

CONTENT

I. Context
II. State of the art
a. Intrusive reduced order model (ROM)
b. Data assimilation
III. Reduced location uncertainty models
a. Multiscale modeling
b. Location uncertainty models (LUM)
c. Reduced LUM
IV. Numerical results
a. Uncertainty quantification (Prior)
b. Data assimilation (Posterior)

CONTEXT

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow

 using strongly-limited computational resources \& few sensors

CONTEXT

Observer for wind turbine application

Application: Real-time estimation and prediction of 3D fluid flow

 using strongly-limited computational resources \& few sensors

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Few sensors

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Few sensors

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Estimation and prediction:

- Air flow
- Lift, drag, inflow
- ...

Wind

- Blade pitch
- Fluidic
 fluctuations

Few sensors

Which simple model? How to combine model \& measurements?

CONTEXT

Observer for wind turbine application
Application: Real-time estimation and prediction of 3D fluid flow using strongly-limited computational resources \& few sensors

Estimation and prediction:

- Air flow
- Lift, drag, inflow
- ...

Few sensors

Which simple model? How to combine model \& measurements?

Scientific problem :

Simulation \& data assimilation under severe dimensional reduction

PART II

STATE OF THE ART

a. Intrusive reduced order model (ROM)
b. Data assimilation

REDUCED ORDER MODEL (ROM)

Solution of an PDE with the form:

$$
v(x, t, \alpha) \approx \sum_{i=o}^{n} b_{i}(t) \phi_{i}(x) \gamma_{i}(\alpha)
$$

REDUCED ORDER MODEL (ROM)

Solution of an PDE with the form:
Time

$$
v(x, t, \alpha) \approx \sum_{i=o}^{n} b_{i}(t) \phi_{i}(x) \gamma_{i}(\alpha)
$$

REDUCED ORDER MODEL (ROM)

Solution of an PDE with the form:

$$
v(x, t, \alpha) \approx \sum_{i=o}^{n} b_{i}(t) \phi_{i}(x) \gamma_{i}(\alpha)
$$

REDUCED ORDER MODEL (ROM)

Solution of an PDE with the form:

$$
v(x, t, \alpha) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x) \gamma_{i}(\alpha)
$$

REDUCED ORDER MODEL (ROM)

Solution of an PDE with the form:

$$
\left.v(x, t, \alpha) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x) \gamma_{i}\right)
$$

REDUCED ORDER MODEL (ROM)

Solution of an PDE with the form:

$$
v(x, t, \alpha) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x) \gamma_{i}
$$

| | | Full space |
| :---: | :---: | :---: | | Reduced |
| :---: |
| space |

Dimension $\quad M \times d \sim 10^{7} \quad n \sim 10-100$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
\left.\frac{v(x, t)}{}\right) \approx \sum_{i=0}^{n} \underbrace{\text { Resonved }}_{i} \begin{array}{l}
\text { medes } \\
b_{i}(t)
\end{array}) \phi_{i}(x)
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Projection of the "physics" onto the spatial modes
(POD-Galerkin)

$$
\int_{\Omega} d x \phi_{i}(x) \cdot(\text { Physical equation (e.g. Navier-Stokes)) }
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0} b_{i}(t) \phi_{i}(x)
$$

- Projection of the "physics" onto the spatial modes (POD-Galerkin)
$\int_{\Omega} d x \phi_{i}(x) \cdot($ Physical equation (e.g. Navier-Stokes))
\rightarrow ROM for very fast simulation of temporal modes

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

> Spatial modes $$
\left(\phi_{i}(x)\right)_{i}
$$

- Approximation:
- Projection of the "physics" onto the spatial modes
(POD-Galerkin)

Don't work in extrapolation!
$\int_{\Omega} d x \phi_{i}(x) \cdot($ Physical equation (e.g. Navier-Stokes))
\rightarrow ROM for very fast simulation of temporal modes

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes
(POD-Galerkin)

Don't work in

 extrapolation!$\int_{\Omega} d x \phi_{i}(x) \cdot($ Physical equation + fitted correction
\rightarrow ROM for very fast simulation of temporal modes

