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Scientific problem : 
Simulation & data assimilation under severe dimensional reduction

typically, 107 → 𝑂(10) degrees of freedom 1
0
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STATE OF THE ART

a. Intrusive reduced 
order model 
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REDUCED ORDER MODEL (ROM)

Time Space

Parameters 
(if any)

Solution of an PDE with the form:

Full space
Reduced 

space

Solution 
coordinates

Dimension 𝑀 × 𝑑 ~ 107 𝑛 ~ 10 − 100

Order of 
magnitude 

examples in CFD
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DATA ASSIMILATION

Example : the Particle Filter (PF) generates an ensemble ~𝑝 𝑣 𝑦

 Initialization

𝑣𝑡=0
𝑗
~𝒩 0, Σ

 Loop over time 𝑡

Importance sampling

▪ 𝑣𝑡
𝑗
= 𝑀 𝑣𝑡−1

𝑗
, 𝑛𝑜𝑖𝑠𝑒 𝑡 − 1 Forecast (“Prior” or “backgroud”) 

▪ If an observation 𝑦𝑡 is available at the current time 𝑡

o 𝑊𝑗 𝑡 ∝ 𝑝 𝑦𝑡 𝑣𝑡
𝑗

Likelihood evaluation, up to a constant

o 𝐖𝑗 𝑡 =
𝑊𝑗 𝑡

σ
𝑘=1

𝑁𝑝
𝑊𝑘 𝑡

Normalization

Resampling

o Each new 𝑣𝑡
𝑗

is replaced by one of the old particles 𝑣𝑡
1
, … , 𝑣𝑡

𝑁𝑝
with probability 𝐖1 𝑡 ,… ,𝐖𝑁𝑝 𝑡 , respectively.

 Final posterior distribution

𝑝 𝑣𝑡 𝑦𝑡1 , … , 𝑦𝑡𝐾 ≈ σ
𝑘=1

𝑁𝑝 1

𝑁𝑝
𝛿 𝑣𝑡 − 𝑣𝑡

𝑘
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Small

-scale

eddy

Medium-scale

eddy

Fluids are multiscale Many coupled degrees of freedom

We cannot simulate (or observe) every scales.

Generally, authors

• simulate large scales 𝑤,

• model the effect of small scales 𝑣′ in the equations (closure).

Here, we

• model the small scales 𝒗′ through stochastic functions,  

parametrized from data and/or from physical scale symmetries.

• inject those in physical equations

for physical understanding, simulations & data assimilation.

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′



15

LOCATION UNCERTAINTY MODELS (LUM)

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡

Assumed

(conditionally-)Gaussian

& white in time

(non-stationary in space)
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LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

51

Momentum conservation

d 𝑤 𝑡, 𝑋𝑡 = 𝑑𝐹 (Forces)

Positions of fluid parcels 𝑋𝑡 :
𝑑𝑋𝑡 = 𝑤 𝑡, 𝑋𝑡 𝑑𝑡 + 𝜎 𝑡, 𝑋𝑡 𝑑𝐵𝑡

Gaussian
process

white in time

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

52

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

53

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Diffusion
Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

54

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Forces
Diffusion

Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

55

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Forces
Diffusion

Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

56

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡 Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Forces
Diffusion

Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

Skew-symmetric
multiplicative

random
forcing

57

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡 Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Forces
Diffusion

Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

Skew-symmetric
multiplicative

random
forcing

58

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡 Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Forces
Diffusion

Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

Skew-symmetric
multiplicative

random
forcing

59

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Symmetric
negative

Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Forces
Diffusion

Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

Skew-symmetric
multiplicative

random
forcing

60

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Symmetric
negative

Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



Forces
Diffusion

Advection

𝑑𝑡𝑤 +𝑤∗𝑑𝑡 ⋅ 𝛻𝑤 + 𝜎𝑑𝐵𝑡 ⋅ 𝛻𝑤 − 𝛻 ⋅
1

2
𝑎𝛻𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

Skew-symmetric
multiplicative

random
forcing

Balanced
energy
fluxes

61

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

(assuming 𝛻 ⋅ 𝑤 = 0 and  𝛻 ⋅ 𝑣′ = 0)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡

Symmetric
negative

Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



ForcesDiffusionAdvection

𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 + 𝐹 𝑤 𝑑𝑡 = 𝑑𝐹

LOCATION UNCERTAINTY MODELS (LUM) ,

Randomized Navier-Stokes 

Skew-symmetric
multiplicative

random
forcing

Balanced
energy
fluxes

62

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

Symmetric
negative

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Usual
terms

Resseguier V. & al. (2017). Part I. Geophys. Astro. Fluid. hal-01391420



REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

19

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10



REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

19

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10



REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

19

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10



REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

19

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

2nd order polynomial

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10



REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

Multiplicative skew-symmetric noise

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

19

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

2nd order polynomial

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10



REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

Multiplicative skew-symmetric noise

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

19

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡, 𝑤 = 𝑑𝐹 𝑑𝑥

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

2nd order polynomial

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞



𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

Randomized Navier-Stokes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1

n x 1

Full order : 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

Resseguier et al. (2021). SIAM-ASA J Uncertain . hal- 03169957

20

න
Ω

𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



2nd order polynomial

Coefficients given by :

