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The dynamical system

𝐌 𝜽 ሷ𝒗 𝑡 + 𝐂 𝜽 ሶ𝒗 𝑡 + 𝐊 𝜽 𝒗 𝑡 = 𝑫𝑓 𝑡, 𝝃

𝒗 0 = 𝟎, ሶ𝒗 0 = 𝟎

𝚯: random vector with PDF 𝑝𝚯 𝜽

𝑓 𝑡, 𝚵 : Gaussian random excitation over a time duration 0, 𝑇 .

At time instant 𝑡𝑘: 𝑓 𝑡𝑘 , 𝚵 = 𝑮𝑘
T𝚵, where 𝚵 is a vector of  

independent standard Gaussian random variables

Linear load-response relationship:

ℎ 𝑡, 𝜽, 𝝃 = න
0

𝑡

𝐾 𝑡 − 𝜏, 𝜽 𝑓 𝜏, 𝝃 𝑑𝜏

𝐾 𝑡, 𝜽 : unit IRF of the deterministic system for 𝚯 = 𝜽

⋮

𝑣1 𝑡

𝑣2 𝑡

𝑣𝑛−1 𝑡

𝑣𝑛 𝑡



• Probability of failure: 

𝑃𝐹 = 𝜽∈ℝ𝑛𝜽׬ 𝝃∈ℝ𝑛𝝃׬ I{ 𝜽, 𝝃 ∈ 𝐹} 𝑝𝚵 𝝃 𝑑𝝃𝑝𝚯 𝜽 𝑑𝜽

Failure event and probability of failure

𝐹 = {θ ∈ ℝ𝑛𝜽 , 𝝃 ∈ ℝ𝑛𝝃: max
0<𝑡≤𝑇

ℎ 𝑡, 𝜽, 𝝃 ≥ ℎ∗}

• First-passage failure:

Failure domain 𝐹

Failure domain 𝐹

t

First-passage

ℎ = ℎ∗

ℎ = −ℎ∗

• Structural failure is a rare event

o Standard MCS computationally intractable

o Advanced MCS/ variance reduction

techniques required



• Consider IS probability density 𝑞𝚯,𝚵 𝜽, 𝝃

𝑃𝐹 = න
𝜽∈R𝑛𝜽

න
𝝃∈R

𝑛𝝃
I{ 𝜽, 𝝃 ∈ 𝐹}

𝑝𝚵 𝝃 𝑝𝚯 𝜽

𝑞𝚯,𝚵 𝜽, 𝝃
𝑞𝚯,𝚵 𝜽, 𝝃 𝑑𝝃𝑑𝜽

• IS estimate of 𝑃𝐹:

෠𝑃𝐹 =
1

𝑁
෍

𝑖=1

𝑁

I{ 𝜽𝑖 , 𝝃𝑖 ∈ 𝐹}
𝑝𝚵 𝝃𝑖 𝑝𝚯 𝜽𝑖

𝑞𝚯,𝚵 𝜽𝑖 , 𝝃𝑖

where { 𝜽𝑖 , 𝝃𝑖 , 𝑖 = 1, … , 𝑁} are i.i.d. samples from 𝑞𝚯,𝚵 𝜽𝑖 , 𝝃𝑖

• Select: 𝑞𝚯,𝚵 𝜽, 𝝃 = 𝑞𝚯 𝜽 𝑞𝚵 𝝃 𝜽 with

o 𝑞𝚵 𝝃 𝜽 according to [Au & Beck 2001]

o 𝑞𝚯 𝜽 by cross entropy (CE) optimization [Kanjilal et. al. 2021]

Importance sampling



IS density 𝒒𝚵 𝝃|𝜽 for conditional FPP

Time instants 𝑡1, … , 𝑡𝑛𝑇 in [0, 𝑇]

𝐹𝑘 𝜽 = 𝝃 ∈ ℝ𝑛𝝃: ℎ 𝑡𝑘 , 𝜽, 𝝃 ≥ ℎ∗

𝐹 𝜽 = 𝑘=1ڂ
𝑛𝑇 𝐹𝑘 𝜽 , where

• Conditional FPP by importance sampling:

𝑃𝐹|𝚯 𝜽 = න
𝝃∈R

𝑛𝝃
I{ 𝜽, 𝝃 ∈ 𝐹}

𝑝𝚵 𝝃

𝑞𝚵 𝝃|𝜽
𝑞𝚵 𝝃| 𝜽 𝑑𝝃

• A very efficient IS density to [Au & Beck 2001] :

