
Stochastic Gradient Descent in Continuous Time

Discrete and Continuous Data

Jonas Latz

School of Mathematical and Computer Sciences, Heriot-Watt University

Maxwell Institute for Mathematical Sciences

}
Edinburgh, UK

UQSay, Paris, September 29th 2022.



SGD in continuous time: discrete and continuous data

Related works: Jin, L., Liu, Schönlieb 2021: A Continuous-time Stochastic Gradient Descent Method

for Continuous Data, under review.

L. 2021: Analysis of stochastic gradient descent in continuous time, Statistics and Computing 31, 39.

L. 2022: Gradient flows and randomised thresholding: sparse inversion and classification, under review.

Kexin Jin, Princeton Chenguang Liu, Delft, Carola-Bibiane Schönlieb, Cambridge

Funding: Engineering and Physical Sciences Research Council (EPSRC), Swindon, UK

Jonas Latz: Stochastic Gradient Descent in Continuous Time 2



Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

Illustrations

Conclusions

Jonas Latz: Stochastic Gradient Descent in Continuous Time 3



Outline

Stochastic gradient descent - continuous time and discrete data

I Stochastic Gradient Descent with discrete data

I Continuous time models?

I Stochastic gradient process

I Longtime behaviour

Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

Illustrations

Conclusions

Jonas Latz: Stochastic Gradient Descent in Continuous Time 4



Optimisation problem: discrete data

I Consider an optimisation problem on X := RK ; of the form

θ∗ ∈ argminθ∈X Φ̄(θ) :=
1

N

N∑
i=1

Φi (θ), (OptP)

where potentials Φ̄,Φi ∈ C 1(X ;R), i ∈ I := {1, ...,N} and (OptP) is well-defined.

I Typical in statistical, imaging, and machine learning applications:
I Φ̄: misfit between a model and a (big) data set
I Φi : misfit between a model and the i-th partition of the data set
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Gradient Descent and Stochastic Gradient Descent: discrete data

Gradient Descent (GD) for (OptP): [Cauchy; 1847]

for k = 1, 2, . . .:

θk ← θk−1 − ηk∇Φ̄(θk−1), ∇Φ̄(θk−1) := 1
N

∑N
i=1∇Φi (θk−1).

(convergence if Φ̄ is (strictly) convex and “step size” ηk is sufficiently small)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stochastic Gradient Descent (SGD) for (OptP): [Robbins & Monro; 1951]

for k = 1, 2, . . .:

θk ← θk−1 − ηk∇Φi k (θk−1), i k ∼ Unif(I )︸ ︷︷ ︸
(= “subsampling”)

.

(convergence if Φ1, . . . ,ΦN are strongly convex and “learning rate” ηk ↓ 0 (k →∞) slowly)
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Stochastic Gradient Descent

I SGD constructs a Markov chain
I Stochastic properties hardly discussed [Benäım; 1999][Dieuleveut et al.; 2017][Hu et al.; 2019]

I Stationary measure, (Bayesian?) inference, and implicit regularisation
I Ergodicity?
I Speed of convergence?
→ this talk

I Long-term goals
I Construct more efficient stochastic optimisation algorithms
I Understand random subsampling in SGD and other continuous-time methods; especially

optimal convergence rates
I Understand SGD in non-convex optimisation
I Understand SGD with constant learning rates and implicit regularisation
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In continuous time?

Idealisation and simplification of models through continuity assumption

I Usual modelling tool in many scientific disciplines (e.g., continuum mechanics,...)
I Recently also used in data science, machine learning, and algorithms

I Ensemble Kalman Inversion [Schillings & Stuart; 2017, 2018][Blömker et al.; 2019]...

I Continuum limits of graphs [Trillos & Sanz-Alonso; 2018] and in MCMC

[Kuntz et al.; 2019]

I PDE-based image reconstruction [Rudin et al.; 1992][Schönlieb; 2015]...

I PDE-based data science [Budd, van Gennip & L.; 2021][Kreusser & Wolfram; 2020]...

I continuous models tend to be easier to analyse: no numerical artefacts
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A diffusion process?

Predominant model for SGD in continuous time: Diffusion process

I Idea: ηk ≈ 0⇒ gradient error is approximately Gaussian (CLT)

I Hence, (θk)∞k=1 can be represented by a diffusion process

θ̇(t) = −∇Φ̄(θ(t)) + Σ(θ(t))Ẇt (t ≥ 0), θ(0) = θ0.

