

## Stochastic Gradient Descent in Continuous Time

Discrete and Continuous Data

#### Jonas Latz

School of Mathematical and Computer Sciences, Heriot-Watt University Maxwell Institute for Mathematical Sciences

Edinburgh, UK

## SGD in continuous time: discrete and continuous data

Related works: Jin, L., Liu, Schönlieb 2021: A Continuous-time Stochastic Gradient Descent Method for Continuous Data, under review.

L. 2021: Analysis of stochastic gradient descent in continuous time, Statistics and Computing 31, 39.

L. 2022: Gradient flows and randomised thresholding: sparse inversion and classification, under review.



Kexin Jin, Princeton



Chenguang Liu, Delft,



Carola-Bibiane Schönlieb, Cambridge

Funding: Engineering and Physical Sciences Research Council (EPSRC), Swindon, UK



### Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

Illustrations

Conclusions



### Outline

### Stochastic gradient descent - continuous time and discrete data

- ► Stochastic Gradient Descent with discrete data
- ► Continuous time models?
- ► Stochastic gradient process
- ► Longtime behaviour

#### Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

#### Illustrations

#### Conclusions



# Optimisation problem: discrete data

▶ Consider an optimisation problem on  $X := \mathbb{R}^K$ ; of the form

$$\theta^* \in \operatorname{argmin}_{\theta \in X} \bar{\Phi}(\theta) := \frac{1}{N} \sum_{i=1}^{N} \Phi_i(\theta),$$
 (OptP)

where potentials  $\bar{\Phi}, \Phi_i \in C^1(X; \mathbb{R}), i \in I := \{1, ..., N\}$  and (OptP) is well-defined.



# Optimisation problem: discrete data

▶ Consider an optimisation problem on  $X := \mathbb{R}^K$ ; of the form

$$\theta^* \in \operatorname{argmin}_{\theta \in X} \bar{\Phi}(\theta) := \frac{1}{N} \sum_{i=1}^{N} \Phi_i(\theta),$$
 (OptP)

where potentials  $\bar{\Phi}, \Phi_i \in C^1(X; \mathbb{R}), i \in I := \{1, ..., N\}$  and (OptP) is well-defined.

- ► Typical in statistical, imaging, and machine learning applications:
  - ightharpoonup  $\bar{\Phi}$ : misfit between a model and a (big) data set
  - $\blacktriangleright$   $\Phi_i$ : misfit between a model and the *i*-th partition of the data set



Gradient Descent (GD) for (OptP):

[Cauchy; 1847]

for 
$$k = 1, 2, \ldots$$
:

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla \bar{\Phi}(\theta_{k-1}),$$

$$\nabla \bar{\Phi}(\theta_{k-1}) := \frac{1}{N} \sum_{i=1}^{N} \nabla \Phi_i(\theta_{k-1}).$$

Gradient Descent (GD) for (OptP):

[Cauchy; 1847]

for k = 1, 2, ...:

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla \bar{\Phi}(\theta_{k-1}),$$

$$\nabla \bar{\Phi}(\theta_{k-1}) := \frac{1}{N} \sum_{i=1}^{N} \nabla \Phi_i(\theta_{k-1}).$$

(convergence if  $\bar{\Phi}$  is (strictly) convex and "step size"  $\eta_k$  is sufficiently small)

.....

Gradient Descent (GD) for (OptP):

[Cauchy; 1847]

for k = 1, 2, ...:

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla \bar{\Phi}(\theta_{k-1}),$$

$$\nabla \bar{\Phi}(\theta_{k-1}) := \frac{1}{N} \sum_{i=1}^{N} \nabla \Phi_i(\theta_{k-1}).$$

(convergence if  $\bar{\Phi}$  is (strictly) convex and "step size"  $\eta_k$  is sufficiently small)

Stochastic Gradient Descent (SGD) for (OptP):

[Robbins & Monro; 1951]

for k = 1, 2, ...:

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla \Phi_{i_k}(\theta_{k-1}),$$

$$i_k \sim \text{Unif}(I)$$
.

(= "subsampling")



Gradient Descent (GD) for (OptP):

[Cauchy; 1847]

for k = 1, 2, ...:

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla \bar{\Phi}(\theta_{k-1}),$$

$$\nabla \bar{\Phi}(\theta_{k-1}) := \frac{1}{N} \sum_{i=1}^{N} \nabla \Phi_i(\theta_{k-1}).$$

(convergence if  $\bar{\Phi}$  is (strictly) convex and "step size"  $\eta_k$  is sufficiently small)

Stochastic Gradient Descent (SGD) for (OptP):

[Robbins & Monro; 1951]

for k = 1, 2, ...:

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla \Phi_{i_k}(\theta_{k-1}),$$

$$\underline{i}_k \sim \text{Unif}(I)$$
.

(= "subsampling")

(convergence if  $\Phi_1, \ldots, \Phi_N$  are strongly convex and "learning rate"  $\eta_k \downarrow 0 \ (k \to \infty)$  slowly)

#### Stochastic Gradient Descent

- ► SGD constructs a Markov chain
- ► Stochastic properties hardly discussed [Benaïm; 1999][Dieuleveut et al.; 2017][Hu et al.; 2019]
  - ► Stationary measure, (Bayesian?) inference, and implicit regularisation
  - Ergodicity?
  - ► Speed of convergence?
    - $\rightarrow$  this talk



#### Stochastic Gradient Descent

- ► SGD constructs a Markov chain
- ► Stochastic properties hardly discussed [Benaïm; 1999][Dieuleveut et al.; 2017][Hu et al.; 2019]
  - ► Stationary measure, (Bayesian?) inference, and implicit regularisation
  - Ergodicity?
  - ► Speed of convergence?
    - $\rightarrow$  this talk
- ► Long-term goals
  - ► Construct more efficient stochastic optimisation algorithms
  - Understand random subsampling in SGD and other continuous-time methods; especially optimal convergence rates
  - ► Understand SGD in non-convex optimisation
  - ► Understand SGD with constant learning rates and implicit regularisation



### Outline

#### Stochastic gradient descent - continuous time and discrete data

- ► Stochastic Gradient Descent with discrete data
- ► Continuous time models?
- ► Stochastic gradient process
- ► Longtime behaviour

#### Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

#### Illustrations

#### Conclusions



#### In continuous time?

Idealisation and simplification of models through continuity assumption

- ► Usual modelling tool in many scientific disciplines (e.g., continuum mechanics,...)
- ► Recently also used in data science, machine learning, and algorithms
  - ► Ensemble Kalman Inversion [Schillings & Stuart; 2017, 2018][Blömker et al.; 2019]...
  - ► Continuum limits of graphs [Trillos & Sanz-Alonso; 2018] and in MCMC [Kuntz et al.; 2019]
  - ▶ PDE-based image reconstruction [Rudin et al.; 1992][Schönlieb; 2015]...
  - ▶ PDE-based data science [Budd, van Gennip & L.; 2021][Kreusser & Wolfram; 2020]...
- ► continuous models tend to be easier to analyse: no numerical artefacts



# A diffusion process?

#### Predominant model for SGD in continuous time: Diffusion process

- ▶ Idea:  $\eta_k \approx 0 \Rightarrow$  gradient error is approximately Gaussian (CLT)
- ▶ Hence,  $(\theta_k)_{k=1}^{\infty}$  can be represented by a diffusion process

$$\dot{ heta}(t) = -
abla ar{\Phi}( heta(t)) + \Sigma( heta(t)) \dot{\mathrm{W}}_t \quad (t \geq 0), \qquad heta(0) = heta_0.$$

[Hu et al.; 2019][Li et al.; 2016, 2017, 2019][Mandt et al.; 2015, 2016, 2017][Wojtowytsch; 2021]



## A diffusion process?

#### Predominant model for SGD in continuous time: Diffusion process

- ▶ Idea:  $\eta_k \approx 0 \Rightarrow$  gradient error is approximately Gaussian (CLT)
- ▶ Hence,  $(\theta_k)_{k=1}^{\infty}$  can be represented by a diffusion process

$$\dot{ heta}(t) = -
abla ar{\Phi}( heta(t)) + \Sigma( heta(t)) \dot{W}_t \quad (t \geq 0), \qquad heta(0) = heta_0.$$

 $[\mathsf{Hu}\ \mathsf{et}\ \mathsf{al.};\ 2019][\mathsf{Li}\ \mathsf{et}\ \mathsf{al.};\ 2016,\ 2017,\ 2019][\mathsf{Mandt}\ \mathsf{et}\ \mathsf{al.};\ 2015,\ 2016,\ 2017][\mathsf{Wojtowytsch};\ 2021]$ 

#### Critique:

- ▶ for large  $\eta_k$ , the paths of  $(\theta_k)_{k=1}^{\infty}$  are very different from a diffusion
  - ightharpoonup preasymptotic phase and constant  $\eta_k$  not explained
- ▶ Diffusion does not actually explain subsampling in a continuous-time model
  - ▶ does not represent the discrete nature of the potential selection
  - ▶ needs access to Φ



### Outline

#### Stochastic gradient descent - continuous time and discrete data

- ► Stochastic Gradient Descent with discrete data
- ► Continuous time models?
- Stochastic gradient process
- ► Longtime behaviour

#### Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

#### Illustrations

#### Conclusions



## Observations and fundamental idea

► the update

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla \Phi_{i_k}(\theta_{k-1})$$
 (discrete)

is a forward Euler discretisation of the gradient flow

$$\dot{ heta}(t) = -\nabla \Phi_{m{i}_k}( heta(t))$$
 (continuous)

- learning rate  $\eta_k$  has two different meanings
  - (i)  $\eta_k$  is the step size of the gradient flow discretisation
  - (ii)  $\eta_k$  determines the length of the time interval with which we switch the  $\Phi_i$



## Observations and fundamental idea

the update

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla \Phi_{i_k}(\theta_{k-1})$$
 (discrete)

is a forward Euler discretisation of the gradient flow

$$\dot{ heta}(t) = -\nabla \Phi_{m{i}_k}( heta(t))$$
 (continuous)

- learning rate  $\eta_k$  has two different meanings
  - (i)  $\eta_k$  is the step size of the gradient flow discretisation
  - (ii)  $\eta_k$  determines the length of the time interval with which we switch the  $\Phi_i$

#### Idea.

Obtain a continuous time model for SGD, by

- (i) let the step size go to 0, i.e. replace (discrete) by (continuous).
- (ii) switch the potentials in the gradient flow at a rate of  $1/\eta_k$



# Switching of the potentials

control the switching of the potentials by a continuous-time Markov process (CTMP)  $(i(t))_{t\geq 0}$  on  $I:=\{1,...,N\}$  ("index process")



Figure: Cartoon of a CTMP

#### CTMPs 101

- $ightharpoonup (i(t))_{t\geq 0}$  is piecewise constant
- lacktriangledown randomly jumps from one state to another after a random waiting time  $\Delta \sim \pi_{
  m wt}(\cdot|t_0)$



# Switching of potentials

Two versions: constant learning rate and decreasing learning rate



# Switching of potentials

Two versions: constant learning rate and decreasing learning rate

- (i) CTMP  $(i(t))_{t\geq 0}$  representing a constant learning rate  $\eta_{ullet}\equiv \eta>0$ 
  - ► constant learning rates are popular in practice
  - $ightharpoonup \pi_{\mathrm{wt}}(\cdot|t_0)$  is constant in time (indeed this will be an exponential distribution)

$$(i(t))_{t\geq 0}$$
 has constant transition rate matrix  $A\in\mathbb{R}^{N\times N}:A_{i,j}:=egin{cases} rac{1}{(N-1)\eta}, & ext{if } i\neq j, \ -rac{1}{\eta}, & ext{if } i=j. \end{cases}$ 



# Switching of potentials

Two versions: constant learning rate and decreasing learning rate

- (i) CTMP  $(i(t))_{t\geq 0}$  representing a constant learning rate  $\eta_{ullet}\equiv \eta>0$ 
  - ► constant learning rates are popular in practice
  - $ightharpoonup \pi_{\mathrm{wt}}(\cdot|t_0)$  is constant in time (indeed this will be an exponential distribution)

$$(i(t))_{t\geq 0}$$
 has constant transition rate matrix  $A\in\mathbb{R}^{N\times N}:A_{i,j}:=egin{cases} rac{1}{(N-1)\eta},& ext{if }i\neq j,\ -rac{1}{\eta},& ext{if }i=j. \end{cases}$ 

