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Deep learning for computational engineering

UQSay #54

Input mesh Graph neural network Predict fields and scalars

Example in computational fluid dynamics

https://distill.pub/2021/gnn-intro/
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Deep learning

UQSay #54

Supervised training

› Training dataset : 𝒟𝑁 = {(𝑿𝑖 , 𝒀𝑖)}𝑖=1
𝑁

› Neural network 𝑓 ⋅;𝒘 with parameters 𝒘 ∈ ℝ𝑑

› Train the network by minimizing a loss function

L 𝒘 = −log𝑝 𝒀 𝑿,𝒘

› Point estimate , no predictive uncertainties
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Predictive uncertainties

UQSay #54

Neural network :  predictions

Example in computational fluid dynamics

What we need : predictive uncertainties
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Bayesian neural networks

UQSay #54

Bayesian inference

› The observations take the form

𝑦𝑖 = 𝑓 𝑥𝑖; 𝜃 + 𝜖𝑖 , 𝜖𝑖 ∼ 𝒩 0,𝜎2

› Pick a prior distribution 𝑝 𝜃 over the parameters

› Deduce the posterior distribution using Bayes formula
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Deep bayesian neural networks are challenging

› Prior distribution over the parameters difficult to choose

› Large datasets and possibly high-dimensional inputs/outputs

› High dimensional intractable posterior, possibly multimodal

Exact inference:

Approximate inference:

Bayesian neural networks

UQSay #54
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Sampling methods

› Classical MCMC (HMC, NUTS, MALA, …)

› Stochastic gradient MCMC (SGLD, SGHMC, …)

Variational methods

› Classical VI (MFV, BBB, …)

› Stein variational gradient descent

› Monte Carlo dropout

Gaussian approximations

› Laplace (diagonal or kronecker factorization matrix)

› Stochastic weight averaging Gaussian (SWAG)

Approximate inference

UQSay #54
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› Which methods generate valid confidence intervals ? 

› Which methods provide the best approximations to the target posterior ?

› Do we really need a good approximation in the high-dimensional weight space ?

› Sensitivity with respect to hyperparameters ? 

› Are there any similarities between some algorithms ?

Approximate inference

UQSay #54
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Approximation methods

› Hamiltonian Monte Carlo 

› Stochastic gradient MCMC 

› MC dropout

› Deep ensembles

› Laplace approximation, SWAG

Evaluation metrics

› Coverage probabilities

› Prediction accuracy

› Distances between probability distributions

Experiments

› 4 synthetic regression problems

› MLP networks 

Benchmark setup

UQSay #54
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Approximation methods

UQSay #54



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

11

C2 - Confidential

Hamiltonian Monte Carlo

› Used as a reference

› 3 chains, 200 iterations and 10,000 leapfrog steps

› Step size chosen to get appropriate accept rates

› Requires the full gradient of the log-posterior

› HMC for BNNs studied by Izmaloiv et al., What are Bayesian neural network posteriors really like?

Stochastic gradient MCMC

› Metropolis-Hastings correction step omitted

› Stochastic gradient (mini batched)

› Computationally more efficient but introduces asymptotic bias

› 9 variants are considered

Markov Chain Monte Carlo methods

UQSay #54
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Stochastic differential equation [Ma et al. 2015, Nemeth et al. 2020]

Energy function

Stochastic gradient MCMC

UQSay #54
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Euler explicit scheme and mini-batched gradients

Stochastic gradient MCMC

UQSay #54 Nemeth et al. 2020
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Vanilla SGMCMC

› SGLD [Welling & The, 2011]

› SGHMC [Chen et al, 2014]

Stochastic gradient MCMC

UQSay #54
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Vanilla SGMCMC

› SGLD [Welling & The, 2011]

› SGHMC [Chen et al, 2014]

Variance reduction

› SGLD-CV [Baker et al, 2019]

› SGHMC-CV

Updated variance reduction

› SGLD-SVRG [Dubey et al, 2016]

› SGHMC-SVRG

With preconditioning

› pSGLD [Li et al, 2016]

Cyclical scheduler

› C-SGHMC [Zhang et al, 2019]

› C-SGLD

Stochastic gradient MCMC

UQSay #54
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Monte Carlo dropout [Gal et al., 2016]

