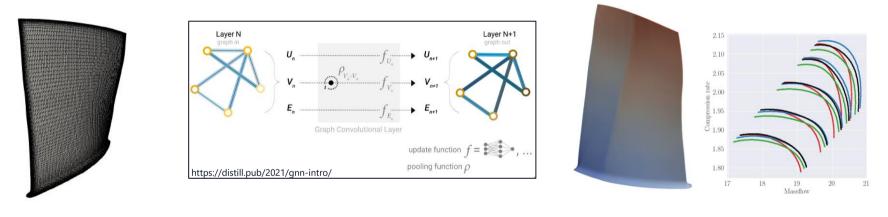
UQSay #54 Quantitative performance evaluation of Bayesian neural networks (benchmark)

Brian Staber (Safran) Sébastien Da Veiga (ENSAI)

Deep learning for computational engineering

Example in computational fluid dynamics



Input mesh

Graph neural network

Predict fields and scalars

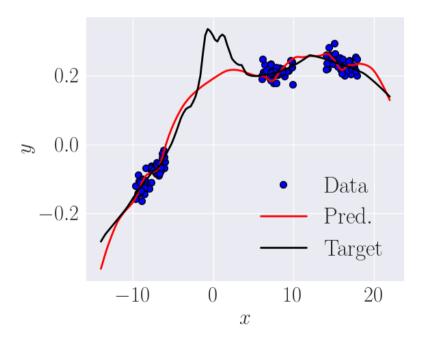
Deep learning

Supervised training

- > Training dataset : $\mathcal{D} = \{(\mathbf{X}_i, \mathbf{Y}_i)\}_{i=1}^N$
- ightarrow Neural network $\hat{f}(\cdot;\mathbf{w})$ with parameters $\mathbf{w}~\in~\mathbb{R}^d$
- > Train the network by minimizing a loss function

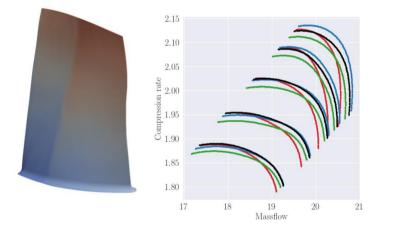
$$L(\mathbf{w}) = -\sum_{i=1}^{N} \log p(\mathbf{Y}_i | \mathbf{X}_i, \mathbf{w})$$

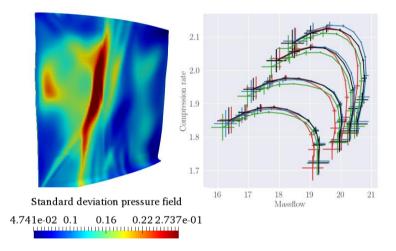
 $\,\,$ > Point estimate $w_{\rm MLE}$, no predictive uncertainties



Predictive uncertainties

Example in computational fluid dynamics





Neural network : predictions

What we need : predictive uncertainties

Bayesian neural networks

Bayesian inference

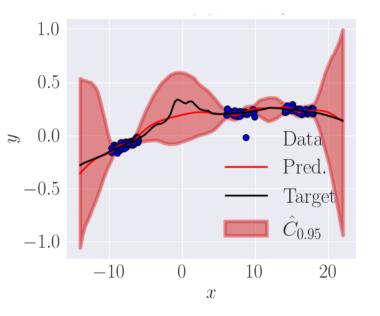
> The observations take the form

$$\mathbf{Y}_i = f(\mathbf{X}_i) + oldsymbol{arepsilon}_i$$
 , $arepsilon_i \sim \mathcal{N}(0, \sigma^2(\mathbf{X}_i) \mathbf{I}_M)$,

- > Pick a prior distribution $p(\mathbf{w})$ over the parameters
- > Deduce the posterior distribution using Bayes formula

$$p(\mathbf{w}|\mathbf{X}, \mathbf{Y}) \propto p(\mathbf{Y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})$$

 $p(\mathbf{Y}_i|\mathbf{X}_i, \mathbf{w}) = \mathcal{N}(\mathbf{Y}_i; \hat{f}(\mathbf{X}_i; \mathbf{w}), \sigma^2 \mathbf{I}_M)$



Bayesian neural networks

Deep bayesian neural networks are challenging

- > Prior distribution over the parameters difficult to choose
- > Large datasets and possibly high-dimensional inputs/outputs
- > High dimensional intractable posterior, possibly multimodal

Exact inference:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{X}, \mathbf{Y}) = \int_{\mathbb{R}^d} p(\mathbf{y}|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathbf{X}, \mathbf{Y}) d\mathbf{w}$$

Approximate inference:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{X}, \mathbf{Y}) \approx \frac{1}{n} \sum_{i=1}^{n} p(\mathbf{y}|\mathbf{x}, \mathbf{w}_i), \quad \mathbf{w}_i \sim q(\mathbf{w}) \approx p(\mathbf{w}|\mathbf{X}, \mathbf{Y})$$

Approximate inference

Sampling methods

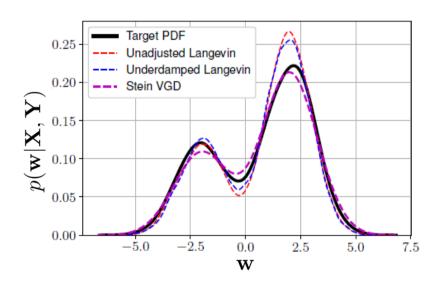
- > Classical MCMC (HMC, NUTS, MALA, ...)
- > Stochastic gradient MCMC (SGLD, SGHMC, ...)