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$
\begin{array}{r}
\int_{\Omega} d x \phi_{i}(x) \cdot \text { (Physical equation } \begin{array}{c}
\text { + fitted correction } \\
\text { + additive noise }
\end{array} \\
\rightarrow \text { ROM for very fast simulation of temporal modes }
\end{array}
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:
- Projection of the "physics" onto the spatial modes
(POD-Galerkin)

Don't work in

 extrapolation!$$
\int_{\Omega} d x \phi_{i}(x) \cdot(\text { e.g. Navier-Stokes) })
$$

\rightarrow ROM for very fast simulation of temporal modes

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n}\left[\begin{array}{c}
\text { Resolved } \\
\text { modes } \\
b_{i}(t)
\end{array}\right) \phi_{i}(x)
$$

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

$$
\begin{array}{r}
\int_{\Omega} d x \phi_{i}(x) \cdot \\
\rightarrow \text { ROM for very fast simulation of temporal modes }
\end{array}
$$

INTRUSIVE REDUCED ORDER MODEL

Combine physical models and learning approches

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

> Spatial modes $$
\left(\phi_{i}(x)\right)_{i}
$$

- Approximation:

$$
v(x, t) \approx \sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

$$
\int_{\Omega} d x \phi_{i}(x) \cdot \text { (Randomized Navier-Stokes) }
$$

\rightarrow ROM for very fast simulation of temporal modes

- Projection of the "physics" onto the spatial modes (POD-Galerkin)

DATA ASSIMILATION

= Coupling simulations and measurements y

Numerical
Simulation
(ROM)
\rightarrow erroneous

On-line measurements
 \rightarrow incomplete
 \rightarrow possibly noisy

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

= Coupling simulations and measurements y

DATA ASSIMILATION

Example : the Particle Filter (PF) generates an ensemble $\sim p(v \mid y)$

- Initialization
$v_{t=0}^{(j)} \sim \mathcal{N}(0, \Sigma)$
- Loop over time t

Importance sampling

- $v_{t}^{(j)}=M\left(v_{t-1}^{(j)}\right.$,noise $\left.(t-1)\right) \quad$ Forecast ("Prior" or "backgroud")
- If an observation y_{t} is available at the current time t
- $W_{j}(t) \propto p\left(y_{t} \mid v_{t}^{(j)}\right) \quad$ Likelihood evaluation, up to a constant
- $\mathbf{W}_{j}(t)=\frac{W_{j}(t)}{\sum_{k=1}^{N_{p}} W_{k}(t)} \quad$ Normalization

Resampling

- Each new $v_{t}^{(j)}$ is replaced by one of the old particles $v_{t}^{(1)}, \ldots, v_{t}^{\left(N_{p}\right)}$ with probability $\mathbf{W}_{1}(t), \ldots, \mathbf{W}_{N_{p}}(t)$, respectively.
- Final posterior distribution
$p\left(v_{t} \mid y_{t_{1}}, \ldots, y_{t_{K}}\right) \approx \sum_{k=1}^{N_{p}} \frac{1}{N_{p}} \delta\left(v_{t}-v_{t}^{(k)}\right)$

DATA ASSIMILATION

Example : the Particle Filter (PF) generates an ensemble $\sim p(v \mid y)$

- Initialization
$v_{t=0}^{(j)} \sim \mathcal{N}(0, \Sigma)$
- Loop over time t

Importance sampling

- $v_{t}^{(j)}=M\left(v_{t-1}^{(j)}\right.$, noise $\left.(t-1)\right) \quad$ Forecast ("Prior" or "backgroud")
- If an observation y_{t} is available at the current time t
- $W_{j}(t) \propto p\left(y_{t} \mid v_{t}^{(j)}\right) \quad$ Likelihood evaluation, up to a constant
- $\mathbf{W}_{j}(t)=\frac{W_{j}(t)}{\sum_{k=1}^{N_{p} W_{k}(t)}} \quad$ Normalization

