@tum.de

The dynamical system

$$\mathbf{M}(\boldsymbol{\theta})\ddot{\boldsymbol{v}}(t) + \mathbf{C}(\boldsymbol{\theta})\dot{\boldsymbol{v}}(t) + \mathbf{K}(\boldsymbol{\theta})\boldsymbol{v}(t) = \boldsymbol{D}f(t,\boldsymbol{\xi})$$

$$v(0) = 0, \dot{v}(0) = 0$$

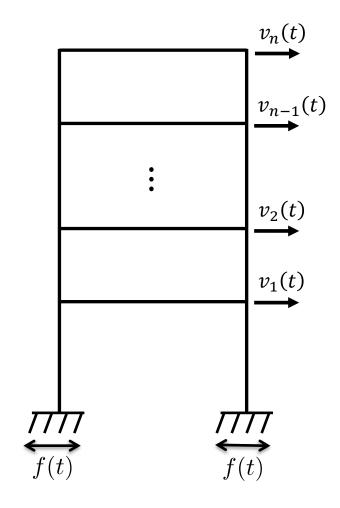
 Θ : random vector with PDF $p_{\Theta}(\theta)$

 $f(t,\Xi)$: Gaussian random excitation over a time duration [0,T]. At time instant t_k : $f(t_k,\Xi) = \mathbf{G}_k^T\Xi$, where Ξ is a vector of independent standard Gaussian random variables

Linear load-response relationship:

$$h(t, \boldsymbol{\theta}, \boldsymbol{\xi}) = \int_0^t K(t - \tau, \boldsymbol{\theta}) f(\tau, \boldsymbol{\xi}) d\tau$$

 $K(t, \boldsymbol{\theta})$: unit IRF of the deterministic system for $\boldsymbol{\Theta} = \boldsymbol{\theta}$



Failure event and probability of failure

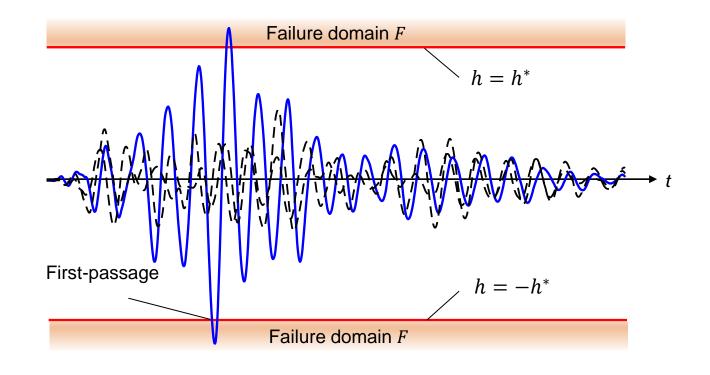
First-passage failure:

$$F = \{ \boldsymbol{\theta} \in \mathbb{R}^{n_{\boldsymbol{\theta}}}, \boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}} : \max_{0 < t \le T} |h(t, \boldsymbol{\theta}, \boldsymbol{\xi})| \ge h^* \}$$

Probability of failure:

$$P_F = \int_{\boldsymbol{\theta} \in \mathbb{R}^{n_{\boldsymbol{\theta}}}} \int_{\boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}}} I\{(\boldsymbol{\theta}, \boldsymbol{\xi}) \in F\} \ p_{\boldsymbol{\Xi}}(\boldsymbol{\xi}) d\boldsymbol{\xi} p_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

- Structural failure is a rare event
 - Standard MCS computationally intractable
 - Advanced MCS/ variance reduction techniques required



Importance sampling

• Consider IS probability density $q_{\Theta,\Xi}(\theta,\xi)$

$$P_F = \int_{\boldsymbol{\theta} \in \mathbb{R}^{n_{\boldsymbol{\theta}}}} \int_{\boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}}} I\{(\boldsymbol{\theta}, \boldsymbol{\xi}) \in F\} \frac{p_{\Xi}(\boldsymbol{\xi})p_{\boldsymbol{\theta}}(\boldsymbol{\theta})}{q_{\boldsymbol{\theta}, \Xi}(\boldsymbol{\theta}, \boldsymbol{\xi})} q_{\boldsymbol{\theta}, \Xi}(\boldsymbol{\theta}, \boldsymbol{\xi}) d\boldsymbol{\xi} d\boldsymbol{\theta}$$