- (ii) CTMP  $(j(t))_{t\geq 0}$  representing a decreasing learning rate  $\eta_{\bullet}>0$ , with  $\eta_k\downarrow 0$   $(k\to\infty)$ 
  - ightharpoonup actually a chance of converging to the minimiser of  $\bar{\Phi}$
  - lacktriangle waiting times  $\Delta \sim \pi_{
    m wt}(\cdot|t_0)$  get 'smaller' over time (in some sense)
- $(j(t))_{t\geq 0}$  has time-dependent transition rate matrix  $B\in \mathbb{R}^{N\times N\times [0,\infty)}: B(t)_{i,j}:= \begin{cases} \frac{1}{(N-1)H(t)}, & \text{if } i\neq j, \\ -\frac{1}{H(t)}, & \text{if } i=j, \end{cases}$  where  $(H(t))_{t\geq 0}$  is continuously differentiable & interpolates  $(\eta_k)_{k=1}^{\infty}.$



# Stochastic gradient process

the Stochastic gradient process (SGP) is our continuous-time version of SGD

### Definition.

[L.; 2021]

We define the Stochastic gradient process...

(i) ...with constant learning rate (SGPC) by  $(\theta(t))_{t\geq 0}$ , which satisfies

$$\dot{\theta}(t) = -\nabla \Phi_{i(t)}(\theta(t)) \quad (t \ge 0), \qquad \theta(0) = \theta_0.$$

(ii) ...with decreasing learning rate (SGPD) by  $(\xi(t))_{t\geq 0}$ , which satisfies

$$\dot{\xi}(t) = -\nabla \Phi_{\boldsymbol{j}(t)}(\xi(t)) \quad (t \ge 0), \qquad \xi(0) = \xi_0.$$

 $( heta(t))_{t\geq 0}$  and  $(\xi(t))_{t\geq 0}$  are almost surely well-defined, if

**Assumption** [Lipschitz]. For  $i \in I : \Phi_i \in C^1(X, \mathbb{R})$  and  $\nabla \Phi_i$  is Lipschitz continuous.



# Stochastic gradient process







# Piecewise deterministic Markov processes

 $(\theta(t), \mathbf{i}(t))_{t\geq 0}, (\xi(t), \mathbf{j}(t))_{t\geq 0}$  are piecewise deterministic Markov processes (PDMPs)

- ► 'a general class of non-diffusion stochastic models' [Davis; 1984, 1993]
- progression via deterministic dynamic (ODE) with jumps after random waiting times or when hitting a boundary
  - $[\mathsf{Bakhtin}\ \&\ \mathsf{Hurth};\ 2012][\mathsf{Bena\"{im}}\ \mathsf{et}\ \mathsf{al.};\ 2012,\ 2015][\mathsf{Yin}\ \&\ \mathsf{Zhu};\ 2010]...$
- ▶ used for stochastic modelling in engineering, computer science, and biology [Rudnicki & Tyran-Kamińska; 2017]
- ▶ used as a basis for non-reversible MCMC algorithms [Bierkens et al.; 2019][Fearnhead et al.; 2018][Power & Goldman; 2019],...



Gradient flow

Uniform sampling

Markov property

Learning rate

Approximation of deterministic gradient flow



## Approximation of deterministic gradient flow

SGD with constant learning rate  $\eta \approx$  0 approximates the 'exact' gradient flow

$$\frac{\mathrm{d}\zeta}{\mathrm{d}t} = -\nabla \bar{\Phi}(\zeta(t)), \qquad \qquad \zeta(0) = \theta_0.$$

#### Intuition:

- ► Euler scheme converges ⇒ gradient flow
- ▶ law of large numbers (LLN):

$$\theta_{k} = \theta_{0} - \left(\eta \nabla \Phi_{i_{1}}(\theta_{0}) + \dots + \eta \nabla \Phi_{i_{k}}(\theta_{k-1})\right) \overset{(\eta \approx 0)}{\approx} \theta_{0} - \underbrace{\left(\eta \nabla \Phi_{i_{1}}(\theta_{0}) + \dots + \eta \nabla \Phi_{i_{k}}(\theta_{0})\right)}_{\overset{\mathsf{LLN}}{\approx} \eta k \bar{\Phi}(\theta_{0})}$$



SGPC, with  $\eta \approx$  0, also approximates the 'exact' gradient flow

**Assumption** [Smooth]. For any  $i \in I$ , let  $\Phi_i \in C^2(X; \mathbb{R})$  and let  $\nabla \Phi_i$ ,  $H\Phi_i$  be continuous and bounded on bounded subsets of X.

## Theorem.

[L.; 2021]

Let  $\zeta(0) = \theta(0)$  and let Assumption [Smooth] hold, then  $(\theta(t))_{t \geq 0} \to (\zeta(t))_{t \geq 0}$ , weakly in  $(C^0([0,\infty);X), \|\cdot\|_{\infty})$ , as  $\eta \downarrow 0$ .

Proof. Perturbed test function theory of [Kushner; 1984] .



**Example.** Let  $\Phi_1(\theta) := (\theta - 1)^2/2$  and  $\Phi_2(\theta) := (\theta + 1)^2/2$ .  $\Rightarrow \bar{\Phi}(\theta) = (\theta^2 + 1)/2$ .



Figure: Exemplary realisations of SGPC and plot of precise gradient flow. Discretisation with ode45.