Resampling

- Each new $v_{t}^{(j)}$ is replaced by one of the old particles $v_{t}^{(1)}, \ldots, v_{t}^{\left(N_{p}\right)}$ with probability $\mathbf{W}_{1}(t), \ldots, \mathbf{W}_{N_{p}}(t)$, respectively.
- Final posterior distribution
$p\left(v_{t} \mid y_{t_{1}}, \ldots, y_{t_{K}}\right) \approx \sum_{k=1}^{N_{p}} \frac{1}{N_{p}} \delta\left(v_{t}-v_{t}^{(k)}\right)$

PART III

REDUCED LOCATION UNCERTAINTY MODELS

a. Multiscale modeling
b. Location uncertainty models (LUM)
c. Reduced LUM (Red LUM)

MULTISCALE MODELING

MULTISCALE MODELING

MULTISCALE MODELING

Fluids are multiscale \longrightarrow Many coupled degrees of freedom

MULTISCALE MODELING

Fluids are multiscale Many coupled degrees of freedom We cannot simulate (or observe) every scales.

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}
v^{\prime}

\qquad

Generally, authors

- simulate large scales w,
- model the effect of small scales v^{\prime} in the equations (closure).

Here, we

- model the small scales \boldsymbol{v}^{\prime} through stochastic functions, parametrized from data and/or from physical scale symmetries.
- inject those in physical equations for physical understanding, simulations \& data assimilation.

LOCATION UNCERTAINTY MODELS (LUM)

$v=w+v^{\prime}$
Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

LOCATION UNCERTAINTY MODELS (LUM)

\qquad
$v=w+v^{\prime}$
Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

LOCATION UNCERTAINTY MODELS (LUM)

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$

$$
w=\sum_{i=0}^{n} b_{i} \phi_{i}
$$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

Mikulevicius \&
References:
Rozovskii, 2004
Flandoli, 2011

LUM	SALT	
Memin, 2014		Crisan et al., 2017
Resseguier et al. 2017 a, b, c, d	Holm, 2015 Holm and	Gay-Balmaz \& Holm 2017
Cai et al. 2017 Chapron et al. 2018	Tyranowski, 2016	Cotter and al. 2018 a , b
Yang \& Memin 2019	Arnaudon et al. 2017	and al. 2019
Cotter and al. 2017	esseguier et al. 2020	

LOCATION UNCERTAINTY MODELS (LUM)

$$
v=w+v^{\prime}
$$

$$
\begin{aligned}
& \text { Resolved fluid velocity: } \\
& w=\sum_{i=0}^{n} b_{i} \phi_{i}
\end{aligned}
$$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$

LUM	SALT	
Memin, 2014		Crisan et al., 2017
Resseguier et al. 2017 a, b, c, d		
Cai et al. 2017	Holm, 2015 Chapron et al. 2018 Holm and	Gay-Balmaz \& Holm 2017 Tyranowski, 2016
Cotter and al. 2018 a, b		
Arnaudon et al. 2017	Cotter and al. 2019	

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$v=w+v^{\prime}$
Resolved fluid velocity: w

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ Gaussian, white wrt $\left.t\right)$
$\left(\operatorname{assuming} \nabla \cdot w=0\right.$ and $\left.\nabla \cdot v^{\prime}=0\right)$

Momentum conservation

$\mathrm{d}\left(w\left(t, X_{t}\right)\right)=d F_{\text {foreses }}$
Positions of fluid parcels X_{t} :

$$
d X_{t}=w\left(t, X_{t}\right) d t+\underbrace{\sigma\left(t, X_{t}\right) d B_{t}}_{\begin{array}{c}
\text { Gaussian } \\
\text { process } \\
\text { white in time }
\end{array}}
$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)

$$
d_{t} w+w^{*} d t \cdot \nabla w+\sigma d B_{t} \cdot \nabla w-\nabla \cdot\left(\frac{1}{2} a \nabla w\right) d t=d F
$$

$$
\text { (assuming } \nabla \cdot w=0 \text { and } \nabla \cdot v^{\prime}=0 \text {) }
$$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