IS estimate of P_F:

$$\widehat{P}_F = \frac{1}{N} \sum_{i=1}^{N} I\{(\boldsymbol{\theta}^i, \boldsymbol{\xi}^i) \in F\} \frac{p_{\Xi}(\boldsymbol{\xi}^i) p_{\Theta}(\boldsymbol{\theta}^i)}{q_{\Theta,\Xi}(\boldsymbol{\theta}^i, \boldsymbol{\xi}^i)}$$

where $\{(\boldsymbol{\theta}^i, \boldsymbol{\xi}^i), i = 1, ..., N\}$ are i.i.d. samples from $q_{\boldsymbol{\Theta}, \Xi}(\boldsymbol{\theta}^i, \boldsymbol{\xi}^i)$

- Select: $q_{\Theta,\Xi}(\theta,\xi) = q_{\Theta}(\theta)q_{\Xi}(\xi|\theta)$ with
 - o $q_{\Xi}(\boldsymbol{\xi}|\boldsymbol{\theta})$ according to [Au & Beck 2001]
 - o $q_{\Theta}(\theta)$ by cross entropy (CE) optimization [Kanjilal et. al. 2021]

IS density $q_{\Xi}(\xi|\theta)$ for conditional FPP

Conditional FPP by importance sampling:

$$P_{F|\Theta}(\boldsymbol{\theta}) = \int_{\boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}}} I\{(\boldsymbol{\theta}, \boldsymbol{\xi}) \in F\} \frac{p_{\Xi}(\boldsymbol{\xi})}{q_{\Xi}(\boldsymbol{\xi}|\boldsymbol{\theta})} q_{\Xi}(\boldsymbol{\xi}|\boldsymbol{\theta}) d\boldsymbol{\xi}$$

A very efficient IS density to [Au & Beck 2001]:

$$q_{\Xi}(\boldsymbol{\xi}|\boldsymbol{\theta}) = \sum_{k=1}^{n_T} w_k(\boldsymbol{\theta}) \frac{\mathrm{I}\{(\boldsymbol{\theta}, \boldsymbol{\xi}) \in F_k(\boldsymbol{\theta})\} p_{\Xi}(\boldsymbol{\xi})}{\mathrm{Prob}[F_k(\boldsymbol{\theta})]}$$

• Normalized weights
$$w_k(\boldsymbol{\theta}) = \frac{\text{Prob}[F_k(\boldsymbol{\theta})]}{\sum_{l=1}^{n_T} \text{Prob}[F_l(\boldsymbol{\theta})]}$$

Time instants $\{t_1, ..., t_{n_T}\}$ in [0, T]

$$F(\boldsymbol{\theta}) = \bigcup_{k=1}^{n_T} F_k(\boldsymbol{\theta})$$
, where

$$F_k(\boldsymbol{\theta}) = \{ \boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}} : |h(t_k, \boldsymbol{\theta}, \boldsymbol{\xi})| \ge h^* \}$$

Conditional FPP by importance sampling

Conditional FPP by importance sampling:

$$P_{F|\Theta}(\boldsymbol{\theta}) = \tilde{P}(\boldsymbol{\theta}) \int_{\boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}}} \frac{1}{\sum_{k=1}^{n_{T}} \mathbb{I}\{(\boldsymbol{\theta}, \boldsymbol{\xi}) \in F_{k}(\boldsymbol{\theta})\}} q_{\Xi}(\boldsymbol{\xi}|\boldsymbol{\theta}) d\boldsymbol{\xi}$$

where
$$\tilde{P}(\boldsymbol{\theta}) = \sum_{k=1}^{n_T} \text{Prob}[F_k(\boldsymbol{\theta})]$$