Variational methods

- > Classical VI (MFV, BBB, ...)
- > Stein variational gradient descent
- > Monte Carlo dropout

Gaussian approximations

- > Laplace (diagonal or kronecker factorization matrix)
- Stochastic weight averaging Gaussian (SWAG)



Approximate inference

- > Which methods generate valid confidence intervals ?
- > Which methods provide the best approximations to the target posterior ?
- > Do we really need a good approximation in the high-dimensional weight space ?
- > Sensitivity with respect to hyperparameters ?
- > Are there any similarities between some algorithms ?

Benchmark setup

Approximation methods

- > Hamiltonian Monte Carlo
- > Stochastic gradient MCMC
- > MC dropout
- > Deep ensembles
- > Laplace approximation, SWAG

Evaluation metrics

- > Coverage probabilities
- > Prediction accuracy
- > Distances between probability distributions

Experiments

- > 4 synthetic regression problems
- > MLP networks



Approximation methods

Markov Chain Monte Carlo methods

Hamiltonian Monte Carlo

- > Used as a reference
- > 3 chains, 200 iterations and 10,000 leapfrog steps
- > Step size chosen to get appropriate accept rates
- Requires the full gradient of the log-posterior
- > HMC for BNNs studied by Izmaloiv et al., What are Bayesian neural network posteriors really like?

Stochastic gradient MCMC

- Metropolis-Hastings correction step omitted
- > Stochastic gradient (mini batched)
- > Computationally more efficient but introduces asymptotic bias
- > 9 variants are considered

UQSay #54

11

Stochastic gradient MCMC

Stochastic differential equation [Ma et al. 2015, Nemeth et al. 2020]

$$d\mathbf{Z} = \frac{1}{2}\mathbf{b}(\mathbf{Z}) dt + \sqrt{\mathbf{D}(\mathbf{Z})} d\mathbf{W}(t), \quad \mathbf{Z}_t = (\mathbf{w}_t, \mathbf{r}_t)$$
$$\mathbf{b}(\mathbf{Z}) = -(\mathbf{D}(\mathbf{Z}) + \mathbf{Q}(\mathbf{Z}))\nabla H(\mathbf{Z}) + \Gamma(\mathbf{Z}), \quad \Gamma_i(\mathbf{Z}) = \sum_j \frac{\partial}{\partial \mathbf{Z}_j} (\mathbf{D}_{ij}(\mathbf{Z}) + \mathbf{Q}_{ij}(\mathbf{Z}))$$

Energy function

$$H(\mathbf{Z}) = U(\mathbf{w}) + K(\mathbf{r}) \,,$$

$$U(\mathbf{w}) = -\log(p(\mathbf{Y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})) = -\sum_{i=1}^{N}\log(p(\mathbf{Y}_{i}|\mathbf{X}_{i}, \mathbf{w})) - \log(p(\mathbf{w}))$$

12 UQSay #54

Stochastic gradient MCMC

Euler explicit scheme and mini-batched gradients

$$\mathbf{Z}^{k+1} = \mathbf{Z}^k - \epsilon \left((\mathbf{D}(\mathbf{Z}^k) + \mathbf{Q}(\mathbf{Z}^k)) \widehat{\nabla} H(\mathbf{Z}^k) + \Gamma(\mathbf{Z}^k) \right) + \sqrt{2\epsilon \mathbf{D}(\mathbf{Z}^k)} \, \Delta \mathbf{W}^{k+1}$$
$$\widehat{\nabla} U(\mathbf{w}) = -\frac{N}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla U_i(\mathbf{w}) - \nabla \log(p(\mathbf{w}))$$

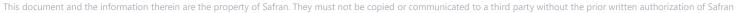
Table 1. A list of popular SGMCMC algorithms highlighting how they fit within the general stochastic differential equation framework (9) and (10).

Algorithm	ζ	$H(\boldsymbol{\zeta})$	D(Ç)	Q(ζ) 0		
SGLD	θ	U(θ)	I			
SGRLD	θ	$U(\boldsymbol{\theta})$	$G(\theta)^{-1}$	0		
SGHMC	(θ, ρ)	$U(\boldsymbol{\theta}) + \frac{1}{2} \boldsymbol{\rho}^{\top} \boldsymbol{\rho}$	$\begin{pmatrix} 0 & 0 \\ 0 & \mathbf{C} \end{pmatrix}$	$\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$		
SGRHMC	(heta, ho)	$U(\boldsymbol{\theta}) + \frac{1}{2} \boldsymbol{\rho}^{\top} \boldsymbol{\rho}$	$\begin{pmatrix} 0 & 0 \\ 0 & G(\theta)^{-1} \end{pmatrix}$	$\begin{pmatrix} 0 & -G(\boldsymbol{\theta})^{-1/2} \\ G(\boldsymbol{\theta})^{-1/2} & 0 \end{pmatrix}$		
SGNHT	(θ, ρ, η)	$U(\boldsymbol{\theta}) + \frac{1}{2}\boldsymbol{\rho}^{\top}\boldsymbol{\rho} \\ + \frac{1}{2d}(\eta - A)^2$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & A \cdot I & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & -\mathbf{I} & 0 \\ \mathbf{I} & 0 & \boldsymbol{\rho}^\top/d \\ 0 & -\boldsymbol{\rho}^\top/d & 0 \end{pmatrix}$		

NOTE: Most of the terms are defined in the text, except: $C \geq hV(\theta)$, which is a positive semidefinite matrix; $G(\theta)$ is the Fisher information metric; A is a tuning parameter for SGNHT.