Resolved fluid velocity:
w

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ Gaussian, white wrt $\left.t\right)$
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
d_{t} w+w^{\text {Advection }} d t \cdot \nabla w+\sigma d B_{t} \cdot \nabla w-\nabla \cdot\left(\frac{1}{2} a \nabla w\right) d t=d F
$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
v=w+v^{\prime}
$$

From Ito-Wentzell
formula (Kunita 1990) with Ito notations

Resolved fluid velocity:

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

From Ito-Wentzell
formula (Kunita 1990) with Ito notations

Resolved fluid velocity:
(assuming $\nabla \cdot w=0$ and $\left.\nabla \cdot v^{\prime}=0\right)$
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

Usual
terms

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

From Ito-Wentzell
formula (Kunita 1990) with Ito notations

Resolved fluid velocity:
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)
(assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$
 random forcing

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$$
v=w+v^{\prime}
$$

From Ito-Wentzell
formula (Kunita 1990) with Ito notations

Resolved fluid velocity:
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t) (assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)
Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$
 random forcing

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$v=w+v^{\prime}$
Resolved fluid velocity:
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t) (assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

Symmetric

 negative

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$v=w+v^{\prime}$
Resolved fluid velocity:
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t) (assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

From Ito-Wentzell
formula (Kunita 1990)
with Ito notations

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$v=w+v^{\prime}$
Resolved fluid velocity:
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t) (assuming $\nabla \cdot w=0$ and $\nabla \cdot v^{\prime}=0$)

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

LOCATION UNCERTAINTY MODELS (LUM), Randomized Navier-Stokes

$v=w+v^{\prime}$

Symmetric

 negativeFrom Ito-Wentzell
formula (Kunita 1990)
with Ito notations
Resolved fluid velocity:
w

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity:

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $\left.t\right)$
$\frac{d t}{}$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$
$\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$
$\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x$

$2^{\text {nd }}$ order polynomial

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$

$2^{\text {nd }}$ order polynomial

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$

$2^{\text {nd }}$ order polynomial

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$

Variance tensor:
$a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity:

$$
w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad($ Gaussian, white wrt $t)$
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Coefficients given by

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity:

$$
w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)
Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity:

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity:

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)
$$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

REDUCED LU (RED LU) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order : $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wit t)

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

Multiplicative skew-symmetric noise
$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

 Multiplicative skew-symmetric noise

Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) \quad b(t)
$$

Multiplicative skew-symmetric noise
Covariance to estimate
$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt t)

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

$2^{\text {nd }}$ order polynomial

Multiplicative skew-symmetric noise
Covariance to estimate

$$
\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t K_{j q}\left[\overline{\left.\left.\frac{b_{p}}{\overline{b_{p}^{2}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right] .\right] ~}\right.
$$

Coefficients given by

- Randomized Navier-Stokes

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LU (RED LU)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wit t)

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LU (RED UM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wit t)

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) b(t)
$$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order: $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $\left.t\right)$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) \quad b(t)
$$

Variance tensor:
Multiplicative skew-symmetric noise

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial
Coefficients given by :

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Covariance to estimate

REDUCED LUM (RED LUM)
 POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$
Reduced order: $n \sim 10$
$v=w+v^{\prime}$

Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$$
d b(t)=H(b(t)) d t+K\left(\sigma d B_{t}\right) \quad b(t)
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

REDUCED LUM (RED LUM) POD-Galerkin gives SDEs for resolved modes

Full order : $M \sim 10^{7}$ Reduced order: $n \sim 10$
$v=w+v^{\prime}$
Resolved fluid velocity: $w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$

Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t} \quad$ (Gaussian, white wrt $\left.t\right)$

Variance tensor:

$$
a(x, x)=\frac{\mathbb{E}\left\{\left(\sigma d B_{t}\right)\left(\sigma d B_{t}\right)^{T}\right\}}{d t}
$$

$$
\int_{\Omega} \phi_{i}(x) \cdot\left(d_{t} w+C(w, w) d t+F(w) d t+C\left(\sigma d B_{t}, w\right)=d F\right) d x
$$

$2^{\text {nd }}$ order polynomial

Coefficients given by:

- Randomized Navier-Stokes
- $\left(\phi_{j}\right)_{j}$
- $a(x) \approx \Delta t \overline{v^{\prime}\left(v^{\prime}\right)^{T}}$

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

Multiplicative skew-symmetric noise

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation

Covariance to estimate

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

- Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity:
$v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
 requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v^{\prime}
from synthetic data

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

- Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- K is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\frac{\overline{b_{p}}}{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K) $\left.\left.\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)\right\rangle=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)\right\rangle=\sum_{\mathrm{r}=0}^{\mathrm{n}} \Sigma_{j q, i r} \overline{b_{p} b_{r}}=\Sigma_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$

$$
v=w+v^{\prime}
$$

Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v^{\prime}
from synthetic data

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

- Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\overline{\overline{b_{p}}} \overline{\overline{b_{p}^{2}}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K) $\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)>=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)>=\sum_{\mathrm{r}=0}^{\mathrm{n}} \sum_{j q, i r} \overline{b_{p} b_{r}}=\sum_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)
- Optimal time subsampling at Δt needed to meet the white assumption

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

REDUCED LUM (RED LUM)
 Multiplicative noise covariance

Full order (\sim nb spatial grid points): $M \sim 10^{7}$
Reduced order: $n \sim 10$
Number of time steps : $N \sim 10^{4}$
$v=w+v^{\prime}$
Resolved fluid velocity:
$w(x, t)=\sum_{i=0}^{n} b_{i}(t) \phi_{i}(x)$
Unresolved fluid velocity: $v^{\prime}=\frac{\sigma d B_{t}}{d t}$
(Gaussian, white wrt t)

Randomized Navier-Stokes
PCA modes
PCA residual v^{\prime}
from synthetic data

$$
\bar{f}=\frac{1}{T} \int_{0}^{T} f
$$

$$
d b(t)=H(b(t)) d t+\underset{(\mathrm{n}+1) \times(\mathrm{n}+1)}{K\left(\sigma d B_{t}\right)} b(t) \text { with } K_{j q}[\xi]=-\int_{\Omega} \phi_{j} \cdot C\left(\xi, \phi_{q}\right)
$$

- Curse of dimensionality

- Since $\sigma d B_{t}$ is white in time,

$$
\Sigma_{j q, i p}=\mathbb{E}\left(K_{j q}\left(\sigma d B_{t}\right) K_{i p}\left(\sigma d B_{t}\right)\right) / d t \approx \Delta t \overline{K_{j q}\left(v^{\prime}\right) K_{i p}\left(v^{\prime}\right)}
$$

New estimator

- Consistency proven $(\Delta t \rightarrow 0)$
- Numerically efficient
- Physically-based
\rightarrow Robustness in extrapolation
- $\quad K$ is a matrix of integro-differential operators \rightarrow cannot be evaluated on $v^{\prime}(x, t)$ at every time t
- Covariance of $\sigma d B_{t} \approx \Delta t^{2} \overline{\left(v^{\prime}(x, t)\right)\left(v^{\prime}(y, t)\right)^{T}}: M \times M \sim 10^{13}$ coefficients \rightarrow intractable
- Efficient estimator $\Sigma_{j q, i p} \approx \Delta t K_{j q}\left[\frac{\overline{b_{p}}}{\overline{b_{p}^{2}} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right] \quad$ (hybrid fitting \& physics-based) requires only $O\left(n^{2} M\right)$ correlation estimations and $O\left(n^{2}\right)$ evaluations of K
- Consistency of our estimator (convergence in probability for $\Delta t \rightarrow 0$, using stochastic calculus and continuity of K) $\Delta t K_{j q}\left[\overline{b_{p} \frac{\Delta b_{i}}{\Delta t} v^{\prime}}\right]=\Delta t \overline{b_{p} \frac{\Delta b_{i}}{\Delta t} K_{j q}\left[v^{\prime}\right]} \approx \frac{1}{T} \int_{0}^{T} b_{p} d<b_{i}, K_{j q}(\sigma B)>=\frac{1}{T} \int_{0}^{T} b_{p} \sum_{\mathrm{r}=0}^{\mathrm{n}} b_{r} d<K_{i r}(\sigma B), K_{j q}(\sigma B)>=\sum_{\mathrm{r}=0}^{\mathrm{n}} \sum_{j q, i r} \overline{b_{p} b_{r}}=\sum_{j q, i p} \overline{b_{p}^{2}}$ (orthogonality from PCA)
- Optimal time subsampling at Δt needed to meet the white assumption
- Additional reduction for efficient sampling :
diagonalization of $\Sigma \rightarrow K\left(\sigma d B_{t}\right) \approx \alpha\left(d \beta_{t}\right)$ with a n -dimensional (instead of ($\left.\mathrm{n}+1\right)^{2}$-dimensional) Brownian motion β