### Outline

#### Stochastic gradient descent - continuous time and discrete data

- ► Stochastic Gradient Descent with discrete data
- ► Continuous time models?
- ► Stochastic gradient process
- ► Longtime behaviour

Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

Illustrations

Conclusions



# Long-time behaviour of the Stochastic Gradient Process

Study long-time behaviour of the stochastic gradient processes, i.e., study

$$\mathbb{P}(\theta(t) \in \cdot), \qquad \mathbb{P}(\xi(t) \in \cdot) \qquad (t \gg 0 \text{ very large}).$$

- existence and uniqueness of stationary measures
- convergence to stationary measures and its speed
- ▶ SGPD: convergence to  $\delta(\cdot \theta^*)$ , where  $\theta^* \in \operatorname{argmin}_{\theta \in X} \bar{\Phi}(\theta)$



#### **Preliminaries**

#### Wasserstein distance

Let  $q \in (0,1]$ . Consider Wasserstein distance between  $\pi, \pi' \in \text{Prob}(X)$ :

$$\begin{aligned} \mathrm{W}_q(\pi,\pi') &:= \inf_{H \in \mathrm{Coup}(\pi,\pi')} \int_{X \times X} \min\{1, \|\theta - \theta'\|_2^q\} H(\mathrm{d}\theta, \mathrm{d}\theta'), \\ \mathrm{Coup}(\pi,\pi') &:= \{G \in \mathrm{Prob}(X^2) : \quad G(\cdot \times X) = \pi, \quad G(X \times \cdot) = \pi'\} \end{aligned}$$

metrises weak convergence, i.e.

$$\mathrm{W}_q(\pi_n,\pi) o 0$$
, as  $n o \infty \qquad \Leftrightarrow \qquad \pi_n o \pi$ , weakly, as  $n o \infty$ 

### **Preliminaries**

**Assumption** [Smooth]. For any  $i \in I$ , let  $\Phi_i \in C^2(X; \mathbb{R})$  and let  $\nabla \Phi_i$ ,  $H\Phi_i$  be continuous and bounded on bounded subsets of X.

**Assumption** [Convex]. There is some  $\kappa > 0$ , with

$$\left\langle \theta_0 - \theta_0', \nabla \Phi_i(\theta_0) - \nabla \Phi_i(\theta_0') \right\rangle \ge \kappa \|\theta_0 - \theta_0'\|^2 \qquad (\theta_0, \theta_0' \in X, i \in I),$$

i.e.  $\Phi_i$  are strongly convex for  $i \in I$ .



# Constant learning rate

#### Theorem.

[L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then,  $(\theta(t), i(t))_{t>0}$  has a unique stationary measure  $\pi_{\mathbf{C}}$  on  $(X \times I, \mathcal{B}X \otimes 2^I)$ . Moreover, there exist  $\kappa', c > 0$  and  $q \in (0, 1]$ , with

$$W_q(\pi_{\mathbf{C}}(\cdot \times I), \mathbb{P}(\theta(t) \in \cdot | \theta_0, i_0)) \leq c \exp(-\kappa' t) \left(1 + \sum_{i \in I} \int_X \|\theta_0 - \theta'\|^q \pi_{\mathbf{C}}(\mathrm{d}\theta' \times \{i\})\right)$$

$$(i_0 \in I, \theta_0 \in X).$$

# Constant learning rate

#### Theorem.

[L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then,  $(\theta(t), i(t))_{t>0}$  has a unique stationary measure  $\pi_C$  on  $(X \times I, \mathcal{B}X \otimes 2^l)$ . Moreover, there exist  $\kappa', c > 0$  and  $g \in (0, 1]$ , with

$$W_q(\pi_{\mathbf{C}}(\cdot \times I), \mathbb{P}(\theta(t) \in \cdot | \theta_0, i_0)) \leq c \exp(-\kappa' t) \left(1 + \sum_{i \in I} \int_X \|\theta_0 - \theta'\|^q \pi_{\mathbf{C}}(\mathrm{d}\theta' \times \{i\})\right) \quad (i_0 \in I, \theta_0 \in X).$$

- convergence with exponential speed
- ▶ proof based on results by [Benaïm et al.; 2012][Cloez & Hairer; 2015]
- ► convexity assumption can be weakened (needs Hörmander Bracket condition)
- finding an analytical expression for  $\pi_C$  is probably hard /  $\pi_C$  might describe the implicit regularisation of SGPC



### Illustrative example: stationary measures of SGPC



Figure: Kernel density estimates of  $\mathbb{P}(\theta(10) \in \cdot | \theta(0) = -1.5) \approx \pi_{\mathrm{C}}$  (SGPC) and  $\mathbb{P}(\theta_{10/\eta} \in \cdot | \theta_0 = -1.5)$  (SGD) based on  $\eta \in \{1, 0.1, 0.01, 0.001\}$  using 10,000 samples each. [Example. Let N := 3, i.e.  $I := \{1, 2, 3\}$ , and  $X := \mathbb{R}$ . We define the potentials  $\Phi_1(\theta) := \frac{1}{2}(\theta + 2)^2$ ,  $\Phi_2(\theta) := \frac{1}{2}(\theta - 1.5)^2$ ,  $\Phi_3(\theta) := \frac{1}{2}(\theta - 2)^2$  ( $\theta \in X$ ). Here,  $\mathrm{argmin}\bar{\Phi} = \{0.5\}$ .]



### Decreasing learning rate

#### Theorem.

[L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then, for any  $\xi_0 \in X$  and  $j_0 \in I$ , we have

$$\mathrm{W}_1(\delta(\cdot-\theta^*),\mathbb{P}(\xi(t)\in\cdot|\xi_0,j_0))\to 0 \qquad (t\to\infty).$$

### Decreasing learning rate

#### Theorem.

[L.; 2021]

Let Assumptions [Smooth] and [Convex] hold. Then, for any  $\xi_0 \in X$  and  $j_0 \in I$ , we have

$$\mathrm{W}_1(\delta(\cdot-\theta^*),\mathbb{P}(\xi(t)\in\cdot|\xi_0,j_0))\to 0 \qquad (t\to\infty).$$

- ► Convergence, but not really information about its speed
  - same problem exists for the diffusion model of SGD
- proof is significantly more involved
  - $(\xi(t), j(t))_{t\geq 0}$  is inhomogeneous in time
  - lacktriangledown rate matrix  $B(\cdot)$  degenerates, as  $t o \infty$
  - ▶ uses results from [Benaim et al.; 2012][Cloez & Hairer; 2015][Kushner; 1984]



### Illustrative convergence plot of SGPD



Figure: Mean error and standard deviations of sample paths of (discrete-time) SGD vs. (continuous-time) SGPD. Estimated using 10,000 samples. [Learning rates:  $H(t) := (100t + 1)^{-1}$  (rational) and  $H(t) := \exp(-t)$  (exponential)]



#### Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

Illustrations

Conclusions



### Optimisation problem: continuous data

Consider an optimisation problem on  $X := \mathbb{R}^K$ ; of the form

$$\theta^* \in \operatorname{argmin}_{\theta \in X} \bar{\Phi}(\theta) := \int_{\mathcal{S}} f(\theta, y) \pi(\mathrm{d}y),$$
 (OptPCont)

with potentials  $\bar{\Phi}$ ,  $f(\cdot, y) \in C^1(X; \mathbb{R})$ ,  $y \in S$ , a compact space, and some general probability measure  $\pi$  on  $(S, \mathcal{B}S)$ .