Nemeth et al. 2020

13 UQSay #54



Stochastic gradient MCMC

Vanilla SGMCMC

> SGLD [Welling & The, 2011]

$$k \ge 0$$
, $\mathbf{w}^{k+1} = \mathbf{w}^k - \epsilon_k \widehat{\nabla} U(\mathbf{w}^k) + \sqrt{2\epsilon_k} \Delta \mathbf{W}^{k+1}$

> SGHMC [Chen et al, 2014]

$$k \ge 0: \begin{cases} \mathbf{w}^{k+1} = \mathbf{w}^k + \mathbf{v}^k, \\ \mathbf{v}^{k+1} = (1-\alpha)\mathbf{v}^k - \epsilon_k \widehat{\nabla} U(\mathbf{w}^k) + \sqrt{2\alpha\epsilon_k} \Delta \mathbf{W}^{k+1} \end{cases}$$

14 UQSay #54

Stochastic gradient MCMC

Vanilla SGMCMC

- > SGLD [Welling & The, 2011]
- > SGHMC [Chen et al, 2014]

Variance reduction

- > SGLD-CV [Baker et al, 2019]
- > SGHMC-CV

Updated variance reduction

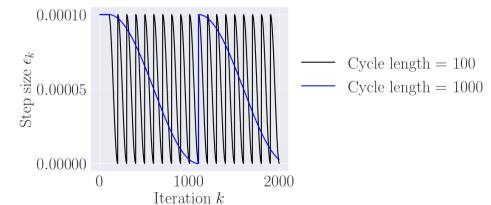
- > SGLD-SVRG [Dubey et al, 2016]
- > SGHMC-SVRG

With preconditioning

> pSGLD [Li et al, 2016]

Cyclical scheduler

- > C-SGHMC [Zhang et al, 2019]
- > C-SGLD



16 UQSay #54

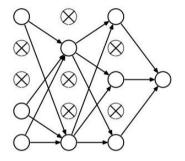
MC Dropout and deep ensembles

Monte Carlo dropout [Gal et al., 2016]

- > Train a neural network with dropout layers
- > Output features of each layer are randomly dropped
- > Keep dropout enabled during predictions

Deep ensembles [Lakshminarayanan et al., 2017]

- > Train N networks independently
- Random initializations
- Aggregate the predictions



Gaussian approximations

Laplace approximation (LA-KFAC)

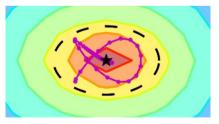
- > Laplace approximation of the posterior
- > Compute a MAP estimate by training the network
- > Kronecker factored log likelihood Hessian approximation

$$p(\mathbf{w}|\mathbf{X},\mathbf{Y}) \approx \mathcal{N}(\mathbf{w}|\mathbf{w}_{\text{MAP}},\Sigma_{\text{KFAC}})$$

Stochastic Weight Averaging Gaussian (SWAG)

- > Compute a MAP estimate by training the network
- Run SGD with a high step size and collect values of the parameters
- > Construct a Gaussian approximation to the posterior

 $p(\mathbf{w}|\mathbf{X},\mathbf{Y}) \approx \mathcal{N}(\mathbf{w}|\mathbf{w}_{\mathrm{SWAG}},\Sigma_{\mathrm{SWAG}})$



Approximation methods : summary

Approximation methods (14)

- > Hamiltonian Monte Carlo (used as a reference)
- Stochastic gradient MCMC (9 variants)
- > MC dropout
- > Deep ensembles
- > Laplace approximation
- > SWAG

Hyperparameters

- > 10 step sizes (or learning rates)
- > 5 dropout rates
- > 3 cycle lengths in cyclical SGMCMC

Evaluation metrics

Considered metrics

Coverage probabilities

- > Marginal coverage
- > Conditional coverage

Distances between probability distributions

- > Distance to the HMC reference (weight and function space)
- > Distance to the target posterior distribution (weight space)

Similarities between the algorithms

- > Pairwise distances (weight and function space)
- > Multidimensional scaling

21

UQSay #54

Coverage probabilities

Prediction interval coverage probability

> Yao et al. (2019) studies the prediction interval coverage probability (PICP)

 $\mathbb{P}\{\mathbf{Y}^{\star} \in \hat{C}^{\mathcal{D}}_{\alpha}(\mathbf{X}^{\star}) | \mathcal{D}\} \ge 1 - \alpha$

where the probability is taken **only** over the test data $(\mathbf{X}^{\star}, \mathbf{Y}^{\star})$.