Instantaneous failure probabilities:

o
$$F_k(\theta) = F_k^+(\theta) + F_k^-(\theta)$$
 (mutually exclusive events)

Time instants $\{t_1, ..., t_{n_T}\}$ in [0, T]

$$h(t_k, \boldsymbol{\theta}, \boldsymbol{\Xi}) = \boldsymbol{r}_k^T(\boldsymbol{\theta})\boldsymbol{\Xi}$$

where
$$\mathbf{r}_k^T(\boldsymbol{\theta}) = \Delta t \sum_{s=1}^k c_s K(t_k - t_s, \boldsymbol{\theta}) \mathbf{G}_s^T$$

Estimation of the unconditional FPP

- Direct approach computationally infeasible
- Adopt importance sampling

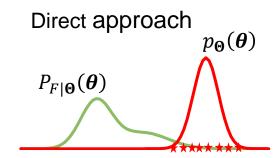
$$P_F = \int_{\boldsymbol{\theta} \in \mathbb{R}^{n_{\boldsymbol{\theta}}}} P_{F|\boldsymbol{\Theta}}(\boldsymbol{\theta}) p_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$\approx \sum_{i=1}^{M} P_{F|\Theta} (\boldsymbol{\theta}^{i}) \frac{p_{\Theta}(\boldsymbol{\theta}^{i})}{q_{\Theta}(\boldsymbol{\theta}^{i})}$$

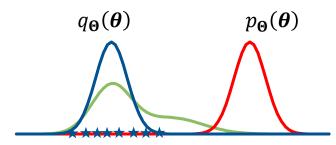
 $\{\boldsymbol{\theta}^i, i=1,...,M\}$ are independent samples $\sim q_{\boldsymbol{\theta}}(\boldsymbol{\theta})$

- Optimal IS density: $q_{\mathbf{\Theta}}^*(\boldsymbol{\theta}) = \frac{1}{P_F} P_{F|\mathbf{\Theta}}(\boldsymbol{\theta}) p_{\mathbf{\Theta}}(\boldsymbol{\theta})$
- Proposed approach:

Obtain approximation of $q_{\boldsymbol{\theta}}^*(\boldsymbol{\theta})$ by cross entropy method



Importance sampling



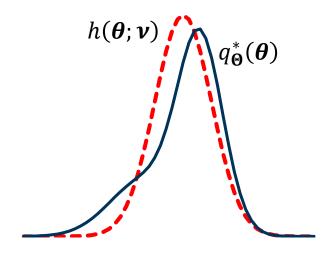
Determination of $q_{\Theta}(\theta)$ by CE method

- Select parametric density family $h(\theta; \nu), \nu \in \mathcal{V}$
 - o $h(\boldsymbol{\theta}; \, \boldsymbol{v}_0)$ corresponds to $p_{\boldsymbol{\Theta}}(\boldsymbol{\theta})$ for $\boldsymbol{v}_0 \in \mathcal{V}$
 - o find ν^* such that $h(\theta; \nu^*) \approx q_{\Theta}^*(\theta)$
- Determine v^* by CE optimization

$$v^* = \underset{\boldsymbol{a} \in \mathcal{V}}{\operatorname{argmin}} D_{KL} (q_{\boldsymbol{\Theta}}^*(\boldsymbol{\theta}), h(\boldsymbol{\theta}; \boldsymbol{a}))$$

$$= \underset{\boldsymbol{a} \in \mathcal{V}}{\operatorname{argmax}} E_{p_{\boldsymbol{\Theta}}(\boldsymbol{\theta})} [P_{F|\boldsymbol{\Theta}}(\boldsymbol{\theta}) \ln(h(\boldsymbol{\theta}; \boldsymbol{a}))]$$

- CE optimization can be solved using samples from $p_{\Theta}(\theta)$
 - can be computationally expensive
 - o adopt a *multi-level approach*



$$D_{KL}(q_{\boldsymbol{\Theta}}^*(\boldsymbol{\theta}), h(\boldsymbol{\theta}; \boldsymbol{\nu}))$$

Kullback-Leibler divergence

Information lost in representing $q_{\boldsymbol{\theta}}^*(\boldsymbol{\theta})$ by the parametric density $h(\boldsymbol{\theta}; \boldsymbol{\nu})$.