[Hu et al.; 2019][Li et al.; 2016, 2017, 2019][Mandt et al.; 2015, 2016, 2017][Wojtowytsch; 2021]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Critique:
I for large ηk , the paths of (θk)∞k=1 are very different from a diffusion

I preasymptotic phase and constant ηk not explained

I Diffusion does not actually explain subsampling in a continuous-time model
I does not represent the discrete nature of the potential selection
I needs access to Φ̄
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Observations and fundamental idea

I the update
θk ← θk−1 − ηk∇Φi k (θk−1) (discrete)

is a forward Euler discretisation of the gradient flow

θ̇(t) = −∇Φi k (θ(t)) (continuous)

I learning rate ηk has two different meanings
(i) ηk is the step size of the gradient flow discretisation
(ii) ηk determines the length of the time interval with which we switch the Φi

Idea.

Obtain a continuous time model for SGD, by

(i) let the step size go to 0, i.e. replace (discrete) by (continuous).

(ii) switch the potentials in the gradient flow at a rate of 1/ηk
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Switching of the potentials

control the switching of the potentials by a continuous-time Markov process (CTMP)
(i (t))t≥0 on I := {1, ...,N} (“index process”)

t

N
N − 1

...
2
1
T0 T1T2 T3 T4 T5T6 T7 T8 T9 T10

i (t)

Figure: Cartoon of a CTMP

CTMPs 101

I (i (t))t≥0 is piecewise constant

I randomly jumps from one state to another after a random waiting time ∆ ∼ πwt(·|t0)

Jonas Latz: Stochastic Gradient Descent in Continuous Time 13



Switching of potentials

Two versions: constant learning rate and decreasing learning rate

(i) CTMP (i (t))t≥0 representing a constant learning rate η• ≡ η > 0

I constant learning rates are popular in practice
I πwt(·|t0) is constant in time (indeed this will be an exponential distribution)

(i (t))t≥0 has constant transition rate matrix A ∈ RN×N : Ai,j :=

{
1

(N−1)η
, if i 6= j ,

− 1
η
, if i = j .

(ii) CTMP (j (t))t≥0 representing a decreasing learning rate η• > 0, with ηk ↓ 0 (k →∞)

I actually a chance of converging to the minimiser of Φ̄
I waiting times ∆ ∼ πwt(·|t0) get ‘smaller’ over time (in some sense)

(j (t))t≥0 has time-dependent transition rate matrix B ∈ RN×N×[0,∞) : B(t)i,j :=

{
1

(N−1)H(t)
, if i 6= j ,

− 1
H(t)

, if i = j ,

where (H(t))t≥0 is continuously differentiable & interpolates (ηk)∞k=1.
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Stochastic gradient process

the Stochastic gradient process (SGP) is our continuous-time version of SGD

Definition. [L.; 2021]

We define the Stochastic gradient process...

(i) ...with constant learning rate (SGPC) by (θ(t))t≥0, which satisfies

θ̇(t) = −∇Φi (t)(θ(t)) (t ≥ 0), θ(0) = θ0.

(ii) ...with decreasing learning rate (SGPD) by (ξ(t))t≥0, which satisfies

ξ̇(t) = −∇Φj (t)(ξ(t)) (t ≥ 0), ξ(0) = ξ0.

(θ(t))t≥0 and (ξ(t))t≥0 are almost surely well-defined, if

Assumption [Lipschitz]. For i ∈ I : Φi ∈ C 1(X ,R) and ∇Φi is Lipschitz continuous.
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Stochastic gradient process

t

N
N − 1

...
2
1

T0 T1T2 T3 T4 T5T6 T7 T8 T9 T10

i (t)

θ(t)
X

t

Figure: Cartoon of SGPC
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Piecewise deterministic Markov processes

(θ(t), i (t))t≥0, (ξ(t), j (t))t≥0 are piecewise deterministic Markov processes (PDMPs)

I ‘a general class of non-diffusion stochastic models’ [Davis; 1984, 1993]

I progression via deterministic dynamic (ODE) with jumps after random waiting times or
when hitting a boundary
[Bakhtin & Hurth; 2012][Benäım et al.; 2012, 2015][Yin & Zhu; 2010]...