- > Variability related to the training dataset not taken into account
- > Stronger coverage notions exist
- > Marginal coverage and conditional coverage

Coverage probabilities

Marginal coverage probability (MCP)

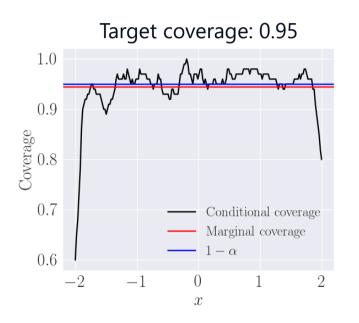
$$\mathbb{P}\{\mathbf{Y}^{\star} \in \hat{C}^{\mathcal{D}}_{\alpha}(\mathbf{X}^{\star})\} \ge 1 - \alpha$$

Probability taken over **both** the training and test data.

Conditional coverage probability (CCP)

$$\mathbb{P}\{\mathbf{Y}^{\star} \in \hat{C}^{\mathcal{D}}_{\alpha}(\mathbf{X}^{\star}) | \mathbf{X}^{\star} = \mathbf{x}\} \ge 1 - \alpha$$

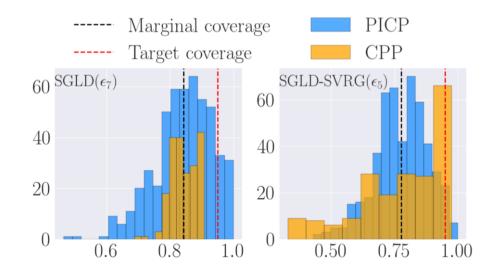
for almost all $\mathbf{x} \in \mathcal{X}$, probability taken over the training data.



Coverage probabilities

Example for two approximation methods

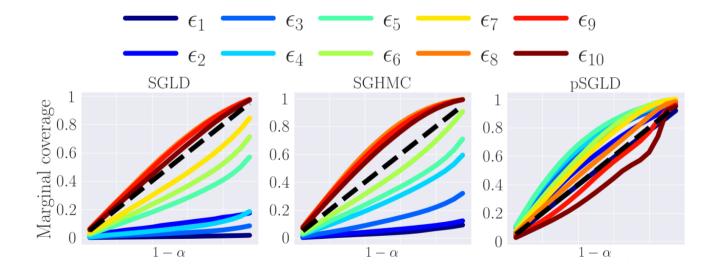
- > Marginal coverage far from the target level
- > Conditional coverage is pessimistic as well
- > PICP exhibits large variability, may lead to wrong conclusions



Marginal and conditional coverage

For a given experiment:

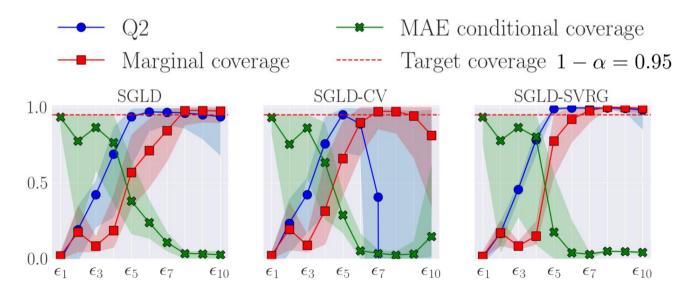
- > Generate $N_{\mathcal{D}}$ independent training datasets $\mathcal{D}_1, \ldots, \mathcal{D}_{N_{\mathcal{D}}}$
- > Generate a test dataset $\mathcal{D}^{\star} = \{(\mathbf{X}_{i}^{\star}, \mathbf{Y}_{i}^{\star})\}_{i=1}^{N^{\star}}$



Marginal and conditional coverage

For a given experiment:

- > Generate $N_{\mathcal{D}}$ independent training datasets $\mathcal{D}_1, \ldots, \mathcal{D}_{N_{\mathcal{D}}}$
- > Generate a test dataset $\mathcal{D}^{\star} = \{(\mathbf{X}_i^{\star}, \mathbf{Y}_i^{\star})\}_{i=1}^{N^{\star}}$



Distance to the HMC reference

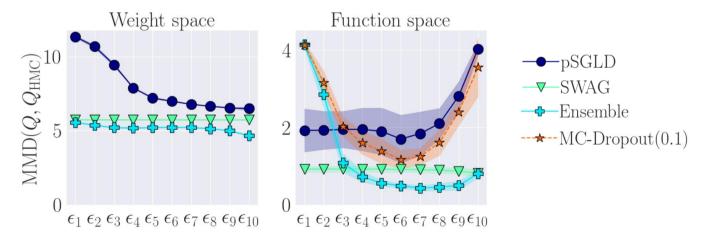
Maximum mean discrepancy [Gretton et al., 2006]

> MMD distance between two probability measures

$$\mathrm{MMD}(\mathbb{Q},\mathbb{Q}') = \|\mu_{\mathbb{Q}} - \mu_{\mathbb{Q}'}\|_{\mathcal{H}(k)}, \quad \mu_{\mathbb{Q}} = \int k(\cdot,\mathbf{w}) \, d\mathbb{Q}$$

~

Computed in weight and function spaces



Distance to the target posterior

Kernelized Stein discrepancy [Gorham et al., 2015][Liu et al., 2016]