Multi-level CE method for $q_{\Theta}(\theta)$: intermediate densities

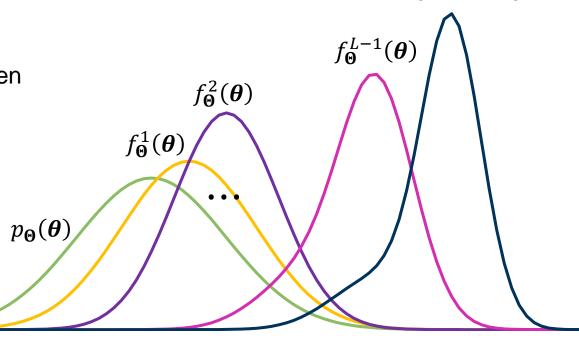
Sequence of intermediate target densities

$$f_{\mathbf{\Theta}}^{k}(\boldsymbol{\theta}) = \frac{1}{C_{k}} P_{F|\mathbf{\Theta}}(\boldsymbol{\theta})^{\gamma_{k}} p_{\mathbf{\Theta}}(\boldsymbol{\theta})$$

with
$$0 = \gamma_0 < \gamma_1 < \dots < \gamma_L = 1$$
 and $C_k = \int_{\boldsymbol{\theta} \in \mathbb{R}^{n_{\boldsymbol{\theta}}}} P_{F|\boldsymbol{\Theta}}(\boldsymbol{\theta})^{\gamma_k} p_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) d\boldsymbol{\theta}$

 $f_{\mathbf{\Theta}}^{L}(\boldsymbol{\theta}) = q_{\mathbf{\Theta}}^{*}(\boldsymbol{\theta})$

- Tempering parameters control the difference between successive densities
- Smooth transition between $p_{\mathbf{\Theta}}(\boldsymbol{\theta})$ and $q_{\mathbf{\Theta}}^*(\boldsymbol{\theta})$



CE optimization in the intermediate levels

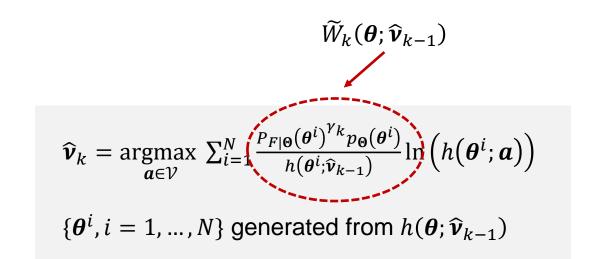
Sequential approach based on importance sampling

Approximate $f_{\mathbf{0}}^{k}(\boldsymbol{\theta})$ by $h(\boldsymbol{\theta}; \boldsymbol{\nu}_{k})$

$$\mathbf{v}_k = \underset{\mathbf{a} \in \mathcal{V}}{\operatorname{argmin}} D_{KL} \left(f_{\mathbf{0}}^k(\boldsymbol{\theta}), h(\boldsymbol{\theta}; \boldsymbol{a}) \right)$$

= argmax
$$E_{p_{\Theta}(\theta)}[P_{F|\Theta}(\theta)^{\gamma_k}\ln(h(\theta; \boldsymbol{a}))]$$

