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Deep learning for computational engineering

Example in computational fluid dynamics
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Massflow
Input mesh Graph neural network Predict fields and scalars
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Deep learning

Supervised training

v

Training dataset : D = {(X;, YY)}V,

Neural networkf(o; w) with parameters w € R4

v

v

Train the network by minimizing a loss function
N
L(w)=— Z log p(Y;|X;, w)
i=1
Point estimate wyiLE , no predictive uncertainties

v

—10

10
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Predictive uncertainties

Example in computational fluid dynamics
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L Standard deviation pressure field
v T PR, . 4.741e-02 0.1 0.16 0.222.737e-01
WIIHHIIHIIIIM
Neural network : predictions What we need : predictive uncertainties
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Bayesian neural networks

Bayesian inference

> The observations take the form
Y, = f(XE) + &; Eq ™~ N(O,O’Q(XZ)IM)
> Pick a prior distribution p(w)over the parameters

> Deduce the posterior distribution using Bayes formula

p(W|X, Y) X p(Y|X, W)p(W)

p(Yi|Xi,w) = N (Y35 f(Xisw), 02Tny) ‘
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Bayesian neural networks

Deep bayesian neural networks are challenging
> Prior distribution over the parameters difficult to choose
> Large datasets and possibly high-dimensional inputs/outputs

> High dimensional intractable posterior, possibly multimodal

Exact inference:

p(y|x, X,Y) = /dp(yx,w)p(W|X,Y)dw
R

Approximate inference:

n

1
=1
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Approximate inference

Sampling methods
> Classical MCMC (HMC, NUTS, MALA, ..)

. . o~ | === Target PDF P
> Stochastic gradient MCMC (SGLD, SGHMC, ...) 0257 ___ Unadjusted Langevin Y\
———- Underdamped Langevin
0.20 1 ==« Stein VGD
. . —~
Variational methods -
015
> Classical VI (MFV, BBB, ...) >
: . : 0.101
> Stein variational gradient descent E
&
> Monte Carlo dropout 0.05
0.00 |
] o —50 —25 0.0 2.5 5.0 7.5
Gaussian approximations W

> Laplace (diagonal or kronecker factorization matrix)

> Stochastic weight averaging Gaussian (SWAG)
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Approximate inference

v

Which methods generate valid confidence intervals ?

v

Which methods provide the best approximations to the target posterior ?

v

Do we really need a good approximation in the high-dimensional weight space ?

v

Sensitivity with respect to hyperparameters ?

v

Are there any similarities between some algorithms ?
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Benchmark setup

Approximation methods

>

>

>

Hamiltonian Monte Carlo
Stochastic gradient MCMC
MC dropout

Deep ensembles

Laplace approximation, SWAG

Evaluation metrics

>

>

>

Coverage probabilities
Prediction accuracy

Distances between probability distributions

Experiments

> 4 synthetic regression problems
MLP networks

Problem 1
.o

>

Problem 2

Problem 4
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Approximation methods



Markov Chain Monte Carlo methods

Hamiltonian Monte Carlo
> Used as a reference

> 3 chains, 200 iterations and 10,000 leapfrog steps

v

Step size chosen to get appropriate accept rates

v

Requires the full gradient of the log-posterior

HMC for BNNs studied by Izmaloiv et al., What are Bayesian neural network posteriors really like?

v

Stochastic gradient MCMC

> Metropolis-Hastings correction step omitted

> Stochastic gradient (mini batched)

> Computationally more efficient but introduces asymptotic bias

> 9 variants are considered
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Stochastic gradient MCMC

Lm0

Stochastic differential equation [Ma et al. 2015, Nemeth et al. 2020]

(7 — %b(Z)dt + /D@Z) AW (), Zy = (wiry)

b(Z) = —(D(Z) + Q(Z))VH(Z) + I'(Z Z 8Z )+ Qi;(Z))

Energy function

U(w) = —log(p(Y|X, w)p(w)) = — Z log(p(Y:|Xi, w)) —log(p(w))
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Stochastic gradient MCMC

Lm0

Euler explicit scheme and mini-batched gradients

Z1 = 78— (D(ZF) + Q(ZF) VH(ZF) + T(ZF) ) + 1 /2eD(2F) AWH!
~ N
VU(W) =~ > VUi(w) = Vlog(p(w))

Table 1. Alist of popular SGMCMC algorithms highlighting how they fit within the general stochastic differential equation framework (9) and (10).