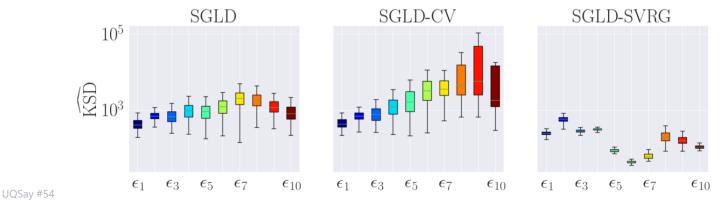
> Relies on Stein's discrepancy

28

> Only requires the knowledge of the score function $s_p(\mathbf{w}) = \nabla \log p(\mathbf{w} | \mathbf{X}, \mathbf{Y})$

$$\mathrm{KSD}^2(\mathbb{P},\mathbb{Q}) = \mathbb{E}[k_p(\mathbf{Z},\mathbf{Z}')]\,,\quad \mathbf{Z}\sim\mathbb{Q}\,,\quad \mathbf{Z}'\sim\mathbb{Q}\,,$$

 $k_p(\mathbf{w}, \mathbf{w}') = \langle \nabla_{\mathbf{w}}, \nabla_{\mathbf{w}'} k(\mathbf{w}, \mathbf{w}') \rangle + \langle s_p(\mathbf{w}), \nabla_{\mathbf{w}'} k(\mathbf{w}, \mathbf{w}') \rangle + \langle s_p(\mathbf{w}'), \nabla_{\mathbf{w}} k(\mathbf{w}, \mathbf{w}') \rangle + \langle s_p(\mathbf{w}), s_p(\mathbf{w}') \rangle k(\mathbf{w}, \mathbf{w}') \rangle$



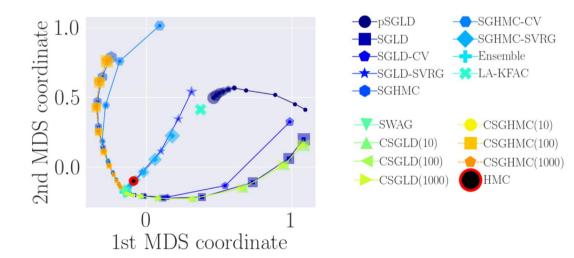
Similarities between the algorithms

Maximum mean discrepancy [Gretton et al., 2006]

> MMD distance between two probability measures

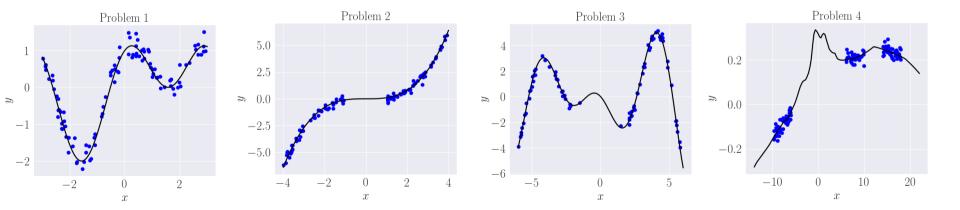
$$\mathrm{MMD}(\mathbb{Q},\mathbb{Q}') = \|\mu_{\mathbb{Q}} - \mu_{\mathbb{Q}'}\|_{\mathcal{H}(k)}, \quad \mu_{\mathbb{Q}} = \int k(\cdot,\mathbf{w}) \, d\mathbb{Q}$$

> Pairwise MMD distances and multidimensional scaling



One-dimensional regression problems

Task	Latent function	σ	D	N	N^{\star}	OOD
AF#1	$\cos(2x) + \sin(x)$	0.2	1	100	200	X
AF#2	$0.1x^{3}$	0.25	1	100	200	1
AF#3	$-(1+x)\sin(1.2x)$	0.25	1	82	200	✓
AF#4	$MLP(\cdot; \mathbf{w}), \mathbf{w} \sim \mathcal{N}(0, \mathbf{I})$	0.02	2	120	120	✓



31 UQSay #54

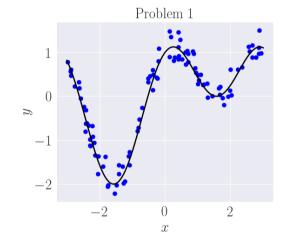
Regression problem #1

In the following slides

- Graphs of coverage probabilities
- > Graphs of MMD distances
- Graphs of kernelized Stein discrepancies
- > 14 approximations methods
- > 10 step sizes $\epsilon_1,\ldots,\epsilon_{10}$
- > 5 dropout rates for MC Dropout
- > 3 cycle lengths for cyclical SGMCMC
- > MLP network with 10k parameters