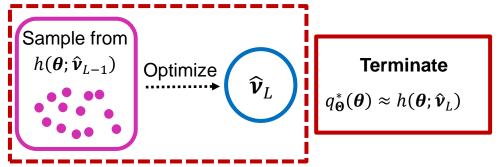
$$= \underset{\boldsymbol{a} \in \mathcal{V}}{\operatorname{argmax}} \ \mathbb{E}_{h(\boldsymbol{\theta}; \widehat{\boldsymbol{v}}_{k-1})} \left[P_{F|\boldsymbol{\Theta}}(\boldsymbol{\theta})^{\gamma_k} \frac{p_{\boldsymbol{\Theta}}(\boldsymbol{\theta})}{h(\boldsymbol{\theta}; \widehat{\boldsymbol{v}}_{k-1})} \ln \left(h(\boldsymbol{\theta}; \boldsymbol{a}) \right) \right]$$



Sample from $p_{\theta}(\theta)$ Optimize $\widehat{\pmb{\mathcal{V}}}_1$ Sample from $h(\theta; \widehat{\pmb{\mathcal{V}}}_1)$ Optimize $\widehat{\pmb{\mathcal{V}}}_2$

Level 2

Level L



Adaptive selection of the levels

Adaptive selection of γ_k

$$\gamma_k = \underset{\gamma \in (\gamma_{k-1}, 1)}{\operatorname{argmin}} (\hat{\delta}_{\widetilde{W}_k}(\gamma) - \delta_{target})^2$$

$$\hat{\delta}_{\widetilde{W}_k}(\gamma)$$
: sample CoV of $\{\widetilde{W}_k(\boldsymbol{\theta}^i; \widehat{\boldsymbol{\nu}}_{k-1}), i=1,...N\}$

- Ensures that $f_{\Theta}^k(\theta)$ is approximated well with a small number of samples from $h(\theta; \hat{v}_{k-1})$.
- Ensures that the number of effective samples used to fit the parametric model takes a target value:

$$ESS = N / \left(1 + \hat{\delta}_{\widetilde{W}_k}^2(\gamma)\right)$$

- Equivalent to bounding the sample CoV of the IS estimate of the normalizing constant C_k
- We select $\delta_{target} = 1.5$. This leads to $\delta_{\hat{C}_k} \approx 0.05$ for N = 1000.
- Convergence after L steps when $\gamma_L = 1$. Consider $q_{\Theta}(\theta) = h(\theta; \hat{\nu}_L) \approx q_{\Theta}^*(\theta)$.

Evaluation of $P_{F|\Theta}(\theta)$ during CE optimization

- The CE optimization procedure requires repeated evaluation of $P_{F|\Theta}(\theta)$
- By the Poisson Approximation [Rice 1944]:

$$P_{F|\Theta}(\boldsymbol{\theta}) \approx 1 - \exp\left(-\int_0^T \alpha(t; h^*, \boldsymbol{\theta}) dt\right)$$

 $\alpha(t; h^*, \theta)$: out-crossing rate at time t

Ensures smooth convergence of the CE method

Estimator for FPP

Exact failure probability by importance sampling:

$$P_F = \int_{\boldsymbol{\theta} \in \mathbb{R}^{n_{\boldsymbol{\theta}}}} \int_{\boldsymbol{\xi} \in \mathbb{R}^{n_{\boldsymbol{\xi}}}} \frac{\tilde{P}(\boldsymbol{\theta})}{\sum_{k=1}^{n_T} I\{(\boldsymbol{\theta}, \boldsymbol{\xi}) \in F_k(\boldsymbol{\theta})\}} W(\boldsymbol{\theta}) q_{\boldsymbol{\Theta}, \boldsymbol{\Xi}}(\boldsymbol{\theta}, \boldsymbol{\xi}) d\boldsymbol{\xi} d\boldsymbol{\theta}$$

where
$$q_{\Theta,\Xi}(\theta,\xi) = q_{\Xi}(\xi|\theta)q_{\Theta}(\theta) = q_{\Xi}(\xi|\theta)h(\theta;\hat{v}_L)$$
 and $W(\theta) = p_{\Theta}(\theta)/h(\theta;\hat{v}_L)$