Algorithm r H(&) D(&) Q&)
SGLD ] Ue) 1 0
SGRLD 0 u@) G~ ! 0
1T 0 0 0 -l
SGHMC 0, p) ue)+ipTp 0 ¢ 1o
0 0 0 —G(#)~1/2
SGRHMC @, p uey+ 1o (0 G(a)“) (G(ﬂr”z ( 0) )
1T 0 0 0 0 -1 0
SGNHT ®,0,m) U@ +ze p 0 Al 0 I o o7/
+ g —A) 0 0 o0 0 —pT/d 0

NOTE: Most of the terms are defined in the text, except: C = hV(#), which is a positive semidefinite matrix; G(#) is the Fisher information metric; A is a tuning parameter

for SGNHT.
Nemeth et al. 2020
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Stochastic gradient MCMC

Lm0

Vanilla SGMCMC
> SGLD [Welling & The, 2011]

E>0, whtl=wk_— €k§U(Wk) +v2e,t AWFTE

> SGHMC [Chen et al, 2014]

whl = wh 4 vk
kz0:9 k S k k
vl = (1 — a)v® — e, VU(W") + V2ae, AWFT!
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Stochastic gradient MCMC

Lm0

Vanilla SGMCMC
> SGLD [Welling & The, 2011]
> SGHMC [Chen et al, 2014]

Variance reduction
> SGLD-CV [Baker et al, 2019]

> SGHMC-CV

Updated variance reduction
> SGLD-SVRG [Dubey et al, 2016]
> SGHMC-SVRG

With preconditioning
> pSGLD [Li et al, 2016]

Cyclical scheduler
> C-SGHMC [Zhang et al, 2019]

> C-SGLD

0.00010 T

Step size €,

0.00005

0.00000

0

\

1000
[teration k

I~

2000

— Cvcle length = 100
— Cyvcle length = 1000
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MC Dropout and deep ensembles

Monte Carlo dropout [Gal et al., 2016]
>~ Train a neural network with dropout layers
> Output features of each layer are randomly dropped

> Keep dropout enabled during predictions

Deep ensembles [Lakshminarayanan et al., 2017]
> Train N networks independently
> Random initializations

> Aggregate the predictions
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Gaussian approximations

Laplace approximation (LA-KFAC)
o . p(w|X,Y) =~ N(w|wmap, Exrac)
> Laplace approximation of the posterior

> Compute a MAP estimate by training the network

> Kronecker factored log likelihood Hessian approximation

Stochastic Weight Averaging Gaussian (SWAG) p(W|X, Y) ~ N (W’WSWAG; Z]SWAG)
> Compute a MAP estimate by training the network

> Run SGD with a high step size and collect values of the
parameters

> Construct a Gaussian approximation to the posterior

Maddox et al., 2019
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Approximation methods : summary

Approximation methods (14)

>

>

>

Hamiltonian Monte Carlo (used as a reference)
Stochastic gradient MCMC (9 variants)

MC dropout

Deep ensembles

Laplace approximation

SWAG

Hyperparameters

>

>

>

10 step sizes (or learning rates)
5 dropout rates
3 cycle lengths in cyclical SGMCMC
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Evaluation metrics



Considered metrics

Coverage probabilities
> Marginal coverage

> Conditional coverage

Distances between probability distributions
> Distance to the HMC reference (weight and function space)

> Distance to the target posterior distribution (weight space)
Similarities between the algorithms

> Pairwise distances (weight and function space)

> Multidimensional scaling
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Coverage probabilities

Prediction interval coverage probability

> Yao et al. (2019) studies the prediction interval coverage probability (PICP)
P{Y* € CP(X*)|D} > 1 -«

where the probability is taken only over the test data (X*, Y*).