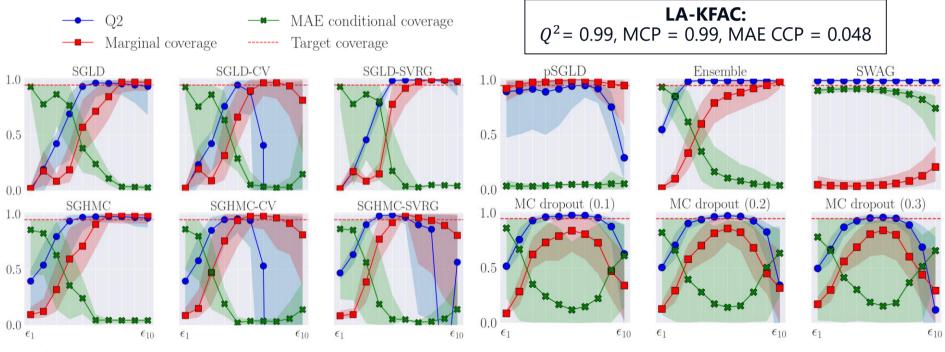
Coverage probabilities

> Estimated with 1000 datasets



Regression problem #1

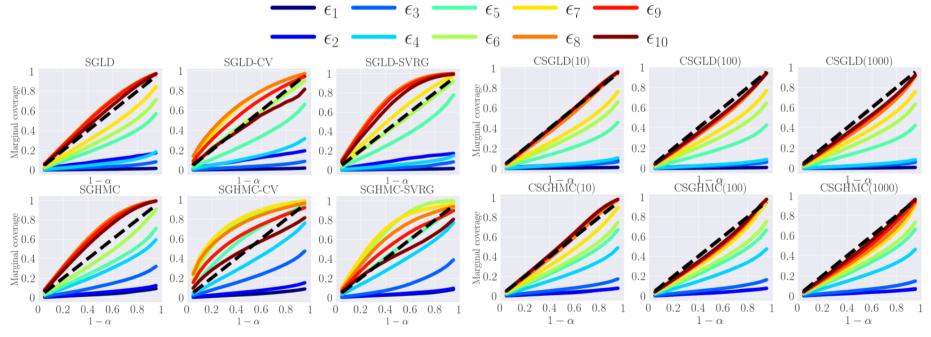
Coverage probabilities for a 0.95 target and coefficients of determination Q^2



Regression problem #1

- SGMCMC easily overshoots
- > Highly sensitive w.r.t step size
- > Cyclical step sizes reduce the coverages

Graphs of the marginal coverage probabilities : SGMCMC and C-SGMCMC

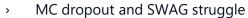


34 UQSay #54

Regression problem #1

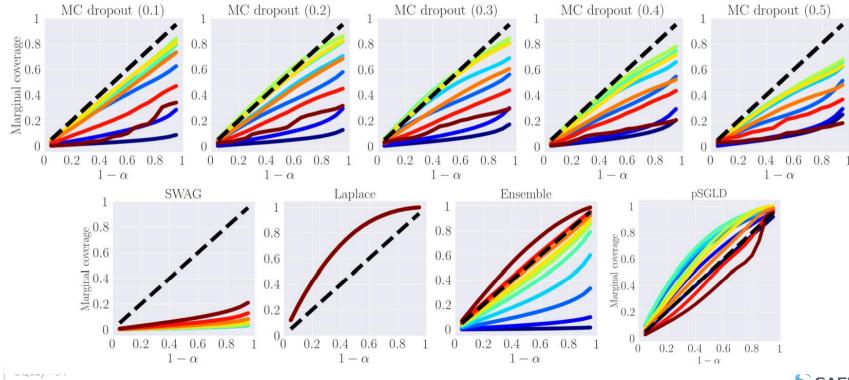
35

Graphs of the marginal coverage probabilities



>

- LA-KFAC and pSGLD easily overestimate
 - Deep ensembles seems promising



Regression problem #1

Best marginal coverage versus best prediction accuracy

Method	Best MCP	Q^2	Best Q^2	MCP	Method	Best MCP	Q^2	Best Q^2	MCP
SGLD	0.97	0.93	0.96	0.71	CSGHMC(10)	0.97	0.97	0.97	0.89
SGLD-CV	0.94	-10^{3}	0.95	0.66	CSGHMC(100)	0.94	0.97	0.97	0.94
SGLD-SVRG	0.97	0.99	0.99	0.91	CSGHMC(1000)	0.94	0.96	0.97	0.93
SGHMC	0.99	0.96	0.97	0.99	pSGLD	0.94	0.29	0.95	0.99
SGHMC-CV	0.94	0.95	0.95	0.94	Deep ensemble	0.95	0.99	0.99	0.88
SGHMC-SVRG	0.94	0.86	0.99	0.92	SWAG	0.20	0.99	0.99	0.03
CSGLD(10)	0.95	0.96	0.96	0.66	MC Drop.(0.1)	0.83	0.98	0.98	0.83
CSGLD(100)	0.94	0.96	0.96	0.76	MC Drop.(0.2)	0.85	0.97	0.97	0.85
CSGLD(1000)	0.92	0.95	0.96	0.75	MC Drop.(0.3)	0.84	0.96	0.96	0.84

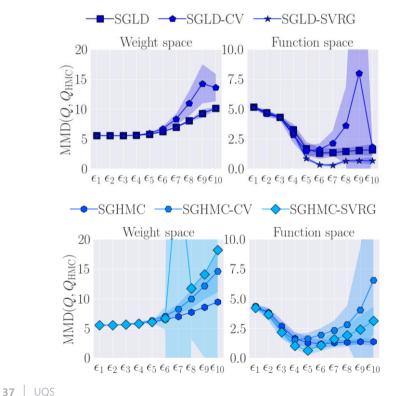
Table 2. Best marginal coverage probabilities (MCP) and best Q^2 coefficients obtained with each algorithm.

