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NASA Langley Uncertainty Quantification Challenge on 
Optimization Under Uncertainty – Motivation 

 New complex dynamic engineering systems (e.g., civil, nuclear, aerospace, chemical, …) must 
operate under a wide range of uncertain conditions 

 These are high-consequence safety-critical systems for which data is either very sparse or 
very expensive to collect

 Modeling and simulation standards (in particular, for government agencies) require the 
quantification of uncertainties and the evaluation of risk

Dynamics

https://uqtools.larc.nasa.gov/nasa-uq-challenge-problem-2020/
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Uncertainty Classification in This Work

 Aleatory uncertainty
 Caused by intrinsic variability (state of the system)

 Irreducible
 Modeled as a random vector

 Epistemic uncertainty
 Caused by ignorance (state of the modeler)
 Reducible with additional experiments/simulations

 Can take on any fixed value within a set
 A refinement entails reducing the size of this set

shriking

� ~ �� (joint multi-dimensional PDF, na = 5, A = [0, 2]na)

� ~ � (hyper-rectangular set, ne = 4, B = [0, 2]ne)

Uncertainty Model (UM) δ = �, � ~ ��, �

(Crespo et al., 2019)
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(Sub)-System Configuration

Subsystem (model) 

y(a, e, t)

Disturbance d

(Crespo et al., 2022)https://uqtools.larc.nasa.gov/nasa-uq-challenge-problem-2020/
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Integrated System Configuration

Subsystem (model) 

y(a, e, t)

Disturbance d

C(θ)
‒

+

r

(θ = design parameters, nθ = 9)

(Crespo et al., 2022)https://uqtools.larc.nasa.gov/nasa-uq-challenge-problem-2020/
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Integrated System – Analysis Framework

Subsystem (model) 

y(a, e, t)

Disturbance d

C(θ)
‒

+

r
t

z1(t)

t

z2(t)

(θ = design parameters, nθ = 9)

(Crespo et al., 2022)https://uqtools.larc.nasa.gov/nasa-uq-challenge-problem-2020/

(random process)
(random process)
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Integrated System – Design Optimization Framework

Subsystem (model) 

y(a, e, t)

Disturbance d

C(θ)
‒

+

r
t

z1(t)

t

z2(t)

(θ = design parameters, nθ = 9)

 There are reliability requirements g(a, e, θ) < 0 that define conflicting objectives: stability (z1

and z2 not to infinity) (g1), settling time (g2), control effort/energy consumption (g3)

 Epistemic uncertainty makes probabilistic metrics vary in a range

Closed-loop stability

(Crespo et al., 2022)https://uqtools.larc.nasa.gov/nasa-uq-challenge-problem-2020/
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NASA Langley Uncertainty Quantification Challenge on 
Optimization Under Uncertainty – Tasks Considered in This Talk 

A. Model Calibration & Uncertainty Quantification 
(using time series from the subsystem and the integrated system)

Uncertainty Model (UM) δ = �, � ~ ��, �

B. Reliability-Based Design Optimization

Optimal design θopt

https://uqtools.larc.nasa.gov/nasa-uq-challenge-problem-2020/
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NASA Langley Uncertainty Quantification Challenge on 
Optimization Under Uncertainty – Tasks Considered in This Talk 

A. Model Calibration & Uncertainty Quantification 
(using time series from the subsystem and the integrated system)

Uncertainty Model (UM) δ = �, � ~ ��, �

B. Reliability-Based Design Optimization

Optimal design θopt
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A. Model Calibration & Uncertainty Quantification

Subsystem model y(a, e, t) y(t) = [y(0), …, y(NT)]

Real Subsystem

(discrete time history)

Real sub-system observations D1

+
Uncertainty Model 
(UM-y) δ(y)

�, � ~ ��, 	

1. First stage (sub-step): functional (time-series) data from the real subsystem

(Fist stage) Uncertainty Model (UM-y) δ(y) = �, � ~ ��, �

D1 = {y(i)(k)}, i = 1, 2, …, n1 = 100
k = 0, 1, …, NT = 5001
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A. Model Calibration & Uncertainty Quantification

2. Second stage (sub-step) - Refinement: functional (time-series) data from the real integrated system

(Refined) Uncertainty Model (UM-yz) δ(yz) = �, � ~ ��, �

D2 = {z1
(i)(k), z2

(i)(k)}, i = 1, 2, …, n2 = 100
k = 0, 1, …, NT = 5001

(after a «round» of design optimization, 
from θbaseline to θnew)
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A. Model Calibration & Uncertainty Quantification – Approaches 
Considered