𝑞𝚵 𝝃|𝜽 =෍
𝑘=1

𝑛𝑇
𝑤𝑘 𝜽

I{ 𝜽, 𝝃 ∈ 𝐹𝑘 𝜽 }𝑝𝚵 𝝃

Prob 𝐹𝑘 𝜽

o Normalized weights 𝑤𝑘 𝜽 =
Prob 𝐹𝑘 𝜽

σ
𝑙=1
𝑛𝑇 Prob 𝐹𝑙 𝜽



Conditional FPP by importance sampling

• Conditional FPP by importance sampling:

𝑃𝐹|𝚯 𝜽 = ෨𝑃 𝜽 න
𝝃∈R

𝑛𝝃

1

σ
𝑘=1
𝑛𝑇 I{ 𝜽, 𝝃 ∈ 𝐹𝑘 𝜽 }

𝑞𝚵 𝝃| 𝜽 𝑑𝝃

where ෨𝑃 𝜽 = σ𝑘=1
𝑛𝑇 Prob 𝐹𝑘 𝜽

• Instantaneous failure probabilities:

o 𝐹𝑘 𝜽 = 𝐹𝑘
+ 𝜽 + 𝐹𝑘

− 𝜽 (mutually exclusive events)

o Prob 𝐹𝑘
+ 𝜽 = Prob 𝐹𝑘

− 𝜽 = Φ −
ℎ∗

𝒓𝑘 𝜽

Time instants 𝑡1, … , 𝑡𝑛𝑇 in 0, 𝑇

where 𝒓𝑘
𝑇 𝜽 = Δ𝑡 σ𝑠=1

𝑘 𝑐𝑠𝐾 𝑡𝑘 − 𝑡𝑠, 𝜽 𝑮𝑠
𝑇

ℎ 𝑡𝑘 , 𝜽, 𝚵 = 𝒓𝑘
𝑇 𝜽 𝚵



E𝐬𝐭𝐢𝐦𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 the unconditional FPP

𝑃𝐹|𝚯 𝜽

𝑝𝚯 𝜽
Direct approach

𝑝𝚯 𝜽𝑞𝚯 𝜽

Importance sampling

𝑃𝐹 = 𝜽∈ℝ𝑛𝜽׬
𝑃𝐹|𝚯 𝜽 𝑝𝚯 𝜽 𝑑𝜽

≈ σ𝑖=1
𝑀 𝑃𝐹|𝚯 𝜽𝑖

𝑝𝚯 𝜽𝑖

𝑞𝚯 𝜽𝑖

{𝜽𝑖 , 𝑖 = 1, … ,𝑀} are independent samples ~ 𝑞𝚯 𝜽

• Direct approach computationally infeasible

• Adopt importance sampling 

• Optimal IS density: 𝑞𝚯
∗ 𝜽 =

1

𝑃𝐹
𝑃𝐹|𝚯 𝜽 𝑝𝚯 𝜽

• Proposed approach:

Obtain approximation of 𝑞𝚯
∗ 𝜽 by cross entropy method



• Select parametric density family ℎ 𝜽; 𝝂 , 𝝂 ∈ 𝒱

o ℎ 𝜽; 𝝂0 corresponds to 𝑝𝚯 𝜽 for 𝝂0 ∈ 𝒱

o find 𝝂∗ such that ℎ 𝜽; 𝝂∗ ≈ 𝑞𝚯
∗ 𝜽

• Determine 𝝂∗ by CE optimization

o 𝝂∗ = argmin
𝒂∈𝒱

𝐷𝐾𝐿 𝑞𝚯
∗ 𝜽 , ℎ 𝜽; 𝒂

= argmax
𝒂∈𝒱

E𝑝𝚯 𝜽 𝑃𝐹|𝚯 𝜽 ln ℎ 𝜽; 𝒂

ℎ 𝜽; 𝝂
𝑞𝚯
∗ 𝜽

𝐷𝐾𝐿 𝑞𝚯
∗ 𝜽 , ℎ 𝜽; 𝝂

Kullback-Leibler divergence

Information lost in representing 𝑞𝚯
∗ 𝜽 by 

the parametric density ℎ 𝜽; 𝝂 .
• CE optimization can be solved using samples from 𝑝𝚯 𝜽