I used for stochastic modelling in engineering, computer science, and biology
[Rudnicki & Tyran-Kamińska; 2017]

I used as a basis for non-reversible MCMC algorithms
[Bierkens et al.; 2019][Fearnhead et al.; 2018][Power & Goldman; 2019],...
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SGD vs. SGP

Gradient flow

Uniform sampling

Markov property

Learning rate

Approximation of deterministic gradient flow
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SGD vs. SGP

Approximation of deterministic gradient flow

SGD with constant learning rate η ≈ 0 approximates the ‘exact’ gradient flow

dζ

dt
= −∇Φ̄(ζ(t)), ζ(0) = θ0.

Intuition:

I Euler scheme converges ⇒ gradient flow

I law of large numbers (LLN):

θk = θ0−
(
η∇Φi 1

(θ0) + · · ·+ η∇Φi k (θk−1)
) (η≈0)
≈ θ0−

(
η∇Φi 1

(θ0) + · · ·+ η∇Φi k (θ0)
)︸ ︷︷ ︸

LLN
≈ ηkΦ̄(θ0)
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SGD vs. SGP

SGPC, with η ≈ 0, also approximates the ‘exact’ gradient flow

Assumption [Smooth]. For any i ∈ I , let Φi ∈ C 2(X ;R) and let ∇Φi ,HΦi be
continuous and bounded on bounded subsets of X .

Theorem. [L.; 2021]

Let ζ(0) = θ(0) and let Assumption [Smooth] hold, then (θ(t))t≥0 → (ζ(t))t≥0, weakly in
(C 0([0,∞);X ), ‖ · ‖∞), as η ↓ 0.

Proof. Perturbed test function theory of [Kushner; 1984] . �
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SGD vs. SGP

Example. Let Φ1(θ) := (θ − 1)2/2 and Φ2(θ) := (θ + 1)2/2. ⇒ Φ̄(θ) = (θ2 + 1)/2.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1.5

2
 = 1
 = 0.1

 = 0.01
 = 0.001

-flow

Figure: Exemplary realisations of SGPC and plot of precise gradient flow. Discretisation with ode45.
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Long-time behaviour of the Stochastic Gradient Process

Study long-time behaviour of the stochastic gradient processes, i.e., study

P(θ(t) ∈ ·), P(ξ(t) ∈ ·) (t � 0 very large).

I existence and uniqueness of stationary measures

I convergence to stationary measures and its speed

I SGPD: convergence to δ(· − θ∗), where θ∗ ∈ argminθ∈X Φ̄(θ)
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Preliminaries

Wasserstein distance

Let q ∈ (0, 1]. Consider Wasserstein distance between π, π′ ∈ Prob(X ):

Wq(π, π′) := inf
H∈Coup(π,π′)

∫
X×X

min{1, ‖θ − θ′‖q2}H(dθ,dθ′),

Coup(π, π′) := {G ∈ Prob(X 2) : G (· × X ) = π, G (X × ·) = π′}

I metrises weak convergence, i.e.

Wq(πn, π)→ 0, as n→∞ ⇔ πn → π, weakly, as n→∞
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Preliminaries

Assumption [Smooth]. For any i ∈ I , let Φi ∈ C 2(X ;R) and let ∇Φi ,HΦi be
continuous and bounded on bounded subsets of X .

Assumption [Convex]. There is some κ > 0, with〈
θ0 − θ′0,∇Φi (θ0)−∇Φi (θ

′
0)
〉
≥ κ‖θ0 − θ′0‖2 (θ0, θ

′
0 ∈ X , i ∈ I ),

i.e. Φi are strongly convex for i ∈ I .
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Constant learning rate

Theorem. [L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then, (θ(t), i (t))t>0 has a unique
stationary measure πC on (X × I ,BX ⊗ 2I ). Moreover, there exist κ′, c > 0 and q ∈ (0, 1],
with

Wq(πC(· × I ),P(θ(t) ∈ ·|θ0, i0)) ≤ c exp(−κ′t)

(
1 +

∑
i∈I

∫
X
‖θ0 − θ′‖qπC(dθ′ × {i})

)
(i0 ∈ I , θ0 ∈X ).
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Constant learning rate

Theorem. [L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then, (θ(t), i (t))t>0 has a unique stationary measure πC on
(X × I ,BX ⊗ 2I ). Moreover, there exist κ′, c > 0 and q ∈ (0, 1], with

Wq(πC(· × I ),P(θ(t) ∈ ·|θ0, i0)) ≤ c exp(−κ′t)

1 +
∑
i∈I

∫
X
‖θ0 − θ′‖qπC(dθ′ × {i})

 (i0 ∈ I , θ0 ∈X ).