### Optimisation problem: continuous data

Consider an optimisation problem on  $X := \mathbb{R}^K$ ; of the form

$$\theta^* \in \operatorname{argmin}_{\theta \in X} \bar{\Phi}(\theta) := \int_{\mathcal{S}} f(\theta, y) \pi(\mathrm{d}y),$$
 (OptPCont)

with potentials  $\bar{\Phi}$ ,  $f(\cdot, y) \in C^1(X; \mathbb{R})$ ,  $y \in S$ , a compact space, and some general probability measure  $\pi$  on  $(S, \mathcal{B}S)$ .

#### Multiple applications

- robust optimisation: control of uncertain systems
- ► functional data analysis/machine learning: physics-informed neural networks, adaptive imaging
- ▶ variational inference: optimise Evidence Lower BOund
- ► spatial model for a high-dimensional discrete problem: image reconstruction with large data availability



### Physics-informed Neural Networks

#### Example.

Let  $\mathcal{L}: H \to H'$  be a differential operator on appropriate spaces H, H' of functions from  $S \to \mathbb{R}$  and  $g \in H'$ . Moreover, let H'' represent functions:  $\partial S \to \mathbb{R}$  and let  $B: H \to H''$  be another operator. PDE:

Find 
$$u \in H$$
: 
$$\begin{cases} \mathcal{L}u(x) = g(x) & (x \in S^{\circ}) \\ Bu(x) = 0 & (x \in \partial S). \end{cases}$$

### Physics-informed Neural Networks

#### Example.

Let  $\mathcal{L}: H \to H'$  be a differential operator on appropriate spaces H, H' of functions from  $S \to \mathbb{R}$  and  $g \in H'$ . Moreover, let H'' represent functions:  $\partial S \to \mathbb{R}$  and let  $B: H \to H''$  be another operator. PDE:

Find 
$$u \in H$$
: 
$$\begin{cases} \mathcal{L}u(x) = g(x) & (x \in S^{\circ}) \\ Bu(x) = 0 & (x \in \partial S). \end{cases}$$

#### Physics-informed Neural Networks:

- ▶ let  $U: X \to H$  be an appropriate function (deep neural network with weights and biases in X)
- ► solve:  $\min_{\theta \in X} \int_{S} (\mathcal{L}U(\theta)(x) g(x))^{2} dx + \int_{\partial S} (BU(\theta)(x))^{2} dx$



### Physics-informed Neural Networks

#### Example.

Let  $\mathcal{L}: H \to H'$  be a differential operator on appropriate spaces H, H' of functions from  $S \to \mathbb{R}$  and  $g \in H'$ . Moreover, let H'' represent functions:  $\partial S \to \mathbb{R}$  and let  $B: H \to H''$  be another operator. PDE:

Find 
$$u \in H$$
: 
$$\begin{cases} \mathcal{L}u(x) = g(x) & (x \in S^{\circ}) \\ Bu(x) = 0 & (x \in \partial S). \end{cases}$$

#### Physics-informed Neural Networks:

- ▶ let  $U: X \rightarrow H$  be an appropriate function (deep neural network with weights and biases in X)
- ▶ solve:  $\min_{\theta \in X} \int_{S} (\mathcal{L}U(\theta)(x) g(x))^{2} dx + \int_{\partial S} (BU(\theta)(x))^{2} dx$  (Here:  $\pi := \mathrm{Unif}(S) \otimes \mathrm{Unif}(\partial S)$ . Usually: replace integral by a quadrature rule)



### Stochastic Gradient Descent: continuous data

How do we solve (OptPCont)?

$$\theta^* \in \operatorname{argmin}_{\theta \in X} \bar{\Phi}(\theta) := \int_{\mathcal{S}} f(\theta, y) \pi(\mathrm{d}y)$$
 (OptPCont)

.....

#### Stochastic Gradient Descent: continuous data

How do we solve (OptPCont)?

$$\theta^* \in \operatorname{argmin}_{\theta \in X} \bar{\Phi}(\theta) := \int_{\mathcal{S}} f(\theta, y) \pi(\mathrm{d}y)$$
 (OptPCont)

Stochastic Gradient Descent (SGD) for (OptPCont):

[Robbins & Monro; 1951]

for k = 1, 2, ...:

$$\theta_k \leftarrow \theta_{k-1} - \eta_k \nabla f(\theta_{k-1}, y_k), \qquad y_k \sim \pi.$$

- no need to compute the integral
- ► epochs are infinite



#### Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

#### Stochastic gradient descent - continuous time and continuous data

- ▶ Idea
- Index processes and the stochastic gradient process with continuous data
- ► Longtime behaviour

Illustrations

Conclusions



### Stochastic gradient process with continuous data

Easy, right? Define the Stochastic Gradient Process as in the discrete data case with  $(i(t))_{t\geq 0}$  being now a pure Markov jump process on, say, S:=[-1,1] with stationary measure  $\pi$ .





# Stochastic gradient process with continuous data

Easy, right? Define the Stochastic Gradient Process as in the discrete data case with  $(i(t))_{t\geq 0}$  being now a pure Markov jump process on, say, S:=[-1,1] with stationary measure  $\pi$ 

Actually.

- $\blacktriangleright$   $(i(t))_{t>0}$  ignores spatial information in S
  - $(i(t))_{t\geq 0}$  essentially samples independently from  $\pi$
  - ► Complex sampling patterns?
- ► Implicit regularisation?
- $\blacktriangleright$  The measure  $\pi$  could be complicated and independent samples not be available
  - ▶ obtain samples from MCMC in Bayesian inference or statistical physics simulations



# Stochastic gradient process with continuous data

Easy, right? Define the Stochastic Gradient Process as in the discrete data case with  $(i(t))_{t\geq 0}$  being now a pure Markov jump process on, say, S:=[-1,1] with stationary measure  $\pi$ .