> Variability related to the training dataset not taken into account
> Stronger coverage notions exist

> Marginal coverage and conditional coverage
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Coverage probabilities

Marginal coverage probability (MCP)
AD Target coverage: 0.95
PiY* e C, (X))} >1 -« .
o WA A
Probability taken over both the training and test data. 0 (\\(/ W "

Coverage
-]
0

Conditional coverage probability (CCP) 0.7 I IS
~ —— Marginal coverage
P{Y*c CP(X"X*=x}>1—-« 0 — 1-a
g . . —2 —1 0 1 2
for almost all x € X, probability taken over the training x
data.
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Coverage probabilities

Example for two approximation methods
> Marginal coverage far from the target level
> Conditional coverage is pessimistic as well

> PICP exhibits large variability, may lead to wrong conclusions

------- Marginal coverage . PICP
------ Target coverage = CPP
'l SGLD-SVRG(es)_!

60

40

20

U 0.6 0.8 1.0 U 0.50  0.75  1.00

24 | UQSay #54
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Marginal and conditional coverage

For a given experiment:
> Generate Npindependent training datasets D¢, ..., Dy

> Generate a test dataset D* — {(X:‘,Y:) ij\;*l

SGLD SGHMC pSGLD
: 1
0.8
0.6
0.4

l1—«a
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Marginal and conditional coverage

For a given experiment:
> Generate Np independent training datasets Dy, ..., Dy,
> Generate a test dataset D* — {(X:" Y:) ij\;*l

—e— Q2 —s— MAE conditional coverage
—=&— Marginal coverage - Target coverage 1 — o = 0.95

SGLD SGLD-CV SGLD-SVRG

€1 €3 €5 €7 €10 €1 €3 €5 €7 €10 €] €3 €5 €7 €10
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Distance to the HMC reference

Maximum mean discrepancy [Gretton et al., 2006]

> MMD distance between two probability measures

MMD(Q, Q') = 1o — pov iy . i = / k(- w) dQ

> Computed in weight and function spaces

Weight space

10

SFEERLLELLY

MMD(Q, Qunic)

€] €9 €3 €4 €5 € €7 €] €Eg€

Function space

|
i ,  —e—pSGLD
-4 v SWAC
\ ; & —Ensemble
2 Ak 4 ----MC-Dropout(0.1)
e _*’
vedgvVvvyg

P
0

€] €2 €3 €4 €5 € €7 €] €E9€
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Distance to the target posterior

Kernelized Stein discrepancy [Gorham et al., 2015][Liu et al., 2016]
> Relies on Stein’s discrepancy

> Only requires the knowledge of the score function s,(w) = Vlogp(w|X,Y)
KSD*(P,Q) = E[k,(Z,Z")], Z~Q, Z'~Q,

kp(w, w') = (Vy, Vak(w, w')) + (s,(W), Vi k(w, W) + (s,(W), Vwk(w, W) + (s,(W), s, (W) k(w, w’)

) SGLD SGLD-CV SGLD-SVRG
10°
<%10“ Tf %M}%#‘!
TTLIIART TS RORARNE
&= & +-P
o=
€1 €3 €5 €7 €10 €1 €3 €5 €7 €10 € €3 €5 €7 €10
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Similarities between the algorithms

Lm0

Maximum mean discrepancy [Gretton et al., 2006]

> MMD distance between two probability measures

MMD(Q, Q') = o — vy . Ho = / k(- w) dQ

> Pairwise MMD distances and multidimensional scaling

2nd MDS coordinate

ja—
-

1st MDS coordinate

-@-pSGLD ~@-SGHMC-CV

—-SGLD 4 SGHMC-SVRG
~@-SGLD-CV Ensemble
~*—SGLD-SVRG LA-KFAC
~@-SGHMC
SWAG CSGHMC(10)
CSGLD(10) CSGHMC(100)
CSGLD(100) CSGHMC(1000)

CSGLD(1000) ‘HMC'
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Experiments
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One-dimensional regression problems

Task Latent function o |D| N |[N*|OOD
AF#l1 cos(2x) + sin(x) 0.2 11(100{200] X
AF#2 0.123 0.25/1(100/200] v
AF#3|  —(1 + 2)sin(1.22) [0.25/1| 82200 ¢
AF#4|MLP(-;w), w ~ N(0,1)[0.02| 2 [120[120| v

Problem 1

Problem 2

Problem 3

—10

Problem 4
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Regression problem #1