IS estimator

$$\widehat{P}_F = \frac{1}{N_{IS}} \sum_{i=1}^{N_{IS}} \frac{\widetilde{P}(\boldsymbol{\theta}^i)}{\sum_{k=1}^{n_T} \mathbb{I}\{(\boldsymbol{\theta}^i, \boldsymbol{\xi}^i) \in F_k(\boldsymbol{\theta}^i)\}} W(\boldsymbol{\theta}^i)$$

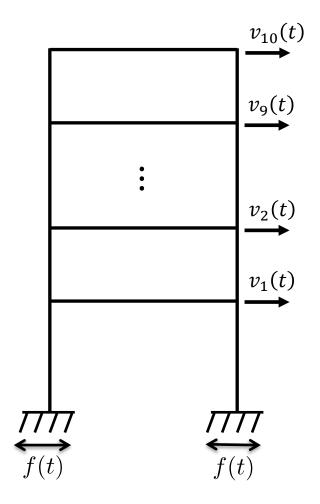
where $\{(\boldsymbol{\theta}^i, \boldsymbol{\xi}^i); i = 1, ..., N_{IS}\}$ are independent samples from $q_{\Xi}(\boldsymbol{\xi}|\boldsymbol{\theta})h(\boldsymbol{\theta}, \widehat{\boldsymbol{\nu}}_L)$

Numerical example: 10-story linear frame

Dynamical system:

$$\mathbf{M}\ddot{\mathbf{v}}(t) + \mathbf{C}\dot{\mathbf{v}}(t) + \mathbf{K}\mathbf{v}(t) = [m_1; ...; m_{10}]f(t)$$

- $v(t) = [v_1(t); ...; v_{10}(t)]$: displacement vector
- f(t): filtered modulated Gaussian white noise of duration T = 20s
- M, C and K defined in terms of lumped masses $\{m_1, \dots, m_{10}\}$, inter-story stiffness $\{k_1, \dots, k_{10}\}$ and damping ratios $\{\eta_1, \dots, \eta_{10}\}$.
- Critical response $h(t, \theta, \xi) = v_{10}(t) v_9(t)$
- First-passage probability: $\Pr\left(\max_{0 < t \le T} h(t, \theta, \xi) \ge h^*\right)$



Selection of the parametric family $h(\theta; v)$

- Choose a family that includes the nominal density $p_{\Theta}(\theta)$
- Apply iso-probabilistic transformation s.t. $\Theta \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Multivariate normal distribution
 - Analytical solution of CE optimization problem [Rubinstein & Kroese 2004]
 - \circ # of parameters: $\frac{n_{\theta}(n_{\theta}+3)}{2}$
- von Mises-Fisher-Nakagami (vMFN) distribution [Papaioannou et al. 2019]
 - Approximate analytical updating rules are available
 - o # of parameters: $n_{\theta} + 3$
- Mixture models can be applied for representing complex failure domains

Case 1: 10 random variables

- Random parameter vector: $\mathbf{\Theta} = [k_1; ...; k_{10}]$ components are independent truncated Gaussian random variables
- Threshold: $h^* = 0.01$ m
- Two variants of the estimator considered :
 - o non-adaptive case in which we take $N_{IS} = N$
 - o adaptive case in which N_{IS} is adapted on the fly to ensure that $\hat{\delta}_{\hat{P}_F} \leq \delta^*$

Case 1: Non-adaptive case of the IS estimator

Reference solution obtained by standard MCS with 10^6 samples is 1.27×10^{-3}

N	CEIS-mvn-fixN			CEIS-vMFN-fixN		
	\widehat{P}_F	$\delta_{\widehat{P}_F}$	N_T	\widehat{P}_F	$\delta_{\widehat{P}_F}$	N_T
125	2.21×10^{-3}	7.135	644 (519+125)	1.21×10^{-3}	0.205	404 (279+125)
250	1.18×10^{-3}	0.237	1135 (885+250)	1.22×10^{-3}	0.111	783 (533+250)
500	1.23×10^{-3}	0.104	1755 (1255+500)	1.21×10^{-3}	0.063	1540 (1040+500)
1000	1.25×10^{-3}	0.053	3090 (2090+1000)	1.22×10^{-3}	0.054	3000 (2000+1000)

- N_T is higher for CEIS-mvn-fixN: CE optimization requires more steps to converge
- CEIS-vMFN-fixN shows superior performance in terms of sample CoV of the estimates
- Performance gap reduces with increase in the number of samples per level
- The poor performance of CEIS-mvn-fixN is due to the large number of parameters. For small *N*, the available number of effective samples is inadequate.