1. Dimensionality reduction by Singular Value Decomposition (SVD)
2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNs) to reduce the 

computational burden
3. Evaluation of the plausibility of the epistemic parameter values ( refinement of the 

epistemic space) by a global, (average) Likelihood-based search

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the 
retrieved input data with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions 

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification 

(+ additional refinements based on model predictive capabilities)
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A. Model Calibration & Uncertainty Quantification

1. Dimensionality reduction by Singular Value Decomposition (SVD)

Real sub-system observations

(time domain)

D1 = {y(i)(k)}, i = 1, 2, …, n1 = 100
k = 0, 1, …, NT = 5001

Real sub-system observations

(projected space)

Projection c1

P
ro

je
c
ti
o

n
c

2

C1 = {c1,it}, i = 1, 2, …, n1 = 100
t = 1, 2, …, nB(y) = 10

Singular Value 

decomposition (SVD)


� � �∗ · � 1: ��

�∗ � � � �����
�∗ � � · � · �′

- Centering:

- SVD:

- Projection:

Projection of the dataset D1 onto an orthonormal basis ẞ = {vt, t = 1, 2, …, nB(y)}, such that nB(y) << NT

and at least ε (here 99%) of the total variance is retained ( here nB(y) = 10)

Calibration and uncertainty quantification in the (static multivariate) projected space (i.e., in the space 
defined by the orthonormal basis ẞ) rather than in the (dynamic multivariate) time domain

��� � � � �  � !"# · $�!"#
%&

'(�
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A. Model Calibration & Uncertainty Quantification

2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNs) to reduce the 
computational burden

Train nB metamodels to reproduce the coefficients of the SVD decomposition
(only dependent on inputs a,e)

 � �!�#, �!�#, "  � � , � �

) � 1, 2, … , ,-%% " � 1, 2, … , ,.

) � 1, 2, … , ,-%%
Original Model

y(a, e, t)
SVD

ℎ� � � , �!�#

ℎ01 � � , �!�#

ℎ� � � , �!�#
…

…

ANN Meta Model 1

ANN Meta Model t

ANN Meta Model nB

…

…

Given new inputs a, e one can generate a “metamodel-based” transient:  2 �, �, " � � ℎ3� �, � · $� "
01

�(�

ANN estimated
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A. Model Calibration & Uncertainty Quantification

3. Evaluation of the plausibility of the epistemic parameter values ( refinement of the 
epistemic space) by a global, (average) Likelihood-based search

 Fit PDFs fhy(hy), fhz(hz) in the reduced SVD space on the data

C1 = {c1,it}, i = 1, 2, …, n1 = 100, t = 1, 2, …, nB(y) = 10

Projection hy1

P
ro

je
c
ti
o

n
h

y
2

fhy(hy) 

C2 = {c2,it}, i = 1, 2, …, n2 = 100, t = 1, 2, …, nB(z1)+nB(z2)= 17

For example: by (rough) multivariate Kernel Density Estimation (KDE)

 For a point e ∈ � to be plausible: it should be possible to find at least 

some a for which �5 5 �, � is high
 Sample several epistemic vectors ek, k = 1, 2, …, Ne

 Sample many aleatory vectors ai, i = 1, 2, …, Na

 Evaluate the plausibility of each ek as its “average likelihood”:

Notice: ��|� � ∼ 1
8 �5 5 �, � (fh defines a likelihood for any h(a, e) which we assign to a)

ℒ �'  ~ � �5: 5: �!�#, �!'# · �5; 5; �!�#, �!'#%<

�(�

ℒ ��  

=�
=>

ℒ �>  
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A. Model Calibration & Uncertainty Quantification

3. Evaluation of the plausibility of the epistemic parameter values ( refinement of the 
epistemic space) by a global, (average) Likelihood-based search

 Based on

 define the UM E as the smallest hyper-
rectangle enveloping the joint four-dimensional
α% Confidence Interval (CI) of e

ℒ �'  ~ � �5: 5: �!�#, �!'# · �5; 5; �!�#, �!'#%<

�(�

ℒ ��  

=�
=>

ℒ �>  

ei

α% CI

Epistemic box E

α levels

UM(yz)

ej
Degree of confidence and robustness in model 
calibration (in the presence of scarce data) 

Degree of conservatism in system design
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A. Model Calibration & Uncertainty Quantification – Epistemic 
Space Plausibility (Refinement) – Results 

=� =>=?