.....

#### Actually,

- $(i(t))_{t\geq 0}$  ignores spatial information in S
  - $(i(t))_{t\geq 0}$  essentially samples independently from  $\pi$
  - ► Complex sampling patterns?
- ► Implicit regularisation?
- lacktriangle The measure  $\pi$  could be complicated and independent samples not be available
  - ▶ obtain samples from MCMC in Bayesian inference or statistical physics simulations

Idea: Allow for more general index processes



### Allow for more general index processes



Figure: Stochastic gradient process with reflected diffusion index process



#### Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

#### Stochastic gradient descent - continuous time and continuous data

- ▶ Idea
- ► Index processes and the stochastic gradient process with continuous data
- ► Longtime behaviour

Illustrations

Conclusions



### Index process

### Definition and assumption [Index].

[Jin, L., Liu, Schönlieb, 2021]

Let  $(V_t)_{t\geq 0}$  be a Feller process on  $(\Omega, \mathcal{F}, (\mathcal{F}_t))_{t\geq 0}, (\mathbb{P}_x)_{x\in S}$ ). We assume the following:

- (i)  $(V_t)_{t>0}$  admits a unique invariant measure  $\pi$ .
- (ii) For any  $x \in S$ , there exist a family  $(V_t^x)_{t \geq 0}$  and a stationary version  $(V_t^\pi)_{t \geq 0}$  defined on the same probability space  $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$  such that,  $(V_t^x)_{t \geq 0} = (V_t)_{t \geq 0}$  in  $\mathbb{P}_x$  and  $(V_t^\pi)_{t \geq 0} = (V_t)_{t \geq 0}$  in  $\mathbb{P}_\pi$ .
- (iii) Let  $T^{\times} := \inf\{t \geq 0 \mid V_t^{\times} = V_t^{\pi}\}$  be a stopping time. There exist constants  $C, \delta > 0$  such that for any  $t \geq 0$ ,  $\sup_{x \in S} \tilde{\mathbb{P}}(T^{\times} \geq t) \leq C \exp(-\delta t)$ .

We refer to  $(V_t)_{t\geq 0}$  as index process.

 $\Rightarrow$   $(V_t)_{t\geq 0}$  is exponentially ergodic:  $d_{\mathrm{TV}}(\pi,\mathbb{P}_x(V_t\in\cdot))\leq C\exp(-\delta t)$ ,  $x\in S, t\geq 0$ .



### Examples of index processes

#### Example: Markov pure jump process

- $(i(t))_{t\geq 0}=:(V_t)_{t\geq 0}$  on  $S\subseteq \mathbb{N}$  as given in the first part of this talk
  - lacktriangle also  $S=\mathbb{N}$  or  $S\subsetneq\mathbb{R}$  being a compact interval are possible

### Example: Reflected Lévy processes

 $(V_t)_{t\geq 0}$  being a reflected Lévy process on a compact interval  $S\subsetneq \mathbb{R}$ 

▶ e.g., a reflected Brownian motion

Also, finite products of such reflected Lévy processes on compact intervals



# Stochastic gradient process with constant learning rate

#### Definition.

[Jin, L., Liu, Schönlieb; 2021]

Let  $(V_t)_{t\geq 0}$  be an index process and let  $\varepsilon>0$ . Then,  $(\theta_t^{\varepsilon})_{t\geq 0}$  given by

$$\frac{\mathrm{d}\theta_t^{\varepsilon}}{\mathrm{d}t} = -\nabla f(\theta_t^{\varepsilon}, V_{t/\varepsilon}), \qquad \theta_0^{\varepsilon} = \theta_0 \in X,$$

is called stochastic gradient process with constant learning rate.

 $(V_t, \theta_t^{\varepsilon})_{t\geq 0}$  is well-defined and Markovian under Assumptions [Index], [Smooth2].

# Stochastic gradient process with constant learning rate

#### Definition.

[Jin, L., Liu, Schönlieb; 2021]

Let  $(V_t)_{t\geq 0}$  be an index process and let  $\varepsilon>0$ . Then,  $(\theta_t^{\varepsilon})_{t\geq 0}$  given by

$$\frac{\mathrm{d}\theta_t^{\varepsilon}}{\mathrm{d}t} = -\nabla f(\theta_t^{\varepsilon}, V_{t/\varepsilon}), \qquad \theta_0^{\varepsilon} = \theta_0 \in X,$$

is called stochastic gradient process with constant learning rate.

 $(V_t, \theta_t^{\varepsilon})_{t\geq 0}$  is well-defined and Markovian under Assumptions [Index], [Smooth2].

**Assumption** [Smooth2]. Let  $f(x,y) \in C^2(X \times S, \mathbb{R})$ .

- 1.  $\nabla_x f$ ,  $H_x f$  are continuous and bounded on  $X' \times S$  where  $X' \subset X$  is bounded.
- 2.  $\nabla_x f(x,y)$  is Lipschitz in x and the Lipschitz constant is uniform for  $y \in S$ .
- 3. For  $x \in X$ ,  $f(x, \cdot)$  and  $\nabla_x f$  are integrable w.r.t to the probability measure  $\pi(\cdot)$ .



# Learning rate? $\varepsilon$ ?

ightharpoonup arepsilon > 0 is a scaling parameter that we use to control the 'learning rate'

.....







Figure:  $(V_{t/\varepsilon})_{t\geq 0}$ , where  $(V_t)_{t\geq 0}$  is a reflected Brownian motion.