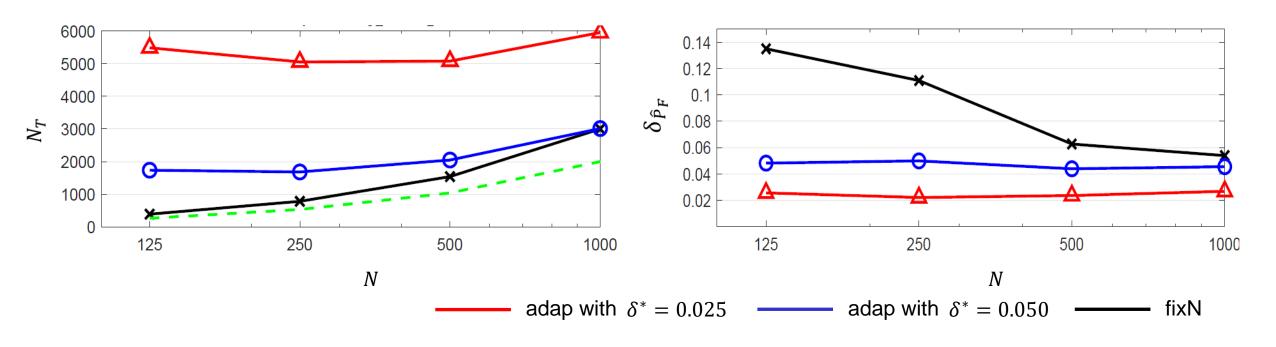
Case 1: Adaptive case of the IS estimator $(\delta^* = 0.05)$

Reference solution obtained by standard MCS with 10^6 samples is 1.27×10^{-3}

N	CEIS-mvn-adap			CEIS-vMFN-adap		
	\widehat{P}_F	$\delta_{\widehat{P}_F}$	N_T	\widehat{P}_F	$\delta_{\widehat{P}_F}$	N_T
250	-	-	-	1.22×10^{-3}	0.044	1682 (543+1139)
500	1.23×10^{-3}	0.049	2722 (1250+1472)	1.22×10^{-3}	0.050	2048 (1020+1028)
1000	1.22×10^{-3}	0.051	3190 (2080+1110)	1.22×10^{-3}	0.046	3012 (2000+1012)

- CEIS-mvn-adap requires larger number of samples to converge in the reliability estimation step
- Sample mean and CoV of the estimates with the two parametric densities are comparable

Case 1: Influence of number of samples, N (vMFN)



- CEIS-vMFN-fixN: Monotonic increase in N_T and decrease in $\delta_{\hat{P}_F}$ with increase in N (expected)
- CEIS-vMFN-adap: sample CoV remains close to the prescribed thresholds
- CEIS-vMFN-adap: for $N \ge 250$, no significant benefit in terms of the number of samples required in the reliability estimation step
- Adaptive variant of the IS estimator requires lesser number of samples to yield sample CoV $\approx 5\%$.