In the following slides
> Graphs of coverage probabilities
> Graphs of MMD distances Problem 1

> Graphs of kernelized Stein discrepancies 5

> 14 approximations methods
> 10 step sizes €1,...,€10 o
> 5 dropout rates for MC Dropout

> 3 cycle lengths for cyclical SGMCMC

>~ MLP network with 10k parameters x

Coverage probabilities
> Estimated with 1000 datasets
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Regression problem #1

Coverage probabilities for a 0.95 target and coefficients of determination Q2

—e— ()2 —#— MAE conditional coverage ) LA-KFAC:
—8— Marginal coverage -~ Target coverage Q = 099’ MCP = 099' MAE CCP = 0.048
SGLD

SGLD-SVRG SGLD Ensemble SWAG

1.0 1.0

r---—-a—r""

MC dropout (0.2) MC dropout (0.3)

SGHMC SGHMC-CV SGHMC-SVRG

0.0 i
€] €10 €] €10 € €10 €1 €10 €1 €10 €] €10



Regression problem #1

>

>

>

SGMCMC easily overshoots
Highly sensitive w.r.t step size
Cyclical step sizes reduce the coverages

Graphs of the marginal coverage probabilities : SGMCMC and C-SGMCMC

€1 €3 €5
€2 €4 €6
SGLD 1 SGLD-CV SGLD-SVRG ]
0.8 2 0.8 %0.8
20.6 7 0.6 0.6

é

1—a 1—a
SGHMC SGHMC-CV

7 0.8 %;E[].ﬁ
0.6 ,/ 206
0.4 204

7 2
2 0.2 =0.2
0 0
0.2 04 06 08 1 0 02 04 06 08 1 0

l — o 1 — o

€7

D )

€3
CSGLD(10)

€10
. CSGLD(100) . CSCGLD(1000)
0.8 0.8 P
0.6 ,’ 0.6 ,’
0.4 0.4
0.2 0.2
0 e 0 e
1 cschnéon) 1 CSGRME 1000)
0.8 0.8
0.6 P 0.6
0.4 0.4
0.2 0.2
0 0
1 0 02 04 06 08 1 0 02 04 06 0.8 1
1 —«a l—a




o
RegreSSIon prOblem #1 > MCdropout and SWAG struggle

> LA-KFAC and pSGLD easily overestimate
> Deep ensembles seems promising

Graphs of the marginal coverage probabilities

MC dropout (0.1)

MC dropout (0.2) MC dropout (0.3) MC dropout (0.4) MC dropout (0.5)

1 1 1 1 1
0.8
0.6
E0.4
= 0.2
P
0
0 02 04 06 08 1 0 0.2 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
|l —a l=a l=a l -« l—a
1 SWAG Laplace Ensemble pSGLD
1
ngS }rll_N /
%U() %U.(i
-?}“'4 ;}().4
=09 -;
=(.2 0.2

= 0 — ' —
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 % (5 04 06 08 1
]l — ] — « 1 —a 1—a
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Regression problem #1

Best marginal coverage versus best prediction accuracy

Table 2. Best marginal coverage probabilities (MCP) and best Q* coefficients obtained with each algorithm.

Method Best MCP Q2 [Best Q> MCP||Method Best MCP ) |Best Q% MCP
SGLD 0.97 0.93| 0.96 0.71|[CSGHMC(10) 0.97 0.97] 0.97 0.89
SGLD-CV 0.94 —103] 0.95 0.66/|CSGHMC(100) | 0.94 0.97| 097 0.94
SGLD-SVRG 0.97 0.99| 0.99 0.91|CSGHMC(1000)| 0.94 0.96/ 0.97 0.93
SGHMC 0.99 096| 0.97 0.99|pSGLD 0.94 0.29] 095 0.99
SGHMC-CV 0.94 0.95| 0.95 0.94||Deep ensemble 0.95 0.99 0.99 0.88
SGHMC-SVRG| 0.94 0.86| 0.99 0.92 [SWAG 0.20  0.99] 0.99 0.03
CSGLD(10) 095 096 0.96 0.66|MC Drop.(0.1) 0.83 0.98] 0.98 0.83
CSGLD(100) 094 096| 0.96 0.76 ||MC Drop.(0.2) 0.85 0.97] 0.97 0.85
CSGLD(1000) 0.92 0.95| 0.96 0.75||MC Drop.(0.3) 0.84 0.96] 0.96 0.84