I convergence with exponential speed

I proof based on results by [Benäım et al.; 2012][Cloez & Hairer; 2015]

I convexity assumption can be weakened (needs Hörmander Bracket condition)

I finding an analytical expression for πC is probably hard / πC might describe the
implicit regularisation of SGPC
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Illustrative example: stationary measures of SGPC

Figure: Kernel density estimates of P(θ(10) ∈ ·|θ(0) = −1.5) ≈ πC (SGPC) and
P(θ10/η ∈ ·|θ0 = −1.5) (SGD) based on η ∈ {1, 0.1, 0.01, 0.001} using 10,000 samples each.
[Example. Let N := 3, i.e. I := {1, 2, 3}, and X := R. We define the potentials Φ1(θ) := 1

2
(θ + 2)2,

Φ2(θ) := 1
2

(θ − 1.5)2, Φ3(θ) := 1
2

(θ − 2)2 (θ ∈ X ). Here, argminΦ̄ = {0.5}.]
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Decreasing learning rate

Theorem. [L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then, for any ξ0 ∈ X and j0 ∈ I , we have

W1(δ(· − θ∗),P(ξ(t) ∈ ·|ξ0, j0))→ 0 (t →∞).

I Convergence, but not really information about its speed
I same problem exists for the diffusion model of SGD

I proof is significantly more involved
I (ξ(t), j (t))t≥0 is inhomogeneous in time
I rate matrix B(·) degenerates, as t →∞
I uses results from [Benäım et al.; 2012][Cloez & Hairer; 2015][Kushner; 1984]
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I Convergence, but not really information about its speed
I same problem exists for the diffusion model of SGD

I proof is significantly more involved
I (ξ(t), j (t))t≥0 is inhomogeneous in time
I rate matrix B(·) degenerates, as t →∞
I uses results from [Benäım et al.; 2012][Cloez & Hairer; 2015][Kushner; 1984]
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Illustrative convergence plot of SGPD
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Figure: Mean error and standard deviations of sample paths of (discrete-time) SGD vs.
(continuous-time) SGPD. Estimated using 10,000 samples. [Learning rates:

H(t) := (100t + 1)−1 (rational) and H(t) := exp(−t) (exponential)]
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Optimisation problem: continuous data

Consider an optimisation problem on X := RK ; of the form

θ∗ ∈ argminθ∈X Φ̄(θ) :=

∫
S
f (θ, y)π(dy), (OptPCont)

with potentials Φ̄, f (·, y) ∈ C 1(X ;R), y ∈ S , a compact space, and some general probability
measure π on (S ,BS).

Multiple applications

I robust optimisation: control of uncertain systems

I functional data analysis/machine learning: physics-informed neural networks, adaptive imaging

I variational inference: optimise Evidence Lower BOund

I spatial model for a high-dimensional discrete problem: image reconstruction with large
data availability
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Physics-informed Neural Networks

Example.

Let L : H → H ′ be a differential operator on appropriate spaces H,H ′ of functions from
S → R and g ∈ H ′. Moreover, let H ′′ represent functions: ∂S → R and let B : H → H ′′ be
another operator. PDE:

Find u ∈ H :

{
Lu(x) = g(x) (x ∈ S◦)

Bu(x) = 0 (x ∈ ∂S).

Physics-informed Neural Networks:

I let U : X → H be an appropriate function (deep neural network with weights and
biases in X )

I solve: minθ∈X
∫
S (LU(θ)(x)− g(x))2 dx +

∫
∂S (BU(θ)(x))2 dx

(Here: π := Unif(S)⊗Unif(∂S). Usually: replace integral by a quadrature rule)
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Stochastic Gradient Descent: continuous data

How do we solve (OptPCont)?