Idea: Small  $\varepsilon \Rightarrow$  short correlation length in  $(V_t)_{t\geq 0} \Rightarrow$  small learning rate

### Learning rate? $\varepsilon$ ?

- ightharpoonup arepsilon > 0 is a scaling parameter that we use to control the 'learning rate'
- ▶ Approximation of the full gradient flow  $(\zeta_t)_{t\geq 0}$ , where

$$\frac{\mathrm{d}\zeta_t}{\mathrm{d}t} = -\nabla \int_{\mathcal{S}} f(\zeta_t, y) \pi(\mathrm{d}y), \qquad \zeta_0 = \theta_0$$

#### Theorem.

[Jin, L., Liu, Schönlieb; 2021]

Let Assumptions [Index], [Smooth2] hold. Then,

$$\int_0^\infty \exp(-t) \min\{1, \sup_{0 \le s \le t} \|\theta_t^\varepsilon - \zeta_t\|\} \mathrm{d}t \to 0, \text{ weakly, as } \varepsilon \downarrow 0.$$

*Proof.* Similar ideas to the approximation result with discrete data; harder as  $(V_{t/\varepsilon})_{t\geq 0}$  is not necessarily tight with respect to  $\varepsilon>0$ . Uses results from [Kushner; 1984; 1990] .

# Stochastic gradient process with decreasing learning rate

Idea: Let  $\varepsilon \downarrow 0$  slowly over time.



# Stochastic gradient process with decreasing learning rate

Idea: Let  $\varepsilon \downarrow 0$  slowly over time.

#### Definition.

[Jin, L., Liu, Schönlieb; 2021]

Let  $\beta(s):=\int_0^s \mu(t)\mathrm{d}t$  with  $\mu:[0,\infty)\to(0,\infty)$  non-decreasing, continuously differentiable with  $\lim_{t\to\infty}\mu(t)=\infty$  very slowly. Moreover, let  $(V_t)_{t\geq0}$  be a suitable index process. Then, we define the stochastic gradient process with decreasing learning rate by  $(\xi_t)_{t\geq0}$  through

$$\frac{\mathrm{d}\xi_t}{\mathrm{d}t} = -\nabla f(\xi_t, V_{\beta(t)}), \qquad \qquad \xi_0 = \theta_0 \in X.$$

Well-defined, if [Index] and [Smooth2] are satisfied.





#### Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

### Stochastic gradient descent - continuous time and continuous data

- ▶ Idea
- ▶ Index processes and the stochastic gradient process with continuous data
- ► Longtime behaviour

Illustrations

Conclusion:



### Longtime behaviour

#### Summary

[Jin, L., Liu, Schönlieb; 2021]

Results are fairly similar to the discrete data case:

Assumption Convex2: Require  $x \mapsto f(x,y)$  be strongly convex, uniformly in  $y \in S$ 

SGPC: Existence of a unique stationary measure of  $(V_{t/\varepsilon}, \theta_t^{\varepsilon})_{t\geq 0}$ . Obtain exponential ergodicity in Wasserstein-1 distance

SGPD: Obtain convergence to the Dirac measure concentrated in  $\theta^* \in \operatorname{argmin}_{\theta \in X} \int f(\theta, y) \pi(\mathrm{d}y)$  in Wasserstein-1 distance

Techniques: Lyapunov theory, weak Harris theorem [Cloez & Hairer; 2015]



#### Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

#### Illustrations

Conclusions



# Example: Polynomial regression with functional data

Data: Let S := [-1,1]. We observe a function  $g: S \to \mathbb{R}$ , which is given by

$$g(y) = \underbrace{\sin(\pi y)}_{=:\Theta(y)} + \underbrace{\Xi(y)}_{\text{Gaussian noise}} \qquad (y \in S)$$



Figure: True function  $\Theta$  (red) and noisy observation g (grey) in the polynomial regression example.

# Example: Polynomial regression with functional data

Data: Let S := [-1, 1]. We observe a function  $g : S \to \mathbb{R}$ , which is given by

$$g(y) = \underbrace{\sin(\pi y)}_{=:\Theta(y)} + \underbrace{\Xi(y)}_{\text{Gaussian noise}} \qquad (y \in S)$$

#### Task

Reconstruct  $\Theta: S \to \mathbb{R}$  on a polynomial basis  $(\ell_k)_{k=1}^K$ . In particular, minimise

$$\bar{\Phi}(\theta) := \frac{1}{2} \int_{[-1,1]} \left( g(y) - \sum_{k=1}^K \theta_k \ell_k(y) \right)^2 \mathrm{d}y + \frac{\alpha}{2} \|\theta\|_2^2 \qquad (\theta \in X),$$

Subsampled potential 
$$f(\theta, y) := \frac{1}{2} \left( g(y) - \sum_{k=1}^K \theta_k \ell_k(y) \right)^2 + \frac{\alpha}{2} \|\theta\|_2^2 \qquad (\theta \in X, y \in S).$$



### Algorithmic setting

#### General

- ▶ Note that *f* satisfies the convexity assumption
- ► Study SGPC to learn about convergence and implicit regularisation



### Algorithmic setting

#### General

- ► Note that *f* satisfies the convexity assumption
- ► Study SGPC to learn about convergence and implicit regularisation

#### Time-stepping of coupled dynamical system

- Considered dynamics: Reflected diffusion, Markov pure jump process with independently sampled jumps, and discrete SGD
- ▶ Discretise gradient flows with implicit midpoint rule with step size = 0.1
- ▶ Discretise index processes: Euler-Maruyama discretisation of diffusion with trivial reflection at boundary, precise sampling from Markov pure jump process with step size = 0.01



### Error trajectory



Figure: Relative error trajectory between the estimated polynomial and true function  $\Theta$ ; compare the function at 1000 points in S. Plot shows the mean over 100 error estimates.  $\lambda$  is the parameter of the exponential waiting time distribution.  $\sigma$  is the standard deviation of the Brownian motion before reflection.