LA-KFAC:
Q%= 0.99, MCP = 0.99
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Regression problem #1

MMD distance to the HMC reference

—a—SGLD —e—SGLD-CV ——SGLD-SVRG

Weight space Function space

20 10.0
215 7.5
&
gl(] 5.0
=
= 2.5
=

0 /
€] €9 €3 €4 €5 € €7 €8 €Eg€q() €1 €2 €3 €4 €5 € €7 €8 Eg€)

—o—5SGHMC —8—SGHMC-CV —€9—5GHMC-SVRG

Weight space Function space

10.0

0.0
€1 €2 €3 €4 €5 € €7 €8 €9€ €] €2 €3 €4 €5 €5 €7 €3 €9€p

Different behavior weight / function space

Lowest MMD in function space : SGMCMC-SVRG & Ensemble

Deep ensembles seems promising
CV methods are unstable

& CSGLD(10) & CSGLD(1000) & CSGHMC(100)
< CSGLD(100) © CSGHMC(10) e CSGHMC(1000)

2 Weight space 10.0 Function space
15 75
&
g -
gl(] 8 B 5.0 — g =
= g8 G o 2
s ;eaadd 25
- “Booswsb
i ) 0.0 ) i o
€] €2 €3 €4 €5 € €7 €8 €9€0 €] €2 €3 €4 €5 € €7 €8 €9 €]
——pSGLD —<%—Ensemble
V- SWAG -*--MC-Dropout(0.1)
Weight space Function space
—~10 4
S 3
S FFEITEILLY 2 oee
() ‘*"* x
= e *
= vy vIVvvy g
= S
0

0
€] €2 €3 €4 €5 € €7 €] €9€ €] € €3 €4 €5 € €7 €8 €9€)
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Regression problem #1

Similarities between the algorithms

-@-pSGLD
—-SGLD
Weight space ~@-SGLD-CV
—%—SGLD-SVRG
\ —@-SGHMC
—&@-SGHMC-CV
£1.0
k= A
Marker size - #
proportional to S 0.5 .
the step size & 1
=, B
— 0.0 gui
=
N

> Structured similarities in weight space
> Messy similarities in function space
> SVRG & Ensemble closest to HMC

) SGHMC-SVRG CSGLD(1000)  --@-MC-D.(0.2)

o= Ensemble CSGHMC(10)  -4--MC-D.(0.3)
LA-KFAC CSGHMC(100)  -4p-MC-D.(0.4) Function space
SWAG )-CSGHMC(1000) -f=-MC-D.(0.5)
CSGLD(10) e MC-D.(0.1) 31{\1( /
CSGLD(100) 0.29

1st MDS coordinate

25
0-28 40

0.42 0.44
1st MDS coordinate
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Regression problem #1

KSD distance to the target posterior

. SGLD SGLD-CV SGLD-5VRG
10°

S L

KQD

€ €3 €& €7 €10 € €3 & €7 €10 € €3 € €7

pSGLD Ensemble SWAG

Mt

L I

T ITLELTY HH%”P%”. .H[HH

C2 - Confidential

(

KSD

102

3
€10 ( J

M

€10

Ranking in terms of KSD:

> SWAG < Ensemble < SVRG & pSGLD

> High variability for SGMCMC and C-SGMCMC

il

KSD
=
o omm
— -
—
—_—
— T —
——
— T
R s
b mm
B

CSGLD(10) CSGLD(100)

ity

=

CSGHMC(10) CSGHMC(100)

LR

€3

€3 €5 €7 €10 €1 €3

€5

€7

€10

€]

CSGLD(1000)

CSGHMC(1000)

€5

€7 €10
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Observed trends in our experiments

KSD cannot be exclusively relied on

i SGLD SGLD-CV SGLD-SVRG
10 ;:‘r.(ld\
(‘% T * El].(i
2109 T * + 204
+*+f?? 11 Fee g 5
. £0.2
S
= 0
pSGLD Ensemble SWAG