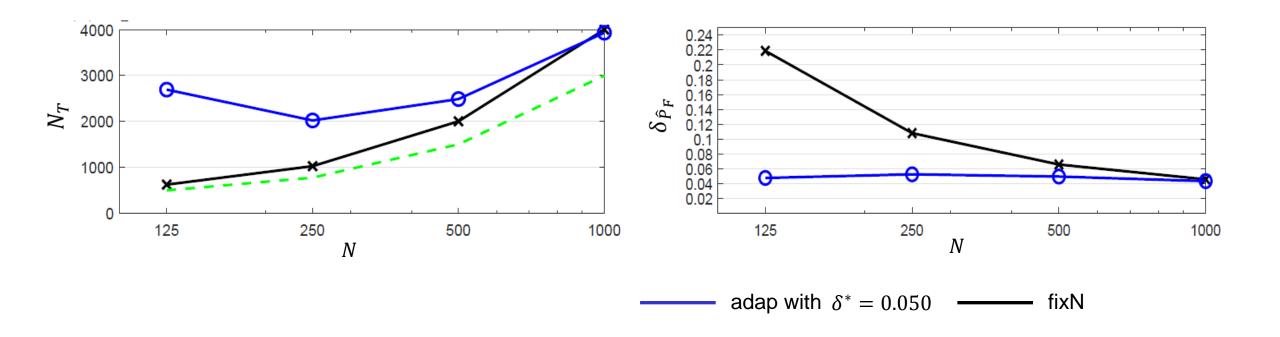
Case 2: 30 random variables

- Random parameter vector: $\mathbf{\Theta} = [m_1; ...; m_{10}; k_1; ...; k_{10}; \eta_1; ...; \eta_{10}]$ components are independent truncated Gaussian random variables [Schuëller & Pradlwarter 2007].
- Threshold: $h^* = 0.013$ m
- CEIS implemented with vMFN model. Results correspond to N=250 and $\delta^*=0.05$.

	DMC	CEIS-fixN	CEIS-adap	LS	SS-MCMC	SS-Hybrid
\widehat{P}_F	5.20×10^{-5}	5.21×10^{-5}	5.22×10^{-3}	6.0×10^{-5}	6.60×10^{-5}	5.90×10^{-5}
$\delta_{\widehat{P}_F}$	0.023	0.108	0.053	0.120	0.580	0.460
N_T	3.50×10^{7}	1030	2024 (792+1232)	360	2300	2645

- CEIS demonstrates significantly superior performance compared to SS-MCMC and SS-Hybrid
- Estimates from LS have smaller variability and require less computational effort
- Superior performance of LS comes at the expense of reduced robustness

Case 2: Influence of the number of samples in the CE method



- Even with N = 125, CEIS-vMFN-fixN and CEIS-vMFN-adap outperform SS-MCMC and SS-hybrid
- Adaptive variant of the IS estimator requires lesser number of samples to yield sample CoV $\approx 5\%$.

Summary

- Adaptive importance sampling strategy to estimate first-passage probability of uncertain linear structures.
- Effective IS density of the uncertain parameters accomplished through the multi-level CE method.
- Optimal IS density of the uncertain parameters approached by approximating a sequence of intermediate target densities.
- Density sequence constructed by introducing smoothening of the conditional FPP.
- Two variants of the IS estimator employed. If there is a target CoV of the FPP, adaptive case is computationally more efficient.
- Two parametric probability density models are employed.
- Proposed approach is a black-box method and outperforms other sampling-based methods for the problem.

References

- Au, S. K., & Beck, J. L. (2001). First excursion probabilities for linear systems by very efficient importance sampling. *Probabilistic Engineering Mechanics*, *16*(3), 193-207.
- Kanjilal, O., Papaioannou, I., & Straub, D. (2021). Cross entropy-based importance sampling for first-passage probability estimation of randomly excited linear structures with parameter uncertainty. Structural Safety 91, 102090.
- Papaioannou, I., Geyer, S., & Straub, D. (2019). Improved cross entropy-based importance sampling with a flexible mixture model. Reliability Engineering & System Safety, 191, 106564.
- Rice, S. O. (1944). Mathematical analysis of random noise. The Bell System Technical Journal, 23(3), 282-332.
- Rubinstein, R. Y., & Kroese, D. P. (2004). The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer-Verlag, New York.
- Schuëller, G. I., & Pradlwarter, H. J. (2007). Benchmark study on reliability estimation in higher dimensions of structural systems—an overview. Structural Safety, 29(3), 167-182.