› Train a neural network with dropout layers

› Output features of each layer are randomly dropped

› Keep dropout enabled during predictions

Deep ensembles [Lakshminarayanan et al., 2017]

› Train 𝑁 networks independently

› Random initializations

› Aggregate the predictions

MC Dropout and deep ensembles

UQSay #54
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Laplace approximation (LA-KFAC)

› Laplace approximation of the posterior

› Compute a MAP estimate by training the network

› Kronecker factored log likelihood Hessian approximation

Stochastic Weight Averaging Gaussian (SWAG)

› Compute a MAP estimate by training the network

› Run SGD with a high step size and collect values of the 
parameters

› Construct a Gaussian approximation to the posterior

Gaussian approximations

UQSay #54

Maddox et al., 2019



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

19

C2 - Confidential

Approximation methods (14)

› Hamiltonian Monte Carlo (used as a reference)

› Stochastic gradient MCMC  (9 variants)

› MC dropout

› Deep ensembles

› Laplace approximation

› SWAG

Hyperparameters

› 10 step sizes (or learning rates)

› 5 dropout rates

› 3 cycle lengths in cyclical SGMCMC

Approximation methods : summary

UQSay #54
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Evaluation metrics

UQSay #54
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Coverage probabilities

› Marginal coverage

› Conditional coverage

Distances between probability distributions

› Distance to the HMC reference (weight and function space)

› Distance to the target posterior distribution (weight space)

Similarities between the algorithms

› Pairwise distances (weight and function space)

› Multidimensional scaling

Considered metrics

UQSay #54
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Prediction interval coverage probability

› Yao et al. (2019)  studies the prediction interval coverage probability (PICP) 

ℙ{𝑌𝑁+1 ∈ መ𝐶𝛼 𝑋𝑁+1 | 𝒟𝑁} ≥ 1 − 𝛼

where the probability is taken only over the test data

› Variability related to the training dataset not taken into account

› Stronger coverage notions exist

› Marginal coverage and conditional coverage

Coverage probabilities

UQSay #54
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Marginal coverage probability (MCP)

Probability taken over both the training and test data.

Coverage probabilities

UQSay #54

Conditional coverage probability (CCP)

for almost all 𝑥 ∈ 𝒳 ,, probability taken over the training 
data.

Target coverage: 0.95
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Example for two approximation methods

› Marginal coverage far from the target level

› Conditional coverage is pessimistic as well

› PICP exhibits large variability, may lead to wrong conclusions

Coverage probabilities

UQSay #54
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For a given experiment:

› Generate 𝑛𝑑 independent training datasets 𝒟1, … , 𝒟𝑛𝑑

› Generate a test dataset

Marginal and conditional coverage

UQSay #54
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For a given experiment:

› Generate 𝑛𝑑 independent training datasets 𝒟1, … , 𝒟𝑛𝑑

› Generate a test dataset

Marginal and conditional coverage

UQSay #54
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Maximum mean discrepancy [Gretton et al., 2006]

› MMD distance between two probability measures

› Computed in weight and function spaces

Distance to the HMC reference

UQSay #54
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Kernelized Stein discrepancy [Gorham et al., 2015][Liu et al., 2016]

› Relies on Stein’s discrepancy

› Only requires the knowledge of the score function

Distance to the target posterior

UQSay #54
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Maximum mean discrepancy [Gretton et al., 2006]

› MMD distance between two probability measures

› Pairwise MMD distances and multidimensional scaling

Similarities between the algorithms

UQSay #54
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Experiments

UQSay #54
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One-dimensional regression problems

UQSay #54
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Regression problem #1

UQSay #54

In the following slides

› Graphs of coverage probabilities

› Graphs of MMD distances

› Graphs of kernelized Stein discrepancies

› 14 approximations methods

› 10 step sizes

› 5 dropout rates for MC Dropout

› 3 cycle lengths for cyclical SGMCMC

› MLP network with 10k parameters

Coverage probabilities

› Estimated with 1000 datasets
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Regression problem #1

UQSay #54

Coverage probabilities for a 0.95 target and coefficients of determination 𝑸𝟐

LA-KFAC: 
𝑄2= 0.99, MCP = 0.99, MAE CCP = 0.048
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Regression problem #1