LA-KFAC: $Q^2 = 0.99$, MCP = 0.99

36 UQSay #54

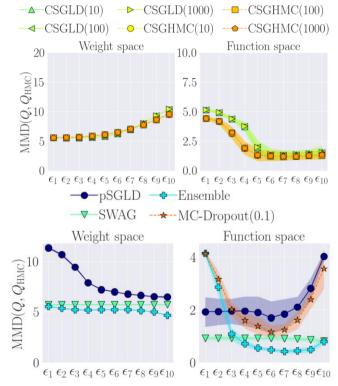
Regression problem #1

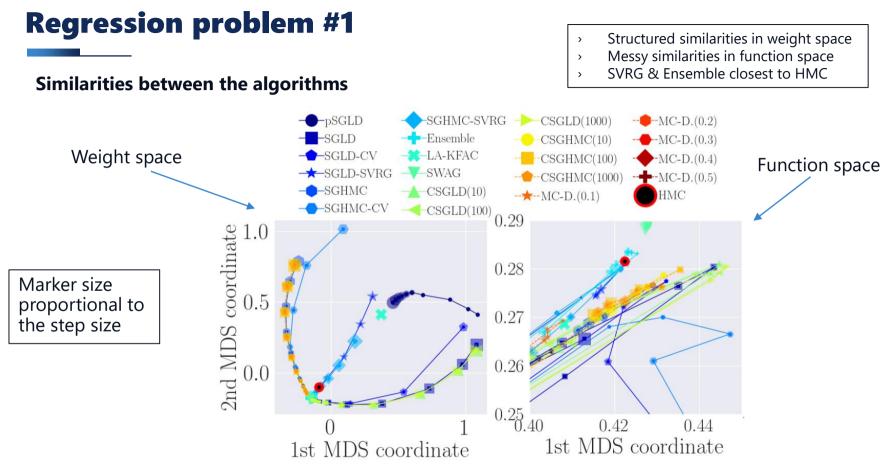
MMD distance to the HMC reference



- > Different behavior weight / function space
- > Lowest MMD in function space : SGMCMC-SVRG & Ensemble
- > Deep ensembles seems promising
- > CV methods are unstable

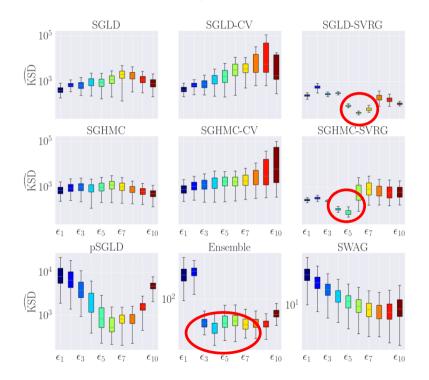
C2 - Confidential





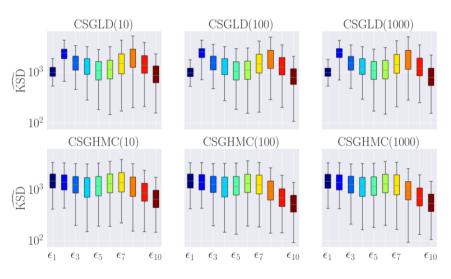
Regression problem #1

KSD distance to the target posterior



Ranking in terms of KSD:

- > SWAG < Ensemble < SVRG & pSGLD</p>
- > High variability for SGMCMC and C-SGMCMC

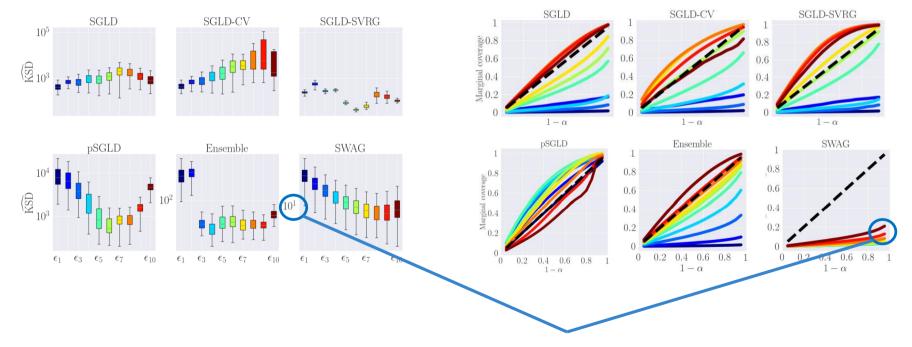


39 UQSay #54

Observed trends in our experiments

KSD cannot be exclusively relied on

- > KSD seems uncorrelated with coverage probabilities
- > **SWAG** : Lowest KSDs but bad marginal coverages
- > Ensemble : nice coverages, decent KSDs
- > SVRG : acceptable coverages, higher KSDs



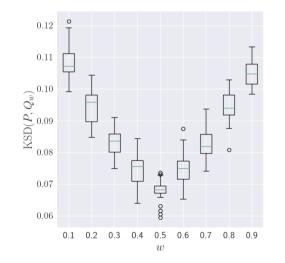
Pathologies of kernelized Stein discrepancy

KSD suffers from a few shortcomings [Wenliang et al, 2021; Korba et al, 2021]

- > We identified at least two pathologies
- > **Pathology I**: blindness to proportions in multimodal distributions

Example

- > Target: bimodal Gaussian mixture
- > Proportions : 0.25 and 0.75
- > Candidates : bimodal Gaussian mixtures with weights w and 1 w
- KSD is unable to identity the correct proportions
- > KSD seems unreliable when dealing with multimodal distributions



41 UQSay #54

Observed trends in our experiments

Which methods generate valid confidence intervals ?

