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NASA Langley Uncertainty Quantification Challenge o n

Optimization Under Uncertainty — Motivation
|

New complex dynamic engineering systems (e.g., civil, nuclear, aerospace, chemical, ...) must
operate under a wide range of uncertain conditions

These are high-consequence safety-critical systems for which data is either very sparse or
very expensive to collect

Modeling and simulation standards (in particular, for government agencies) require the
guantification of uncertainties and the evaluation of risk

Dynamic Systems

https://uqtools.larc.nasa.gov/nasa-uqg-challenge-problem-2020/
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Uncertainty Classification in This Work

Aleatory uncertainty
Caused by intrinsic variability (state of the system)
Irreducible
Modeled as a random vector
(joint multi-dimensional PDF, n, = 5, A = [0, 2]"?)

Epistemic uncertainty
Caused by ignorance (state of the modeler) N
Reducible with additional experiments/simulations shriking
Can take on any fixed value within a set
A refinement entails reducing the size of this set

(Crespo et al., 2019)

(hyper-rectangular set, n, = 4, B = [0, 2]"¢)

» \ Dynamic Systems ‘——

L &
‘Control [«
Branch

v

Uncertainty Model (UM) =( ) ( )
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(Sub)-System Configuration

.
Dynamic Systems

&

Disturbance d I |

J M.

|
Subsystem (model) |
y(a, e, t)

v

https://uqtools.larc.nasa.gov/nasa-uqg-challenge-problem-2020/ (Crespo et al., 2022)
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Integrated System Configuration

W Disturbance d |
NAA |
Ty — AR~

o
r -,-U— Subsystem (model) |
10 Y@, e, b

( = design parameters, n = 9)

v

https://ugtools.larc.nasa.gov/nasa-ug-challenge-problem-2020/ (Crespo et al., 2022)
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Integrated System — Analysis Framework

(random process)

Disturbance d

r O Y1 2 s 4 s Subsystem (model) | v+, . .
- > C >
- () y(a, e, t)

( = design parameters, n = 9)

https://ugtools.larc.nasa.gov/nasa-ug-challenge-problem-2020/ (Crespo et al., 2022)
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Integrated System — Design Optimization Framework

||
W, = 3 = max |z2(a, e, 0,1)] — 4 = max |zi(a. e 6.0 -0.02
S & rCI(),T]I‘J 52 !e[T,f'z,Tll 1(a, €, 6, 1)
[ Branch |

Disturbance d

r O 1 2z s 4 s Subsystem (model) | v+, . .
- > C >
- () y(a, e, t)

( = design parameters, n = 9)

Closed-loop stability

There are reliability requirements  g(a, e, ) < 0 that define conflicting objectives: stability (z,
and z, not to infinity) (g,), settling time (g,), control effort/energy consumption (g,)

Epistemic uncertainty makes probabilistic metrics vary in a range

https://ugtools.larc.nasa.gov/nasa-ug-challenge-problem-2020/ (Crespo et al., 2022)
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NASA Langley Uncertainty Quantification Challenge o n
Optimization Under Uncertainty — Tasks Considered in This Talk

|
2 (O» Dynamic Systems
1SA “

Control 2,

_Branch | 3

= max |za(a, e, 0,0 — 4 = z —0.
& {dimfcz( )| 2 :eg"l?l).(?"] lz1(a, e, 8,0 - 0.02

01
z4(f)

Disturbance d

r N Subsystem (model) | <, . . . .
— c(e
@ ya, e, b

‘ (6 = design parameters, ng = 9)

Closed-loop stability

/ \

A. Model Calibration & Uncertainty Quantification B. Reliability-Based Design Optimization
(using time series from the subsystem and the integrated system)

Uncertainty Mod@) =(C ) ) Optimal gdesign
B

https://uqtools.larc.nasa.gov/nasa-uqg-challenge-problem-2020/
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NASA Langley Uncertainty Quantification Challenge o n
Optimization Under Uncertainty — Tasks Considered in This Talk

= max |z2(a,e,0,1) —4 = z - 0.
& rdimfcz( e, 0,1 2 :e}?%ﬁ"]l"'(a'e’g'nl 0.02
A 01
= 24
| WL Disturbance d o
0 | ) N
2 u.‘I 0.05
t
r @__ o(6) T Subsystem (model) | <, . . . .
v(a, e, )

‘ (6 = design parameters, ng = 9)

Closed-loop stability

/ \

A. Model Calibration & Uncertainty Quantification B. Reliability-Based Design Optimization
(using time series from the subsystem and the integrated system)

Uncertainty Mod@) =(C ) ) Optimal gdesign
B
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A. Model Calibration & Uncertainty Quantification

1. First stage (sub-step): functional (time-series) data from the real subsystem

Real sub—system observations D1

={yO(K)}, i ...,n; =100
‘,.‘,g, o 1 .., N; =5001

Real Subsystem

L R
bald O D '
‘ 01
0 1 2 3 4 5

Time, [s]

Subsystem model y(a, e, t) F— y(1) = [¥(0), ..., Y(N;)]
(discrete time history)

Measured y(t)
o

—

(Fist stage) Uncertainty Model (UM-y) (y)= ( ) ¢ )
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A. Model Calibration & Uncertainty Quantification [T, | DITORING

2. Second stage (sub-step) - Refinement: functional (time-series) data from the real integrated system

(after a «round» of design optimization,
from baseline to n eW) Real inlregratedsysrem observations Dz

Physical Integrated
System, @,

Measured z,({)

$

. Measured z,(f)
?