θ∗ ∈ argminθ∈X Φ̄(θ) :=

∫
S
f (θ, y)π(dy) (OptPCont)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stochastic Gradient Descent (SGD) for (OptPCont): [Robbins & Monro; 1951]

for k = 1, 2, . . .:
θk ← θk−1 − ηk∇f (θk−1, yk), yk ∼ π.

I no need to compute the integral

I epochs are infinite
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Stochastic gradient process with continuous data

Easy, right? Define the Stochastic Gradient Process as in the discrete data case with
(i (t))t≥0 being now a pure Markov jump process on, say, S := [−1, 1] with stationary
measure π.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Stochastic gradient process with continuous data

Easy, right? Define the Stochastic Gradient Process as in the discrete data case with
(i (t))t≥0 being now a pure Markov jump process on, say, S := [−1, 1] with stationary
measure π.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Actually,
I (i (t))t≥0 ignores spatial information in S

I (i (t))t≥0 essentially samples independently from π
I Complex sampling patterns?

I Implicit regularisation?
I The measure π could be complicated and independent samples not be available

I obtain samples from MCMC in Bayesian inference or statistical physics simulations

Idea: Allow for more general index processes
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Allow for more general index processes
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Figure: Stochastic gradient process with reflected diffusion index process
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Index process

Definition and assumption [Index]. [Jin, L., Liu, Schönlieb, 2021]

Let (Vt)t≥0 be a Feller process on (Ω,F , (Ft))t≥0, (Px)x∈S). We assume the following:

(i) (Vt)t≥0 admits a unique invariant measure π.

(ii) For any x ∈ S, there exist a family (V x
t )t≥0 and a stationary version (Vπt )t≥0 defined on the same probability

space (Ω̃, F̃ , P̃) such that, (V x
t )t≥0 = (Vt)t≥0 in Px and (Vπt )t≥0 = (Vt)t≥0 in Pπ .

(iii) Let T x := inf {t ≥ 0 | V x
t = Vπt } be a stopping time. There exist constants C , δ > 0 such that for any t ≥ 0,

supx∈S P̃(T x ≥ t) ≤ C exp(−δt).

We refer to (Vt)t≥0 as index process.

⇒ (Vt)t≥0 is exponentially ergodic: dTV(π,Px(Vt ∈ ·)) ≤ C exp(−δt), x ∈ S , t ≥ 0.
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Examples of index processes

Example: Markov pure jump process

(i (t))t≥0 =: (Vt)t≥0 on S ⊆ N as given in the first part of this talk

I also S = N or S ( R being a compact interval are possible

Example: Reflected Lévy processes

(Vt)t≥0 being a reflected Lévy process on a compact interval S ( R
I e.g., a reflected Brownian motion

Also, finite products of such reflected Lévy processes on compact intervals
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Stochastic gradient process with constant learning rate

Definition. [Jin, L., Liu, Schönlieb; 2021]

Let (Vt)t≥0 be an index process and let ε > 0. Then, (θεt )t≥0 given by

dθεt
dt

= −∇f (θεt ,Vt/ε), θε0 = θ0 ∈ X ,

is called stochastic gradient process with constant learning rate.

(Vt , θ
ε
t )t≥0 is well-defined and Markovian under Assumptions [Index], [Smooth2].

Assumption [Smooth2]. Let f (x , y) ∈ C2(X × S ,R).
1. ∇x f , Hx f are continuous and bounded on X ′ × S where X ′ ⊂ X is bounded.
2. ∇x f (x , y) is Lipschitz in x and the Lipschitz constant is uniform for y ∈ S .

3. For x ∈ X , f (x , ·) and ∇x f are integrable w.r.t to the probability measure π(·).
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Learning rate? ε?

I ε > 0 is a scaling parameter that we use to control the ‘learning rate’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure: (Vt/ε)t≥0, where (Vt)t≥0 is a reflected Brownian motion.

Idea: Small ε ⇒ short correlation length in (Vt)t≥0 ⇒ small learning rate
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Learning rate? ε?

I ε > 0 is a scaling parameter that we use to control the ‘learning rate’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I Approximation of the full gradient flow (ζt)t≥0, where

dζt
dt

= −∇
∫
S
f (ζt , y)π(dy), ζ0 = θ0

Theorem. [Jin, L., Liu, Schönlieb; 2021]

Let Assumptions [Index], [Smooth2] hold. Then,∫ ∞
0

exp(−t) min{1, sup
0≤s≤t

‖θεt − ζt‖}dt → 0, weakly, as ε ↓ 0.