o can be computationally expensive

o adopt a multi-level approach

Determination of 𝒒𝚯 𝜽 by CE method



Sequence of intermediate target densities 

𝑓𝚯
𝑘 𝜽 =

1

𝐶𝑘
𝑃𝐹|𝚯 𝜽 𝛾𝑘𝑝𝚯 𝜽

with 0 = 𝛾0 < 𝛾1 < ⋯ < 𝛾𝐿 = 1 and 𝐶𝑘 = 𝜽∈ℝ𝑛𝜽׬ 𝑃𝐹|𝚯 𝜽 𝛾𝑘𝑝𝚯 𝜽 𝑑𝜽

Multi-level CE method for 𝒒𝚯 𝜽 : intermediate densities 

𝑝𝚯 𝜽

𝑓𝚯
1 𝜽

𝑓𝚯
2 𝜽

𝑓𝚯
𝐿−1 𝜽

𝑓𝚯
𝐿 𝜽 = 𝑞𝚯

∗ 𝜽

⋯

• Tempering parameters control the difference between 

successive densities 

• Smooth transition between 𝑝𝚯 𝜽 and 𝑞𝚯
∗ 𝜽



CE optimization in the intermediate levels

Sample from

𝑝𝚯 𝜽
ෝ𝝂1

Optimize

Sample from

ℎ 𝜽; ො𝝂1
ෝ𝝂2

Optimize

Sample from

ℎ 𝜽; ො𝝂𝐿−1
ෝ𝝂𝐿

Optimize Terminate

𝑞𝚯
∗ 𝜽 ≈ ℎ 𝜽; ො𝝂𝐿⋯

Level 1 Level 2 Level L

ෝ𝝂𝑘 = argmax
𝒂∈𝒱

σ𝑖=1
𝑁 𝑃𝐹|𝚯 𝜽𝑖

𝛾𝑘𝑝𝚯 𝜽𝑖

ℎ 𝜽𝑖;ෝ𝝂𝑘−1
ln ℎ 𝜽𝑖; 𝒂

{𝜽𝑖 , 𝑖 = 1, … , 𝑁} generated from ℎ 𝜽; ෝ𝝂𝑘−1

Sequential approach based on importance sampling

Approximate 𝑓𝚯
𝑘 𝜽 by ℎ 𝜽; 𝝂𝑘

𝝂𝑘 = argmin
𝒂∈𝒱

𝐷𝐾𝐿 𝑓𝚯
𝑘 𝜽 , ℎ 𝜽; 𝒂

= argmax
𝒂∈𝒱

E𝑝𝚯 𝜽 𝑃𝐹|𝚯 𝜽 𝜸𝒌ln ℎ 𝜽; 𝒂

= argmax
𝒂∈𝒱

Eℎ 𝜽;ෝ𝝂𝑘−1 𝑃𝐹|𝚯 𝜽 𝜸𝒌
𝑝𝚯 𝜽

ℎ 𝜽;ෝ𝝂𝑘−1
ln ℎ 𝜽; 𝒂

෩𝑊𝑘 𝜽; ෝ𝝂𝑘−1



Adaptive selection of 𝜸𝒌

𝛾𝑘 = argmin
𝛾∈ 𝛾𝑘−1,1

መ𝛿 ෩𝑊𝑘
𝛾 − 𝛿𝑡𝑎𝑟𝑔𝑒𝑡

2

መ𝛿 ෩𝑊𝑘
𝛾 : sample CoV of  { ෩𝑊𝑘 𝜽𝑖; ෝ𝝂𝑘−1 , 𝑖 = 1, …𝑁}

• Ensures that 𝑓𝚯
𝑘 𝜽 is approximated well with a small number of samples from ℎ 𝜽; ෝ𝝂𝑘−1 .

• Ensures that the number of effective samples used to fit the parametric model takes a target value: 

ESS = ൗ𝑁 1 + መ𝛿 ෩𝑊𝑘

2 𝛾

• Equivalent to bounding the sample CoV of the IS estimate of the normalizing constant 𝐶𝑘

• We select 𝛿𝑡𝑎𝑟𝑔𝑒𝑡 = 1.5. This leads to 𝛿 መ𝐶𝑘
≈ 0.05 for 𝑁 = 1000.

• Convergence after 𝐿 steps when 𝛾𝐿 = 1. Consider 𝑞𝚯 𝜽 = ℎ 𝜽; ෝ𝝂𝐿 ≈ 𝑞𝚯
∗ 𝜽 .