= ?
= >

= �

0 002 2 2 =� =>=?0 002 2 2
= ?

= >
= �

Data from sub-system (n1 = 100)
y(a, e, t)
UM-y

Additional data from integrated system 
(n2 = 100), z(a, e, θnew, t)
UM-yz

NOTE: results in picture obtained without the refinements suggested by the challengers

Epistemic box of the joint 95% Confidence Interval
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A. Model Calibration & Uncertainty Quantification – Approaches 
Considered

1. Dimensionality reduction by Singular Value Decomposition (SVD)
2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNs) to reduce the 

computational burden
3. Evaluation of the plausibility of the epistemic parameter values ( refinement of the 

epistemic space) by a global, (average) Likelihood-based search

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the 
retrieved input data with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions 

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification 

(+ additional refinements based on model predictive capabilities)
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A. Model Calibration & Uncertainty Quantification

4. Retrieval of the (unknown) input dataset by inverse optimization

 Select the value of e with maximum plausibility eopt

 Retrieve the input aleatory vectors ai, i = 1, 2, …, n1+n2, corresponding to 
the output data (coming from the real system) projected in the SVD space:

«Optimal» input aleatory vectors

�)@A� � arg E)���
F)GH 
�, 
? , 5I �), �@A� , 5J �), �@A�

Projected data Projected model outputs

Build robustness in the retrieval of the aleatory vectors

 Select different values e(k) within the refined E
 For each e(k) repeat the optimization above to obtain different sets of 

aleatory vectors (corresponding to different plausible aleatory models)

��
!�# ��

!?# ��
!'#…

i = 1, 2, …, n1+n2

a1

a2

a1

Optimal model inputs

Plausible Model inputs 2

Plausible Model inputs 3

Optimal model inputs

a2
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A. Model Calibration & Uncertainty Quantification

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the 
retrieved input data

a1

Plausible Model inputs 2

Plausible Model inputs 3

Optimal model inputs

a2

Sliced Normal (SN) distributions 
 Parametric class of distributions
 Flexibility and versatility that allow accurate modelling of  multivariate data
 Capability to capture very complex dependencies
 Relatively small modelling effort

(Crespo et al., 2019)

(Colbert et al., 2019)
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A. Model Calibration & Uncertainty Quantification

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the 
retrieved input data

Sliced Normal (SN) distributions 

� �; L, M, F ~ =NO �1/2Q �; L, M, F
2R 0S/? MT� L, M, F = hyperparameters

Q �; L, M, F � UV � � L W · M · UV � � L

Where:

M = positive semi-definite matrix

UV � = monomials of degree d (or less) of a (in lexicographic order)

Example: U? � � X�
X?

� X�, X?, X�?, X� · X?, X?? W

Dim(W) = Dim(μ) = nW =  
�Y Z F

�Y
� 1

Dim(P) = nW * nW

For d > 1 SN PDFs can model complex, multi-modal distributions 

(Colbert et al., 2020)
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A. Model Calibration & Uncertainty Quantification

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the 
retrieved input data

Fitting Sliced Normal (SN) distributions
(Maximum Likelihood Estimation in the polynomial space)

a1

Plausible Model inputs 2

Plausible Model inputs 3

Optimal model inputs

a2

[� � �� , ) � 1, 2, … , �� Z �?Retrieved input dataset

ℒ [U; L, M, F � � \]^ �U _); L, M, F
0`a0b

�(�

[U � _� , ) � 1, 2, … , �� Z �?Retrieved input dataset
(polynomial space)

L ⋆, M ⋆ � arg EXNL, M � \]^ �U _); L, M, F
0`a0b

�(�

L ⋆� 1
�� Z �?

� _)
0`a0b

�(�

M ⋆� 1
�� Z �?

� _) � L ⋆ · _) � L ⋆ W
0`a0b

�(�

T�

(Size: nw*(nw+3)/2)

(Bootstrap to limit overfitting)

(Crespo et al., 2019)
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A. Model Calibration & Uncertainty Quantification

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the 
retrieved input data

Fitting Sliced Normal (SN) distributions
(Maximum Likelihood Estimation in the polynomial space)

a1

Plausible Model inputs 2

Plausible Model inputs 3

Optimal model inputs

a2

(Crespo et al., 2019)