- > Several methods are able to provide good marginal/conditional coverage probabilities
- > **SGMCMC-SVRG** and **Deep ensembles** seem promising but computationally expensive
- > **LA-KFAC** and **pSGLD** easily overshoot the target coverage
- > MC Dropout or SWAG struggle

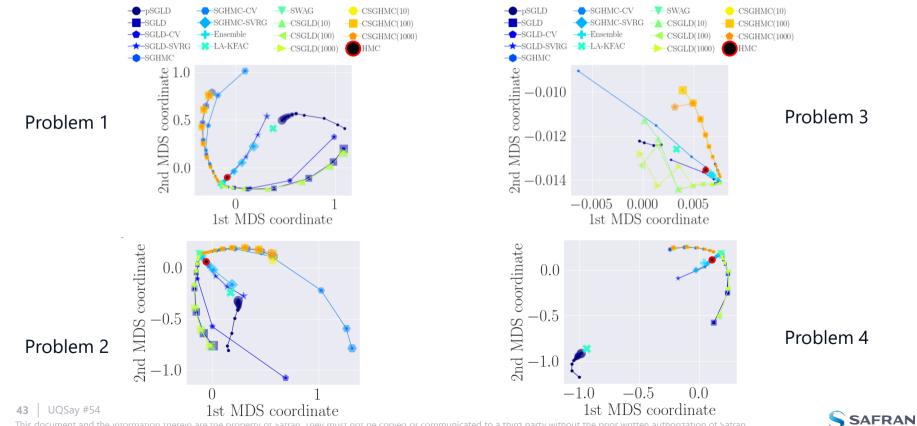
42

UQSay #54

MMD distances to the HMC reference

- > The behavior w.r.t the step size is not the same in weight and function space
- > SGMCMC-SVRG and/or Deep ensembles usually have the lowest distances in function space
- > There exist structured similarities in weight space

Same similarities across our experiments



Observed trends in our experiments

KSD distance to the target posterior

- > **SWAG** yields low KSD values
- > Amongst SGMCMC, **SVRG** variants yield the lowest values
- Deep ensembles has slightly lower KSDs than SVRG variants

Other comments

- > Tuning the hyperparameters is difficult
- > KSD should be used with caution, cannot be used for hyperparameter tuning
- > Difficult to draw general conclusions from these experiments only

Ongoing / related works

- > Running the benchmark with convolutional / graphs networks
- > Correction of identified pathologies in the KSD [Benard, Staber, Da Veiga, arxiv:2301.13528]

Implementation details

Laplace approximations in deep learning

- > Daxberger et al. (2021): https://github.com/AlexImmer/Laplace
- > PyTorch backend

Remaining algorithms

- > Implemented with JAX (<u>https://github.com/google/jax</u>)
- > Several (SG)MCMC methods are available in BlackJAX (<u>https://github.com/blackjax-devs/blackjax</u>)
- > Great speed-up with JAX, especially for MCMC methods (jit, scan, vmap, pmap, etc.)
- > Code to reproduce the benchmark will be published soon

References

- > Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. In *Proceedings of the 28th international conference on machine learning (ICML-11)* (pp. 681-688).
- Li, C., Chen, C., Carlson, D., & Carin, L. (2016, February). Preconditioned stochastic gradient Langevin dynamics for deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 30, No. 1).
- > Chen, T., Fox, E., & Guestrin, C. (2014, June). Stochastic gradient hamiltonian monte carlo. In International conference on machine learning (pp. 1683-1691). PMLR.
- Ma, Y. A., Chen, T., & Fox, E. B. (2015). A complete recipe for stochastic gradient MCMC. arXiv preprint arXiv:1506.04696.
- > Nemeth, C., & Fearnhead, P. (2020). Stochastic gradient markov chain monte carlo. Journal of the American Statistical Association, 1-18.
- Baker, J., Fearnhead, P., Fox, E. B., & Nemeth, C. (2019). Control variates for stochastic gradient MCMC. *Statistics and Computing*, 29(3), 599-615.
- > Dubey, A., Reddi, S. J., Póczos, B., Smola, A. J., Xing, E. P., & Williamson, S. A. (2016). Variance reduction in stochastic gradient Langevin dynamics. Advances in neural information processing systems, 29, 1154.
- > Yao, J., Pan, W., Ghosh, S., & Doshi-Velez, F. (2019). Quality of uncertainty quantification for Bayesian neural network inference. arXiv preprint arXiv:1906.09686.
- Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen, R., Bauer, M., & Hennig, P. (2021). Laplace redux-effortless bayesian deep learning. Advances in Neural Information Processing Systems, 34, 20089-20103.
- > Zhang, R., Li, C., Zhang, J., Chen, C., & Wilson, A. G. (2019). Cyclical stochastic gradient MCMC for Bayesian deep learning. arXiv preprint arXiv:1902.03932.
- > Gorham, J., & Mackey, L. (2017, July). Measuring sample quality with kernels. In International Conference on Machine Learning (pp. 1292-1301). PMLR.
- Liu, Q., Lee, J., & Jordan, M. (2016, June). A kernelized Stein discrepancy for goodness-of-fit tests. In International conference on machine learning (pp. 276-284).
 PMLR.
- Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., & Smola, A. (2006). A kernel method for the two-sample-problem. Advances in neural information processing systems, 19.

POWERED BY TRUST