Adaptive selection of the levels



• The CE optimization procedure requires repeated evaluation of 𝑃𝐹|𝚯 𝜽

• By the Poisson Approximation [Rice 1944]:

𝑃𝐹|𝚯 𝜽 ≈ 1 − exp −න
0

𝑇

𝛼 𝑡; ℎ∗, 𝜽 𝑑𝑡

𝛼 𝑡; ℎ∗, 𝜽 : out-crossing rate at time 𝑡

• Ensures smooth convergence of the CE method

Evaluation of 𝑷𝑭|𝚯 𝜽 during CE optimization



Estimator for FPP

• Exact failure probability by importance sampling : 

𝑃𝐹 = න
𝜽∈R𝑛𝜽

න
𝝃∈R

𝑛𝝃

෨𝑃 𝜽

σ
𝑘=1
𝑛𝑇 I{ 𝜽, 𝝃 ∈ 𝐹𝑘 𝜽 }

𝑊 𝜽 𝑞𝚯,𝚵 𝜽, 𝝃 𝑑𝝃𝑑𝜽

𝑞𝚯,𝚵 𝜽, 𝝃 = 𝑞𝚵 𝝃 𝜽 𝑞𝚯 𝜽 = 𝑞𝚵 𝝃 𝜽 ℎ 𝜽; ෝ𝝂𝐿where                                                                      and  𝑊 𝜽 = Τ𝑝𝚯 𝜽 ℎ 𝜽; ෝ𝝂𝐿

• IS estimator

෠𝑃𝐹 =
1

𝑁𝐼𝑆
෍

𝑖=1

𝑁𝐼𝑆 ෨𝑃 𝜽𝑖

σ
𝑘=1
𝑛𝑇 I{ 𝜽𝑖 , 𝝃𝑖 ∈ 𝐹𝑘 𝜽𝑖 }

𝑊 𝜽𝑖

where 𝜽𝑖 , 𝝃𝑖 ; 𝑖 = 1, … , 𝑁𝐼𝑆 are independent samples from 𝑞𝚵 𝝃|𝜽 ℎ 𝜽, ෝ𝝂𝐿



Numerical example: 10-story linear frame

Dynamical system:

𝐌 ሷ𝒗 𝑡 + 𝐂 ሶ𝒗 𝑡 + 𝐊𝒗 𝑡 = 𝑚1; … ;𝑚10 𝑓 𝑡

• 𝒗 𝑡 = 𝑣1 𝑡 ; … ; 𝑣10 𝑡 : displacement vector

• 𝑓 𝑡 : filtered modulated Gaussian white noise of duration 𝑇 = 20s

• 𝐌, 𝐂 and 𝐊 defined in terms of lumped masses 𝑚1, … ,𝑚10 , inter-story stiffness 

𝑘1, … , 𝑘10 and damping ratios 𝜂1, … , 𝜂10 .

• Critical response ℎ 𝑡, 𝜽, 𝝃 = 𝑣10 𝑡 − 𝑣9 𝑡

• First-passage probability: Pr max
0<𝑡≤𝑇

ℎ 𝑡, 𝜽, 𝝃 ≥ ℎ∗

⋮

𝑣1 𝑡

𝑣2 𝑡

𝑣9 𝑡

𝑣10 𝑡



• Choose a family that includes the nominal density 𝑝𝚯 𝜽

• Apply iso-probabilistic transformation s.t. 𝚯~𝒩(𝟎, 𝐈)

• Multivariate normal distribution

o Analytical solution of CE optimization problem [Rubinstein & Kroese 2004]

o # of parameters: 
𝑛𝜽 𝑛𝜽+3

2

• von Mises-Fisher-Nakagami (vMFN) distribution [Papaioannou et al. 2019]

o Approximate analytical updating rules are available

o # of parameters: 𝑛𝜽 + 3

• Mixture models can be applied for representing complex failure domains

Selection of the parametric family 𝒉 𝜽; 𝒗



Case 1: 10 random variables

• Random parameter vector: 𝚯 = 𝑘1; … ; 𝑘10 – components are independent truncated 

Gaussian random variables

• Threshold: ℎ∗ = 0.01m

o non-adaptive case in which we take 𝑁𝐼𝑆 = 𝑁

o adaptive case in which 𝑁𝐼𝑆 is adapted on the fly to ensure that መ𝛿 ෠𝑃𝐹
≤ 𝛿∗

• Two variants of the estimator considered :



Case 1: Non-adaptive case of the IS estimator

𝑁 CEIS-mvn-fixN CEIS-vMFN-fixN

෠𝑃𝐹 𝛿 ෠𝑃𝐹 𝑁𝑇
෠𝑃𝐹 𝛿 ෠𝑃𝐹 𝑁𝑇

125 2.21 × 10−3 7.135 644 (519+125) 1.21 × 10−3 0.205 404 (279+125)