� �; L, M, F ~ =NO �1/2Q �; L, M, F
2R 0S/? MT�

Q �; L, M, F � UV � � L W · M · UV � � L

Family of nested, closed, semi-algebraic confidence sets: 

d ef � �: UV � � L W · M · UV � � L g ef

 α is the desired confidence (coverage) level
 ef to be determined (numerically) such that α% of the data is enclosed in d ef
 Members of this family can be used to tightly enclose the data 
 Polynomial structure  simple treatment for rigorous uncertainty quantification
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A. Model Calibration & Uncertainty Quantification

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the 
retrieved input data

Ensure robustness in the joint multivariate PDF estimation

a1

Plausible Model inputs 2

Plausible Model inputs 3

Optimal model inputs

a2

 Use the aleatory model obtained in correspondence of the epistemic vector 
e with maximum plausibility eopt

Option 1 (negligible discrepancies are observed in the models):

�U _; L ⋆, M ⋆, F|�@A� �� �|�@A�

 Account for it by merging different aleatory models obtained for different values e(k) within the refined E

Option 2 (discrepancies are observed in the model):

� h�i · �U _; L ⋆, M ⋆, F|�!'#%j

'(�
�� �

(weight by the corresponding plausibility or 
consider equally plausible epistemic values in E)
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A. Model Calibration & Uncertainty Quantification – Joint Multivariate 
Aleatory Models – Input Retrieval – Results

Time [s] Time [s]

y
(t

)

BEST – dist = 0.0759 WORST – dist = 0.2330

Subsystem y(t)

Integrated system z1(t), z2(t)

Data

Prediction

z
1

(t
)

Time [s]

BEST – dist = 0.0962 WORST – dist = 0.3344

Time [s] Time [s] Time [s]

z
2

(t
)
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A. Model Calibration & Uncertainty Quantification – Joint Multivariate 
Aleatory Models – Input Retrieval and Fitting by Sliced Normals – Results

X� X>X?

X ?
X >

X �

0 002 2 2

Data from integrated system (n2 = 100), z(a, e, θnew, t) + Data from subsystem (n1 = 100), y(a, e, t)  UM-yz

 Input retrieval allows identifying (and treating) 
possible model discrepancies

 Optimization-based input retrieval is

computationally convenient with scarce data
 SN: Accurate modelling of multivariate data and 

of complex dependencies
 SN: Data tightly enclosed by nested semi-

algebraic sets of polynomial nature ( rigorous 
and simple treatment)

 SN: Parametric nature  avoid kernels that 
perform poorly with scarce data

Larger epistemic sets or multiple 
(mixed) aleatory models

Sliced Normals of degree 3

(MLE)  54 parameters

99% CI

95% CI

90% CI

66% CI

20% CI
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A. Model Calibration & Uncertainty Quantification – Joint Multivariate 
Aleatory Models – Input Retrieval and Fitting by Sliced Normals – Results

X� X>X?

X ?
X >

X �

0 002 2 2

Data from integrated system (n2 = 100), z(a, e, θnew, t) + Data from subsystem (n1 = 100), y(a, e, t)  UM-yz

Sliced Normals of degree 4

(MLE)  119 parameters

99% CI

95% CI

90% CI

66% CI

20% CI
 Increase the degree of the polynomial  increase

the capability to tightly enclose the data and 
capture complex patterns

 The analyst can «play» with the polynomial degree 

to obtain more or less conservative/robust
designs, paying attention to model generalization
capabilities (overfitting)
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A. Model Calibration & Uncertainty Quantification – Approaches 
Considered

1. Dimensionality reduction by Singular Value Decomposition (SVD)
2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNs) to reduce the 

computational burden
3. Evaluation of the plausibility of the epistemic parameter values ( refinement of the 

epistemic space) by a global, (average) Likelihood-based search

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the 
retrieved input data (in the physical space) with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions 

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification 

(+ additional refinements based on model predictive capabilities)
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A. Model Calibration & Uncertainty Quantification

 Fit PDFs fhy(hy), fhz(hz) in the reduced SVD space on the data

C1 = {c1,it}, i = 1, 2, …, n1 = 100, t = 1, 2, …, nB(y) = 10

Projection hy1

P
ro

je
c
ti
o

n
h

y
2

C2 = {c2,it}, i = 1, 2, …, n2 = 100, t = 1, 2, …, nB(z1)+nB(z2)= 17

Use Sliced Normal (SN) distributions

4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions in the 
SVD space (maximum- and worst-case)

Precise modeling of complex, nonlinear, multi-
modal distributions and dependencies 