Proof. Similar ideas to the approximation result with discrete data; harder as (Vt/ε)t≥0 is

not necessarily tight with respect to ε > 0. Uses results from [Kushner; 1984; 1990] .

Jonas Latz: Stochastic Gradient Descent in Continuous Time 43



Stochastic gradient process with decreasing learning rate

Idea: Let ε ↓ 0 slowly over time.

Definition. [Jin, L., Liu, Schönlieb; 2021]

Let β(s) :=
∫ s

0 µ(t)dt with µ : [0,∞)→ (0,∞) non-decreasing, continuously differentiable
with limt→∞ µ(t) =∞ very slowly. Moreover, let (Vt)t≥0 be a suitable index process. Then,
we define the stochastic gradient process with decreasing learning rate by (ξt)t≥0 through

dξt
dt

= −∇f (ξt ,Vβ(t)), ξ0 = θ0 ∈ X .

Well-defined, if [Index] and [Smooth2] are satisfied.
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Longtime behaviour

Summary [Jin, L., Liu, Schönlieb; 2021]

Results are fairly similar to the discrete data case:

Assumption Convex2: Require x 7→ f (x , y) be strongly convex, uniformly in y ∈ S

SGPC: Existence of a unique stationary measure of (Vt/ε, θ
ε
t )t≥0. Obtain exponential

ergodicity in Wasserstein-1 distance

SGPD: Obtain convergence to the Dirac measure concentrated in
θ∗ ∈ argminθ∈X

∫
f (θ, y)π(dy) in Wasserstein-1 distance

Techniques: Lyapunov theory, weak Harris theorem [Cloez & Hairer; 2015]
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Example: Polynomial regression with functional data

Data: Let S := [−1, 1]. We observe a function g : S → R, which is given by

g(y) = sin(πy)︸ ︷︷ ︸
=:Θ(y)

+ Ξ(y)︸︷︷︸
Gaussian noise

(y ∈ S)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.0

0.5

0.0

0.5

1.0

Figure: True function Θ (red) and noisy observation g (grey) in the polynomial regression example.
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Example: Polynomial regression with functional data

Data: Let S := [−1, 1]. We observe a function g : S → R, which is given by

g(y) = sin(πy)︸ ︷︷ ︸
=:Θ(y)

+ Ξ(y)︸︷︷︸
Gaussian noise

(y ∈ S)

Task

Reconstruct Θ : S → R on a polynomial basis (`k)Kk=1. In particular, minimise

Φ̄(θ) :=
1

2

∫
[−1,1]

(
g(y)−

K∑
k=1

θk`k(y)

)2

dy +
α

2
‖θ‖2

2 (θ ∈ X ),

Subsampled potential f (θ, y) := 1
2

(
g(y)−

∑K
k=1 θk`k(y)

)2
+ α

2 ‖θ‖
2
2 (θ ∈ X , y ∈ S).
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Algorithmic setting

General

I Note that f satisfies the convexity assumption

I Study SGPC to learn about convergence and implicit regularisation

Time-stepping of coupled dynamical system

I Considered dynamics: Reflected diffusion, Markov pure jump process with
independently sampled jumps, and discrete SGD

I Discretise gradient flows with implicit midpoint rule with step size = 0.1

I Discretise index processes: Euler-Maruyama discretisation of diffusion with trivial
reflection at boundary, precise sampling from Markov pure jump process with step size
= 0.01
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Error trajectory

0 25 50 75 100 125 150 175 200

10 1

100

SGD
SGD_implicit
Diff, sigma = 5
Diff, sigma = 0.5
Diff, sigma = 0.05
MPJ, lambda = 10
MPJ, lambda = 1
MPJ, lambda = 0.1
MPJ, lambda = 0.01

Figure: Relative error trajectory between the estimated polynomial and true function Θ; compare the
function at 1000 points in S . Plot shows the mean over 100 error estimates. λ is the parameter of the
exponential waiting time distribution. σ is the standard deviation of the Brownian motion before reflection.
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Reconstruction errors