250 1.18 × 10−3 0.237 1135 (885+250) 1.22 × 10−3 0.111 783 (533+250)

500 1.23 × 10−3 0.104 1755 (1255+500) 1.21 × 10−3 0.063 1540 (1040+500)

1000 1.25 × 10−3 0.053 3090 (2090+1000) 1.22 × 10−3 0.054 3000 (2000+1000)

• 𝑁𝑇 is higher for CEIS-mvn-fixN: CE optimization requires more steps to converge

• CEIS-vMFN-fixN shows superior performance in terms of sample CoV of the estimates

• Performance gap reduces with increase in the number of samples per level

• The poor performance of CEIS-mvn-fixN is due to the large number of parameters. For small N, the 

available number of effective samples is inadequate. 

Reference solution obtained by standard MCS with 106 samples is 1.27 × 10−3



Case 1: Adaptive case of the IS estimator 𝜹∗ = 𝟎. 𝟎𝟓

𝑁 CEIS-mvn-adap CEIS-vMFN-adap

෠𝑃𝐹 𝛿 ෠𝑃𝐹 𝑁𝑇
෠𝑃𝐹 𝛿 ෠𝑃𝐹 𝑁𝑇

250 - - - 1.22 × 10−3 0.044 1682 (543+1139)

500 1.23 × 10−3 0.049 2722 (1250+1472) 1.22 × 10−3 0.050 2048 (1020+1028)

1000 1.22 × 10−3 0.051 3190 (2080+1110) 1.22 × 10−3 0.046 3012 (2000+1012)

• CEIS-mvn-adap requires larger number of samples to converge in the reliability estimation step

• Sample mean and CoV of the estimates with the two parametric densities are comparable

Reference solution obtained by standard MCS with 106 samples is 1.27 × 10−3



Case 1: Influence of number of samples, N (vMFN)

• CEIS-vMFN-fixN: Monotonic increase in 𝑁𝑇 and decrease in 𝛿 ෠𝑃𝐹
with increase in 𝑁 (expected)

• CEIS-vMFN-adap: sample CoV remains close to the prescribed thresholds

• CEIS-vMFN-adap: for 𝑁 ≥ 250, no significant benefit in terms of the number of samples required in 

the reliability estimation step

• Adaptive variant of the IS estimator requires lesser number of samples to yield sample CoV ≈ 5%.

𝑁 𝑁

𝛿∗ = 0.025adap with 𝛿∗ = 0.050adap with fixN



Case 2: 30 random variables

• Random parameter vector: 𝚯 = 𝑚1; … ;𝑚10; 𝑘1; … ; 𝑘10; 𝜂1; … ; 𝜂10 – components are 

independent truncated Gaussian random variables [Schuëller & Pradlwarter 2007].

• Threshold: ℎ∗ = 0.013m

• CEIS implemented with vMFN model. Results correspond to 𝑁 = 250 and 𝛿∗ = 0.05.

DMC CEIS-fixN CEIS-adap LS SS-MCMC SS-Hybrid

෠𝑃𝐹 5.20 × 10−5 5.21 × 10−5 5.22 × 10−3 6.0 × 10−5 6.60 × 10−5 5.90 × 10−5

𝛿 ෠𝑃𝐹
0.023 0.108 0.053 0.120 0.580 0.460

𝑁𝑇 3.50 × 107 1030 2024 (792+1232) 360 2300 2645

• CEIS demonstrates significantly superior performance compared to SS-MCMC and SS-Hybrid

• Estimates from LS have smaller variability and require less computational effort

• Superior performance of LS comes at the expense of reduced robustness



Case 2: Influence of the number of samples in the CE method

𝑁 𝑁

𝛿∗ = 0.050adap with fixN

• Even with 𝑁 = 125, CEIS-vMFN-fixN and CEIS-vMFN-adap outperform SS-MCMC and SS-hybrid

• Adaptive variant of the IS estimator requires lesser number of samples to yield sample CoV ≈ 5%.



Summary

• Adaptive importance sampling strategy to estimate first-passage probability of uncertain linear structures.

• Effective IS density of the uncertain parameters accomplished through the multi-level CE method.

• Optimal IS density of the uncertain parameters approached by approximating a sequence of intermediate

target densities.

• Density sequence constructed by introducing smoothening of the conditional FPP.

• Two variants of the IS estimator employed. If there is a target CoV of the FPP, adaptive case is 

computationally more efficient.

• Two parametric probability density models are employed. 

• Proposed approach is a black-box method and outperforms other sampling-based methods for the problem.
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