SUMMARY

Stochastic ROM + Data assimilation

On-line :

Simulation \& data assimilation

SUMMARY

Stochastic ROM + Data assimilation

PART IV

NUMERICAL RESULTS

a. Uncertainty quantification (Prior)
b. Data assimilation (Posterior)

UNCERTAINTY QUANTIFICATION (PRIOR)
 Known initial conditions $b(t=0)$

$$
d b(t)=H(b(t)) d t+\alpha\left(d \beta_{t}\right) b(t)
$$

Metrics choice

- $\quad b_{i}(t) V S$ reference
- Error metrics

UNCERTAINTY QUANTIFICATION (PRIOR)
 $b_{i}(t) \vee S$ reference

From 10^{7} to 8 degrees of freedom No data assimilation
Known initial conditions $b(t=0)$

Reference
Temporal mode 1

Temporal mode 6

UNCERTAINTY QUANTIFICATION (PRIOR)

Error on the reduced solution w
$v=w+v^{\prime}$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}

Reynolds number (Re) $=100 / 2 \mathrm{D}$ (full-order simulation has 10^{4} dof)

Time

$n=8$

From 10^{7} to 8 degrees of freedom
No data assimilation
Known initial conditions $b(t=0)$
 (full-order simulation has 10^{7} dof)

UNCERTAINTY QUANTIFICATION (PRIOR)

Error on the reduced solution w
$v=w+v^{\prime}$

Resolved fluid velocity: $w=\sum_{i=0}^{n} b_{i} \phi_{i}$

Unresolved fluid velocity: v^{\prime}

From 10^{7} to 8 degrees of freedom No data assimilation Known initial conditions $b(t=0)$ Reynolds number (Re) $=100 / 2 \mathrm{D}$
(full-order simulation has 10^{4} dof)

$$
n=4
$$

Red. LUM ensemble
 to the Red. LUM ensemble

 minimal
distance to the reference

Reynolds number $(\operatorname{Re})=300$ 3D (full-order simulation has 10^{7} dof)

DATA ASSIMILATION (POSTERIOR)

On-line estimation of the solution

From 10^{7} to 8 degrees of freedom
Single measurement point (blurred \& noisy velocity)

DATA ASSIMILATION (POSTERIOR)

Error on the solution estimation
$v=w+v^{\prime}$

Resolved fluid velocity:
$w=\sum_{i=0}^{n} b_{i} \phi_{i}$
Unresolved fluid velocity: v^{\prime}

Reynolds number (Re) $=100 / 2 \mathrm{D}$
(full-order simulation has 10^{4} dof)

State of the art

Reynolds number $(\operatorname{Re})=300$ 3D (full-order simulation has 10^{7} dof)

CONCLUSION

CONCLUSION

- Reduced order model (ROM) : for very fast and robust CFD ($10^{7} \rightarrow 8$ degrees of freedom.)
- Combine data \& physics (built off-line)
- Closure problem handled by LUM
- Efficient estimator for the multiplicative noise
- Efficient generation of prior / Model error quantification
- Data assimilation (Bayesian inverse problem) :
to correct the fast simulation on-line by incomplete/noisy measurements
- First results
- Optimal unsteady flow estimation/prediction in the whole spatial domain (large-scale structures)
- Robust far outside the training set

NEXT STEPS

- Real measurements
- Better stochastic closure
- Parametric ROM (unknown inflow)
- Increasing Reynolds
(ROM of (non-polynomial) turbulence models)