Desirable to obtain an accurate and robust 
aleatory model by Bayesian inversion

99% CI

95% CI

70% CI

Projection hy1

P
ro

je
c
ti
o

n
h

y
2
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A. Model Calibration & Uncertainty Quantification

 Use non-informative priors for a (A = [0, 2]na), pa(a)

Notice: ��|�i � ∼ 1
8 �5 5 �, �i

(fh defines a likelihood for any h(a, e) which we assign to a)

5. Aleatory model calibration by Bayesian inverse uncertainty quantification 

 For a given epistemic vector e(k), evaluate the posterior PDF of a:

��|�i � � 1
8 �5 5 �, �i · O� �

(non-parametric estimation: sample the posterior by MCMC)

 Repeat for different epistemic vectors e(k), to increase robustness in 
the PDF estimation (if computational burden accaptable)

99% CI

95% CI

70% CI

Projection hy1

P
ro

je
c
ti
o

n
h

y
2

Projection hy1

P
ro

je
c
ti
o

n
h

y
2
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A. Model Calibration & Uncertainty Quantification – Joint 
Multivariate Aleatory Models – Bayesian Inversion – Results

Data from integrated system (n2 = 100), z(a, e, θnew, t) + Data from subsystem (n1 = 100), y(a, e, t)  UM-yz

X� X>X?

X ?
X >

X �

0 002 2 2

500000 samples by MCMC
Affine-invariant ensemble sampler (AIES)

2

2

2

0

0
Comparison with Sliced Normals:
 Similar marginals (even if Bayesian inversion

seems to underestimate spread)
 Completely different dependence structure!

 Higher computational cost for Bayesian 
inversion (input retrieval + SN is more convenient 
with scarce data)

 MCMC can “skip” areas of the search space with 
small likelihood or “isolated” modes

 Reflection about the relation

and the optimization-based input retrieval adopted
before (if any)…

��|�i � � 1
8 �5 5 �, �i · O� �
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A. Model Calibration & Uncertainty Quantification – Joint 
Multivariate Aleatory Models – Results

Model comparison 
Energy score:
Multivariate generalization of the Continuous Rank Predictive Score (CRPS)

	d ��, 	 , 
 � 1
��a�?

� 	d ��, 	 , k�
0`l0b

�(�
� 1

��a�?
� 1

,Y
� 5m � k� � 1

2,Y?
� � 5m � 5n

%<

n(�

%<

m(�

%o

m(�

0`l0b

�(�
Projected dataProjected model outputs

Models ES
Input retrieval-SN 3

Input retrieval-SN 4

Bayesian inversion

15.3

18.2

23.8
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NASA Langley Uncertainty Quantification Challenge on 
Optimization Under Uncertainty – Tasks Considered in This Talk 

A. Model Calibration & Uncertainty Quantification 
(using time series from the subsystem and the integrated system)

Uncertainty Model (UM) δ = �, � ~ ��, �

B. Reliability-Based Design Optimization

Optimal design θopt
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B. Reliability Analysis of Baseline Design

Requirements model 

g(a, e, θbaseline)

Refined Uncertainty
Model (UM) δ

� ~��

� ~�
e1
e2
e3
e4

g1(a, e, θbaseline) (stability)

g2(a, e, θbaseline) (settling time)

g3(a, e, θbaseline) (energy consumption)

w(a, e, θbaseline) � max�(�,…,0r(> ^� �, �,θbaseline

Pfail?

Failure probability (epistemic) bounds

Maximum severity of requirements violation
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B. Reliability Analysis of Baseline Design

Conceptual steps and methods employed:

A. Double-loop simulation to calculate failure probability bounds:
1. Genetic Algorithms (GAs) to thoroughly explore the epistemic parameter ranges 

and find extreme (upper and lower) bounds of the failure probabilities

2. Monte Carlo Simulation (MCS) to propagate aleatory uncertainty

B. Artificial Neural Network (ANN) metamodels to reduce the 
computational burden

 Evaluate bounds of the epistemic box E!