UQSay #54

Graphs of the marginal coverage probabilities : SGMCMC and C-SGMCMC

› SGMCMC easily overshoots

› Highly sensitive w.r.t step size

› Cyclical step sizes reduce the coverages
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Regression problem #1

UQSay #54

Graphs of the marginal coverage probabilities

› MC dropout and SWAG struggle

› LA-KFAC and pSGLD easily overestimate

› Deep ensembles seems promising



This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

36

C2 - Confidential

Regression problem #1

UQSay #54

Best marginal coverage versus best prediction accuracy

LA-KFAC: 
𝑄2= 0.99, MCP = 0.99
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Regression problem #1

UQSay #54

MMD distance to the HMC reference

› Different behavior weight / function space

› Lowest MMD in function space : SGMCMC-SVRG & Ensemble 

› Deep ensembles seems promising

› CV methods are unstable
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Regression problem #1

UQSay #54

Similarities between the algorithms

Weight space Function space

› Structured similarities in weight space

› Messy similarities in function space

› SVRG & Ensemble closest to HMC 

Marker size 
proportional to 
the step size
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Regression problem #1

UQSay #54

KSD distance to the target posterior

Ranking in terms of KSD:

› SWAG < Ensemble < SVRG & pSGLD

› High variability for SGMCMC and C-SGMCMC
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Observed trends in our experiments

UQSay #54

KSD cannot be exclusively relied on

› KSD seems uncorrelated with coverage probabilities

› SWAG : Lowest KSDs but bad marginal coverages

› Ensemble : nice coverages, decent KSDs

› SVRG : acceptable coverages, higher KSDs
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Pathologies of kernelized Stein discrepancy

UQSay #54

KSD suffers from a few shortcomings [Wenliang et al, 2021; Korba et al, 2021]

› We identified at least two pathologies

› Pathology I: blindness to proportions in multimodal distributions

Example

› Target: bimodal Gaussian mixture

› Proportions : 0.25 and 0.75

› Candidates : bimodal Gaussian mixtures with weights 𝑤 and 1 − 𝑤

› KSD is unable to identity the correct proportions

› KSD seems unreliable when dealing with multimodal distributions
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Observed trends in our experiments

UQSay #54

Which methods generate valid confidence intervals ?

› Several methods are able to provide good marginal/conditional coverage probabilities

› SGMCMC-SVRG and Deep ensembles seem promising but computationally expensive

› LA-KFAC and pSGLD easily overshoot the target coverage

› MC Dropout or SWAG struggle

MMD distances to the HMC reference

› The behavior w.r.t the step size is not the same in weight and function space

› SGMCMC-SVRG and/or Deep ensembles usually have the lowest distances in function space

› There exist structured similarities in weight space
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Same similarities across our experiments

UQSay #54

Problem 1

Problem 2

Problem 3

Problem 4
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Observed trends in our experiments

UQSay #54

KSD distance to the target posterior

› SWAG yields low KSD values

› Amongst SGMCMC, SVRG variants yield the lowest values

› Deep ensembles has slightly lower KSDs than SVRG variants

Other comments

› Tuning the hyperparameters is difficult

› KSD should be used with caution, cannot be used for hyperparameter tuning

› Difficult to draw general conclusions from these experiments only

Ongoing / related works

› Running the benchmark with convolutional / graphs networks 

› Correction of identified pathologies in the KSD [Benard, Staber, Da Veiga, arxiv:2301.13528]
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Implementation details

UQSay #54

Laplace approximations in deep learning

› Daxberger et al. (2021): https://github.com/AlexImmer/Laplace

› PyTorch backend

Remaining algorithms

› Implemented with JAX ( https://github.com/google/jax )

› Several (SG)MCMC methods are available in BlackJAX ( https://github.com/blackjax-devs/blackjax )

› Great speed-up with JAX, especially for MCMC methods (jit, scan, vmap, pmap, etc.)

› Code to reproduce the benchmark will be published soon

https://github.com/AlexImmer/Laplace
https://github.com/google/jax
https://github.com/blackjax-devs/blackjax
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Thank you!

UQSay #54
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