KSD seems uncorrelated with coverage probabilities
SWAG : Lowest KSDs but bad marginal coverages
Ensemble : nice coverages, decent KSDs

SVRG : acceptable coverages, higher KSDs

1 1
7 0.8 0.8

7 0.6 0.6

0.4 0.4

; 0.2 é 0.2

(
0 02 04 06 08 1 0.2 04 06 08 0

SGLD-SVRG

SGLD { SGLD-CV

0
l—a l-a

pSGLD Ensemble SWAG

’
7 0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

= 0.6 0.8
l—a

1
1—a 1 —a
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Pathologies of kernelized Stein discrepancy

Lm0

KSD suffers from a few shortcomings [Wenliang et al, 2021; Korba et al, 2021]

> We identified at least two pathologies

> Pathology I: blindness to proportions in multimodal distributions

Example
> Target: bimodal Gaussian mixture
Proportions : 0.25 and 0.75

v

v

Candidates : bimodal Gaussian mixtures with weights w and 1 —w

v

KSD is unable to identity the correct proportions

> KSD seems unreliable when dealing with multimodal distributions

012 2

0.11

— 0.10

P, @

A 0.09

KSD

0.08

0.07

0.06

%
é%

%ﬁ

:

01 02 03 04 05 06 07 08 09

w
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Observed trends in our experiments

Which methods generate valid confidence intervals ?
> Several methods are able to provide good marginal/conditional coverage probabilities
> SGMCMC-SVRG and Deep ensembles seem promising but computationally expensive

> LA-KFAC and pSGLD easily overshoot the target coverage
> MC Dropout or SWAG struggle

MMD distances to the HMC reference
> The behavior w.r.t the step size is not the same in weight and function space
> SGMCMC-SVRG and/or Deep ensembles usually have the lowest distances in function space

> There exist structured similarities in weight space
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Same similarities across our experiments

I
-@-pSGLD ~@-SGHMC-CV SWAG CSGHMC(10) -@-pSGLD ~@-SGHMC-CV SWAG CSGHMC(10)
-Ml-SGLD @ SCHMC-SVRG CSGLD(10) CSGHMC(100) -Ml-SGLD 4 SCHMC-SVRG CSGLD(10) CSGHMC(100)
~@-SGLD-CV Ensemble CSGLD(100) CSGHMC(1000) —@-5GLD-CV Ensemble CSGLD(100) CSGHMC(1000)
—*—SGLD-SVRG LA-KFAC CSGLD(1000) .H,\I(‘ ~*-SGLD-SVRG LA-KFAC CSGLD(1000) .ll,\[('
~@-SGHMC ~@-SGHMC
£ £
= 5 \
e = —0.010 o
= =
& =
= =
= S S Problem 3
5] S] roblem
Problem 1 8 S ‘
@ o —0.012 —
X
- ~ %
= = —0.014 >
o] [N

s

—0.005 0.000 0.005
1st MDS coordinate

[ o

0.0 e

—0.5 /

~1.0 C

1 —1.0 —0.5 0.0
1st MDS coordinate 1st MDS coordinate

Problem 2 Problem 4

2nd MDS coordinate
2nd MDS coordinate
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Observed trends in our experiments

KSD distance to the target posterior

> SWAG yields low KSD values

>~ Amongst SGMCMC, SVRG variants yield the lowest values

> Deep ensembles has slightly lower KSDs than SVRG variants

Other comments

> Tuning the hyperparameters is difficult

> KSD should be used with caution, cannot be used for hyperparameter tuning
> Difficult to draw general conclusions from these experiments only

Ongoing / related works

> Running the benchmark with convolutional / graphs networks
> Correction of identified pathologies in the KSD [Benard, Staber, Da Veiga, arxiv:2301.13528]
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Implementation details

Lm0

Laplace approximations in deep learning
> Daxberger et al. (2021): https://github.com/Aleximmer/Laplace
> PyTorch backend

Remaining algorithms

> Implemented with JAX ( https://github.com/google/jax )

> Several (SG)MCMC methods are available in BlackJAX ( https://github.com/blackjax-devs/blackjax )
> Great speed-up with JAX, especially for MCMC methods (jit, scan, vmap, pmap, etc.)

> Code to reproduce the benchmark will be published soon
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Thank you!
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