 Possibility to perform several «batch» model evaluations at reasonable cost
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B. Reliability-Based Design Optimization

Requirements model 

g(a, e, θnew)

Refined Uncertainty
Model (UM) δ

� ~��

� ~�
e1
e2
e3
e4

g1(a, e, θnew)

g2(a, e, θnew)

g3(a, e, θnew)

w(a, e, θnew) � max�(�,…,0r(> ^� �, �,θnew

Pfail (θnew) < Pfail

New design θnew

Optimality criterion
Robust Design: minimize the (epistemic) upper bound of the the failure probability for the worst-

case performance function w(a, e, θ)

s0jS � arg mins max�∈v w x �, �, s y 0



37 Nicola Pedroni

B. Reliability-Based Design Optimization

Iterative Optimization Algorithm

Set
s0jS{|}} � s~Y�j��0j

Define search
space

s0jS{|}} � " · s0jS{|}}
(k = 0.2-0.5)

Train ANN

�, �, s → x �, �, ss, s �

Use GAs to find an 
updated optimal design

s0jS
|AVY�jV � arg min

s,s
max�∈v Ρ x �, �, s y 0

��,0jS
|AVY�jV � ��  or ��,0jS

|AVY�jV � ��

s0jS
|AVY�jV � s0jS

N

YSet

s0jS{|}} � s0jS
|AVY�jV

Conceptual steps and methods employed:
1. Genetic Algorithms (GAs) to explore the design space

2. Double-loop simulation (GA + MCS) & ANNs to evaluate the upper bound of the 
worst-case requirement failure probability

(Patelli et al., 2015)
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B. Reliability-Based Design Optimization – Results 

Failure probabilities

Severity of requirements violation

Si(θ)

g1
g2 g3

g1 g2 g3 w

Ri(θ)

1.5598·10-4

0.0821

0.2950

� ~�� � ~	 θfinal

0.0540

0.1954
0.1771

0.1393

0.0039

0.0820

0.0220

0.0527

0.0168

 Strong reduction in R1(θ) (2-3 orders of magnitude)
 Reduction in R2(θ), R3(θ), R(θ) by factors 3.4-8.3
 Violation severity reduced by factors 450 (g1), 21 (g2), 52 (g3)

θbaseline

θnew

θfinal
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Conclusions

 A. Model Calibration & Uncertainty Quantification:
 Functional data (Time series)  Calibration in high-dimensional spaces  dimensionality

reduction by SVD

 Repeated model evaluations  high computational cost  SVD-based ANN metamodels

 Uncertainties of different nature and representation  joint calibration
 Epistemic (sets) plausibility  global (average) Likelihood-based exploration
 Aleatory uncertainty (joint multivariate PDFs):

o Nonlinear, complex, multimodal dependencies + few data  Sliced Normal distributions
o Optimization-based inverse input data identification (and fitting)
o (Non-parametric) Bayesian inversion
o Possible overfitting  bootstrap-based parameter estimation
o Robustness in the face of uncertainties

• Mixing multiple plausible aleatory models
• Regulate “tightness” of confidence regions (data enclosing sets)
• (Maximum- VS Worst Case-Likelihood Estimation)

 The NASA Langley Uncertainty Quantification (UQ) Challenge on Optimization Under
Uncertainty – Technical solutions:
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Conclusions

 B. Reliability-Based Design Optimization:
 Robust Design: minimize the (epistemic) upper bound of the failure probability for the worst-

case performance function

 Double-loop simulation to calculate failure probability bounds
 Genetic Algorithms (GAs) to thoroughly (globally) explore the epistemic parameter

ranges and find extreme (upper and lower) bounds of the failure probabilities (in abrupt,
multimodal, disconnected search spaces)

 Monte Carlo Simulation to propagate aleatory uncertainty

 Repeated model evaluations  high computational cost  (iteratively trained) ANN
metamodels

 The NASA Langley Uncertainty Quantification (UQ) Challenge on Optimization Under
Uncertainty – Technical solutions:
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Current Issues and Possible Future Developments

 Model inaccuracies (“discrepancies”) or just poor calibration strategy and/or poor description of
multivariate dependence structures?

 Sampling-based strategies  high flexibility but low “computational efficiency”
 Check ANN metamodel accuracy in mapping high-dimensional spaces and estimating small

failure probabilities
 Robust designs satisfactory even in the presence of poorly calibrated models, but possibly overly

conservative

 Rigorous quantification of model overfitting (in particular, for SN distributions)
 Assess the proposed calibration approaches by comparison with other sound methods (e.g.,

purely non-parametric/moment matching): bias? under/over-estimation of uncertainty?
 Rigorous assessment of model discrepancies (if any)
 More efficient (sampling?) methods for estimating small failure probabilities (e.g., bounds of R1)
 Other rigorous approaches for robust design: non-parametric distributionally-robust methods and

or Scenario Theory to optimally control, select and possibly discard outliers

Current issues:

Possible future developments:
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THANK YOU!

QUESTIONS?