#### Reconstruction errors

| Method                                         | Parameters           | Mean of rel_err $_{N,(\cdot)}$ | $\pm$ StD                 |
|------------------------------------------------|----------------------|--------------------------------|---------------------------|
| SGD                                            | $\eta_{(\cdot)}=0.1$ | $1.844 \cdot 10^{-2}$          | $\pm 4.012 \cdot 10^{-3}$ |
| SGD implicit                                   | $\eta_{(\cdot)}=0.1$ | $1.719 \cdot 10^{-2}$          | $\pm 3.939 \cdot 10^{-3}$ |
| SGPC with                                      | $\sigma = 5$         | $1.586 \cdot 10^{-2}$          | $\pm 4.038 \cdot 10^{-3}$ |
| reflected diffusion                            | $\sigma = 0.5$       | $1.587 \cdot 10^{-2}$          | $\pm 2.979 \cdot 10^{-3}$ |
| index process                                  | $\sigma = 0.05$      | $4.637 \cdot 10^{-2}$          | $\pm 8.776 \cdot 10^{-2}$ |
| SGPC with<br>Markov pure jump<br>index process | $\lambda = 10$       | $2.100 \cdot 10^{-2}$          | $\pm 6.049 \cdot 10^{-3}$ |
|                                                | $\lambda = 1$        | $3.427 \cdot 10^{-2}$          | $\pm1.105\cdot10^{-2}$    |
|                                                | $\lambda = 0.1$      | $3.866 \cdot 10^{-2}$          | $\pm1.142\cdot10^{-2}$    |
|                                                | $\lambda = 0.01$     | $3.178 \cdot 10^{-1}$          | $\pm 2.124 \cdot 10^{-1}$ |

Table: Mean and standard deviation of the relative error of the methods at the final point of their trajectory. In particular, sample mean and sample standard deviation of  $j \mapsto \operatorname{rel\_err}_{N,j}$ , with  $N = 5 \cdot 10^4$ , computed over 100 independent runs.



#### Discussion

- ► Ignoring the very slowly moving processes, all processes quickly reached an equilibrium state
- ► Interestingly, the SGPC with reflected diffusion appears to beat the other methods
  - ▶ implicit variance reduction due to large discrepancy between samples in *S*?
  - ► implicit regularisation of reflected diffusion especially effective?
- ► Computational cost of all methods in this example is fairly equivalent



#### Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

Illustrations

#### Conclusions



### Take-home messages

- ▶ we introduced SGP a continuous-time model for SGD with discrete and continuous subsampling
- ► captures most properties of SGD
  - gradient flow structure, uniform subsampling, Markov property, learning rates/switching rate, approximates deterministic gradient flows
- ▶ The subsampling can be 'essentially independent' or following a Feller process
  - ► Allows for more general data sources and complex sampling patterns
- lacktriangle SGPC converges to a unique stationary measure  $\pi_{\mathrm{C}}$  at exponential speed
- ▶ SGPD converges to  $\delta(\cdot \theta^*)$



### Where do we go from here?

- Can we reach exponential convergence in SGPD?
- Develop efficient practical algorithms from SGP
- ► Mildly non-convex/non-smooth optimisation ⇒ Recent preprint: [L. 2022]
  - ▶ Sparse  $(\ell_1$ -)regularisation via randomised splitting
  - ► Classification via randomised Allen–Cahn equation
- ► SGD in 'very' non-convex optimisation
  - ► learning rate acts similar to a temperature in simulated annealing
- ► introduce subsampling in other continuous-time algorithms
- lacktriangle understand statistical properties of  $\pi_{
  m C}$ 
  - ► seems related to a posterior density [Mandt et al.; 2017]





#### Outline

Stochastic gradient descent - continuous time and discrete data

Continuous data? - a motivation

Stochastic gradient descent - continuous time and continuous data

Illustrations

Conclusions

Future research direction



### SGP in practice

(i) discretise gradient flows  $\dot{\theta}(t) = -\nabla \Phi_i(\theta(t))$ ,  $\theta(0) = \theta_0$  for several  $i \in I, \theta_0 \in X$ 

How do we discretise the gradient flows to retain the same ergodic behaviour?

(ii) discretise CTMPs  $(m{i}(t))_{t\geq 0}$ ,  $(m{j}(t))_{t\geq 0}$ ,  $(V_t)_{t\geq 0}$ 



### SGP in practice

(i) discretise gradient flows  $\dot{\theta}(t) = -\nabla \Phi_i(\theta(t))$ ,  $\theta(0) = \theta_0$  for several  $i \in I, \theta_0 \in X$ 

# (ii) discretise CTMPs $(i(t))_{t\geq 0}$ , $(j(t))_{t\geq 0}$ , $(V_t)_{t\geq 0}$

- Exact sampling of  $(i(t))_{t\geq 0}$ ,  $(j(t))_{t\geq 0}$  using algorithm by [Gillespie; 1977]: needs to sample waiting times from  $\pi_{\mathrm{wt}}(\cdot|t_0)$ 
  - ▶ sampling from exponential distribution in case of  $(i(t))_{t\geq 0}$
  - ▶ more complicated in case of  $(j(t))_{t\geq 0}$



### SGP in practice

(i) discretise gradient flows  $\dot{\theta}(t) = -\nabla \Phi_i(\theta(t))$ ,  $\theta(0) = \theta_0$  for several  $i \in I, \theta_0 \in X$ 

# (ii) discretise CTMPs $(i(t))_{t\geq 0}$ , $(j(t))_{t\geq 0}$ , $(V_t)_{t\geq 0}$

- Exact sampling of  $(i(t))_{t\geq 0}$ ,  $(j(t))_{t\geq 0}$  using algorithm by [Gillespie; 1977]: needs to sample waiting times from  $\pi_{\mathrm{wt}}(\cdot|t_0)$ 
  - ▶ sampling from exponential distribution in case of  $(i(t))_{t\geq 0}$
  - ▶ more complicated in case of  $(j(t))_{t\geq 0}$
- ► The SGD-way: use fixed waiting times and sample from Unif(1)
  - ▶ representation is quite imprecise, but might do the job
  - continuous time modelling step backwards
- ► How accurate do we need to discretise a, say, reflected diffusion?



### SGD, Stochastic Proximal Point, SVRG, SAG, SAGA,...?

#### Retrieving well-known algorithms from SGP

- ► choose deterministic waiting times in the discretisation of the CTMP
- ► choose particular time stepping schemes for the gradient flows
  - ► forward Euler ⇒ SGD [Robbins & Monro; 1951]
  - ► backward Euler ⇒ Stochastic Proximal Point [Bertsekas; 2011]
  - Forward Euler + control variate (or a multistep method?) ⇒ SVRG
     [Johnson & Zhang; 2013] , SAG
     [Schmidt et al.; 2017] , SAGA
     [Defazio et al.; 2014]
  - ▶ higher order scheme  $\Rightarrow$  higher order SGD-type method [Song et al.; 2018]
- ► Can we do better?