Method Parameters Mean of rel errN,(·) ± StD

SGD η(·) = 0.1 1.844 · 10−2 ±4.012 · 10−3

SGD implicit η(·) = 0.1 1.719 · 10−2 ±3.939 · 10−3

SGPC with
reflected diffusion
index process

σ = 5 1.586 · 10−2 ±4.038 · 10−3

σ = 0.5 1.587 · 10−2 ±2.979 · 10−3

σ = 0.05 4.637 · 10−2 ±8.776 · 10−2

SGPC with
Markov pure jump
index process

λ = 10 2.100 · 10−2 ±6.049 · 10−3

λ = 1 3.427 · 10−2 ±1.105 · 10−2

λ = 0.1 3.866 · 10−2 ±1.142 · 10−2

λ = 0.01 3.178 · 10−1 ±2.124 · 10−1

Table: Mean and standard deviation of the relative error of the methods at the final point of their
trajectory. In particular, sample mean and sample standard deviation of j 7→ rel errN,j , with
N = 5 · 104, computed over 100 independent runs.
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Discussion

I Ignoring the very slowly moving processes, all processes quickly reached an equilibrium
state

I Interestingly, the SGPC with reflected diffusion appears to beat the other methods
I implicit variance reduction due to large discrepancy between samples in S?
I implicit regularisation of reflected diffusion especially effective?

I Computational cost of all methods in this example is fairly equivalent
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Take-home messages

I we introduced SGP – a continuous-time model for SGD with discrete and continuous
subsampling

I captures most properties of SGD
I gradient flow structure, uniform subsampling, Markov property, learning rates/switching

rate, approximates deterministic gradient flows

I The subsampling can be ‘essentially independent’ or following a Feller process
I Allows for more general data sources and complex sampling patterns

I SGPC converges to a unique stationary measure πC at exponential speed

I SGPD converges to δ(· − θ∗)
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Where do we go from here?

I Can we reach exponential convergence in SGPD?

I Develop efficient practical algorithms from SGP
I Mildly non-convex/non-smooth optimisation ⇒ Recent preprint: [L. 2022]

I Sparse (`1-)regularisation via randomised splitting
I Classification via randomised Allen–Cahn equation

I SGD in ‘very’ non-convex optimisation
I learning rate acts similar to a temperature in simulated annealing

I introduce subsampling in other continuous-time algorithms
I understand statistical properties of πC

I seems related to a posterior density [Mandt et al.; 2017]
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SGP in practice

(i) discretise gradient flows θ̇(t) = −∇Φi(θ(t)), θ(0) = θ0 for several i ∈ I , θ0 ∈ X

How do we discretise the gradient flows to retain the same ergodic behaviour?

(ii) discretise CTMPs (i (t))t≥0, (j (t))t≥0, (Vt)t≥0
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SGP in practice

(i) discretise gradient flows θ̇(t) = −∇Φi (θ(t)), θ(0) = θ0 for several i ∈ I , θ0 ∈ X

(ii) discretise CTMPs (i(t))t≥0, (j(t))t≥0, (Vt)t≥0

I Exact sampling of (i (t))t≥0, (j (t))t≥0 using algorithm by [Gillespie; 1977] : needs to

sample waiting times from πwt(·|t0)
I sampling from exponential distribution in case of (i (t))t≥0

I more complicated in case of (j (t))t≥0

I The SGD-way: use fixed waiting times and sample from Unif(I )
I representation is quite imprecise, but might do the job
I continuous time modelling step backwards

I How accurate do we need to discretise a, say, reflected diffusion?
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SGD, Stochastic Proximal Point, SVRG, SAG, SAGA,...?

Retrieving well-known algorithms from SGP

I choose deterministic waiting times in the discretisation of the CTMP

I choose particular time stepping schemes for the gradient flows
I forward Euler ⇒ SGD [Robbins & Monro; 1951]

I backward Euler ⇒ Stochastic Proximal Point [Bertsekas; 2011]

I forward Euler + control variate (or a multistep method?) ⇒ SVRG

[Johnson & Zhang; 2013] , SAG [Schmidt et al.; 2017] , SAGA [Defazio et al.; 2014]

I higher order scheme ⇒ higher order SGD-type method [Song et al.; 2018]

I Can we do better?

Jonas Latz: Stochastic Gradient Descent in Continuous Time 60


	What has happened so far...?
	Cont data? - a motivation
	SGD - continuous time
	Illustrations
	Conclusions
	Future research