• Randomized Navier-Stokes

• 𝜙𝑗 𝑗

• 𝑎(𝑥) ≈ Δ𝑡 𝑣′ 𝑣′ 𝑇

𝑓 =
1

𝑇
න
0

𝑇

𝑓
𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

REDUCED LUM (RED LUM)

POD-Galerkin gives SDEs for resolved modes

𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡

Multiplicative skew-symmetric noise

Covariance to estimate

(n+1) x (n+1)

M x 1
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𝜙𝑖 𝑥 ⋅ 𝑑𝑡𝑤 + 𝐶 𝑤,𝑤 𝑑𝑡 + 𝐹 𝑤 𝑑𝑡 + 𝐶 𝜎𝑑𝐵𝑡 , 𝑤 = 𝑑𝐹 𝑑𝑥
New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

Variance tensor:

𝑎 𝑥, 𝑥 =
𝔼 𝜎𝑑𝐵𝑡 𝜎𝑑𝐵𝑡

𝑇

𝑑𝑡



 Curse of dimensionality

▪ Since 𝜎𝑑𝐵𝑡 is white in time,

Σ𝑗𝑞,𝑖𝑝 = 𝔼 𝐾𝑗𝑞 𝜎𝑑𝐵𝑡 𝐾𝑖𝑝 𝜎𝑑𝐵𝑡 /𝑑𝑡 ≈ Δ𝑡 𝐾𝑗𝑞 𝑣′ 𝐾𝑖𝑝 𝑣′

▪ 𝐾 is a matrix of integro-differential operators → cannot be evaluated  on 𝑣′ 𝑥, 𝑡 at every time t

▪ Covariance of 𝜎𝑑𝐵𝑡 ≈ Δ𝑡2 𝑣′ 𝑥, 𝑡 𝑣′ 𝑦, 𝑡
𝑇
∶ 𝑀 × 𝑀 ∼ 1013 coefficients → intractable

REDUCED LUM (RED LUM)

Multiplicative noise covariance

𝑓 =
1

𝑇
න
0

𝑇

𝑓

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝐾 𝜎𝑑𝐵𝑡 𝑏 𝑡 with  𝐾𝑗𝑞 𝜉 = Ω𝜙𝑗׬− ⋅ 𝐶 𝜉, ϕ𝑞

(n+1) x (n+1)

M x 1

Full order (∼ nb spatial grid points): 𝑀 ∼ 107

Reduced order :   𝑛 ∼ 10
Number of time steps : 𝑁 ∼ 104

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
𝜎𝑑𝐵𝑡

𝑑𝑡
(Gaussian, white wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

21

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation
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𝑣 = 𝑤 + 𝑣′
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𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
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(Gaussian, white wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′

21

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾
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Resolved fluid velocity: 
𝑤(𝑥, 𝑡) = σ𝑖=0

𝑛 𝑏𝑖 𝑡 𝜙𝑖 𝑥

Unresolved fluid velocity: 

𝑣′ =
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(Gaussian, white wrt 𝑡)

from synthetic data

PCA modes
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21

New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾

 Consistency of our estimator (convergence in probability for Δ𝑡 → 0, using stochastic calculus and continuity of K)

Δ𝑡 𝐾𝑗𝑞 𝑏𝑝
Δ𝑏𝑖

Δ𝑡
𝑣′ = Δ𝑡 𝑏𝑝

Δ𝑏𝑖

Δ𝑡
𝐾𝑗𝑞 𝑣

′ ≈
1

𝑇
0׬
𝑇
𝑏𝑝 𝑑 < 𝑏𝑖, 𝐾𝑗𝑞 𝜎𝐵 > =

1

𝑇
0׬
𝑇
𝑏𝑝σr=0

n 𝑏𝑟𝑑 < 𝐾𝑖𝑟 𝜎𝐵 ,𝐾𝑗𝑞 𝜎𝐵 > =σr=0
n Σ𝑗𝑞,𝑖𝑟 𝑏𝑝𝑏𝑟 = Σ𝑗𝑞,𝑖𝑝 𝑏𝑝

2 (orthogonality from PCA)
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Unresolved fluid velocity: 
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(Gaussian, white wrt 𝑡)

from synthetic data

PCA modes

Randomized Navier-Stokes

PCA residual 𝒗′
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New estimator

• Consistency proven (Δ𝑡 → 0)

• Numerically efficient

• Physically-based

→ Robustness in extrapolation

▪ Efficient estimator Σ𝑗𝑞,𝑖𝑝 ≈ Δ𝑡 𝐾𝑗𝑞
𝑏𝑝

𝑏𝑝
2

Δ𝑏𝑖

Δ𝑡
𝑣′ (hybrid fitting & physics-based)

requires only 𝑂 𝑛2𝑀 correlation estimations and 𝑂 𝑛2 evaluations of 𝐾

 Consistency of our estimator (convergence in probability for Δ𝑡 → 0, using stochastic calculus and continuity of K)

Δ𝑡 𝐾𝑗𝑞 𝑏𝑝
Δ𝑏𝑖

Δ𝑡
𝑣′ = Δ𝑡 𝑏𝑝

Δ𝑏𝑖

Δ𝑡
𝐾𝑗𝑞 𝑣

′ ≈
1
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0׬
𝑇
𝑏𝑝 𝑑 < 𝑏𝑖, 𝐾𝑗𝑞 𝜎𝐵 > =
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n Σ𝑗𝑞,𝑖𝑟 𝑏𝑝𝑏𝑟 = Σ𝑗𝑞,𝑖𝑝 𝑏𝑝

2 (orthogonality from PCA)

 Optimal time subsampling at 𝚫𝒕 needed to meet the white assumption
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 Additional reduction for efficient sampling : 
diagonalization of Σ → 𝐾 𝜎𝑑𝐵𝑡 ≈ 𝛼 𝑑𝛽𝑡 with a n-dimensional (instead of (n+1)2-dimensional) Brownian motion 𝛽
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SUMMARY

Stochastic ROM + Data assimilation

Off-line : Building SROM On-line :

Simulation & data assimilation

SROM

(POD-Galerkin)
𝑑𝑏 𝑡 =
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PART IV

NUMERICAL RESULTS

a. Uncertainty 
quantification
(Prior)

b. Data assimilation 
(Posterior)
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m ean 

part icle

reference

closest  

part icle

bias

m in distance

RMS distance

ensemble

𝑑𝑏 𝑡 = 𝐻 𝑏 𝑡 𝑑𝑡 + 𝛼 𝑑𝛽𝑡 𝑏 𝑡

Metrics choice

• 𝑏𝑖 𝑡 VS reference

• Error metrics

Test cases

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Reduced-order reference
PCA-projection of the full-order simulation
(Optimal from 8-dof linear decomposition)

Wind Q-criterion

Wind

Vorticity

(round) wind turbine blade
vortices

Reynolds number (Re) = 100 / 2D
(full-order simulation has 104 dof)

Full-order
reference

Wind

Wind

UNCERTAINTY QUANTIF ICATION (PRIOR)

Known initial conditions 𝑏 𝑡 = 0

From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0
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From 107 to 8 degrees of freedom

No data assimilation
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UNCERTAINTY QUANTIF ICATION (PRIOR)
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Red. LUM
mean

Red. LUM
confidence

interval

Reference
(full-order simulation)

a Red. LUM
realization
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UNCERTAINTY QUANTIF ICATION (PRIOR)

Error on the reduced solution 𝑤

93

𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′

Reynolds number (Re) = 100 / 2D
(full-order simulation has 104 dof)

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Red. LUM
RMSE

Red. LUM
bias

Red. LUM
ensemble
minimal
distance

to the reference

Red. LUM
std

m ean 

part icle
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closest  

part icle
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m in distance

RMS distance

ensemble

From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0
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part icle

bias

m in distance

RMS distance

ensemble

From 107 to 8 degrees of freedom

No data assimilation

Known initial conditions 𝑏 𝑡 = 0

The Reference remains always close

to the Red. LUM ensemble
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DATA ASSIMILATION (POSTERIOR)

On-line estimation of the solution
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DATA ASSIMILATION (POSTERIOR)

Error on the solution estimation

Reynolds number (Re) = 100 / 2D
(full-order simulation has 104 dof)

Reynolds number (Re) = 300 3D
(full-order simulation has 107 dof)

Red. LUM
bias

Red. LUM
std

State of the art

State of the art𝑣 = 𝑤 + 𝑣′

Resolved fluid velocity: 
𝑤 = σ𝑖=0

𝑛 𝑏𝑖𝜙𝑖

Unresolved fluid velocity: 
𝑣′
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CONCLUSION

valentin.resseguier@scalian.com

 Reduced order model (ROM) : for very fast and robust CFD  (107 → 8 degrees of freedom.)

▪ Combine data & physics (built off-line)

▪ Closure problem handled by LUM

▪ Efficient estimator for the multiplicative noise

▪ Efficient generation of prior / Model error quantification

 Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements

 First results 

▪ Optimal unsteady flow estimation/prediction in the whole spatial domain (large-scale structures)

▪ Robust far outside the training set

NEXT STEPS
 Increasing Reynolds

(ROM of (non-polynomial) turbulence models)
 Real measurements

 Better stochastic closure

 Parametric ROM (unknown inflow)