Refined UM 6(yz)
a ""fa System model — Z,(t) = [24(0), ..., Z4(N7)]

e ~E —

z(a, e, 0,,, ) F— z,)=[20), ..., Zy(N7)]
] Update UM

— .
(Refined) Uncertainty Model (UM-yz) (yz)=( ) ( )
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Considered
||

Dimensionality reduction by Singular Value Decomposition (SVD)

2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNs ) to reduce the
computational burden

3. Evaluation of the plausibility of the epistemic  parameter values ( refinement of the

epistemic space ) by a global, (average) Likelihood-based search
(+ additional refinements based on model predictive capabilities )

=

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization
5. Construction of a joint multivariate PDF  for the aleatory input variables by fitting the
retrieved input data with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification
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A. Model Calibration & Uncertainty Quantification DI TORING
.
1. Dimensionality reduction by Singular Value Decomposition (SVD)
Real sub-system observations Real sub-system observations
01— ime-domair ; (projected space)
I B P g
c i ™
- 0.05 505! N “‘”%&
> o " *
E Singular Value »% oo
S .. 2
= decomposition (SVD) S
L - Centering: ' O
01, : . : ; - - SVD: Al - Prole(;tlon o . |
Time, [s] . . . & &yl i
. : - Projection:
Dy = 0(k)}, 1= 1,2, ..., n, = 100 ) . Cr={ondh i=1,2, ..., ny = 100
k=0,1, ..., Ny =5001 ( ()) Oy $ I"# t=1,2, ..., ngly) =10

Projection of the dataset D, onto an orthonormal basis = {v, t=1, 2, ..., ng(y)}, such that ng(y) << N;
and at least (here 99%) of the total variance is retained ( here ng(y) = 10)

—~———

Calibration and uncertainty quantification in the (static multivariate) projected space (i.e., in the space
defined by the orthonormal basis ) rather than in the (dynamic multivariate) time doma  in
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|
2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNs ) to reduce the

computational burden

Train ng metamodels to reproduce the coefficients of the SVD decomposition
(only dependent on inputs a,e)

ol (O 1)
(0 0} _] Original Model (O™ ) Vi Iy (O
y(a, e, t) ) Tt uw N
) * 1+ %% s
070 * +
’ > /01( O !#)
> ANN Meta Model 1
> ANN Meta Model t
> ANN Meta Model ng
‘ ANN estimated
0, <«
Given new inputs a, e one can generate a “metamodel-based” transient: 2( ") B(C )sE)

(
nicola Pecroni [
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A. Model Calibration & Uncertainty Quantification BRI

|
3. Evaluation of the plausibility of the epistemic  parameter values ( refinement of the
epistemic space ) by a global, (average) Likelihood-based search

. . PR v s W 40 4)
Fit PDFs f,,(h,), f.,(h,) in the reduced SVD space on the data s " i
C,={c,1=1,2,...,n;=100,t=1, 2, ..., ng(y) = 10 '
C,={c,,4s},1=1,2,...,n,=100,t =1, 2, ..., ng(z,)+ng(z,)= 17

- .'f'

&
2]

Projection h,

Qo
.0 p

Projection h;
: . X

-0.5 0 0.5 1

o . N _ Projecti
For example: by (rough) multivariate Kernel Density Estimation (KDE) « Frojection h,

Notice: g ( )7 g 5(5( )) (f, defines a likelihood for any h(a, e) which we assign to a)

For a pointe 4 to be plausible: it should be possible to find at least
some a for which 5(5( ))is high “
Sample several epistemic vectors e,, k=1, 2, ..., N, 9(
Sample many aleatory vectors a;, i =1, 2, ..., N, ’
Evaluate the plausibility of each e, as its “average likelihood:

N

9( ) g (5:( | # !'#)) . (5;( | # !'#))

(
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|
3. Evaluation of the plausibility of the epistemic  parameter values ( refinement of the

epistemic space ) by a global, (average) Likelihood-based search

o¢ )

%

Basedon 9C-) s (5.('* ™)) & (5('* ™))

define the UM E as the smallest hyper- levels
rectangle enveloping the joint four-dimensional
% Confidence Interval (Cl) of e

e
Degree of confidence and robustness in model :
calibration (in the presence of scarce data) % ClI
‘ Degree of conservatism in system design
h — Epistemic box E
e.

»
| »
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A. Model Calibration & Uncertainty Quantification —  Epistemic DI TORING _
Space Plausibility (Refinement) — Results
||

Additional data from integrated system
- (n, =100), z(a, €, pews V)
- UM-yz

Data from sub-system (n, = 100)

y(a, e, t) 1
UM-y

0 = 2 0 = 20 = ‘2
Epistemic box of the joint 95% Confidence Interval

NOTE: results in picture obtained without the refinements suggested by the challengers

Nicola Pedroni _ I _



A. Model Calibration & Uncertainty Quantification — Approaches
Considered

Dimensionality reduction by Singular Value Decomposition (SVD)

2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNs ) to reduce the
computational burden

3. Evaluation of the plausibility of the epistemic  parameter values ( refinement of the

epistemic space ) by a global, (average) Likelihood-based search
(+ additional refinements based on model predictive capabilities )

=

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization
5. Construction of a joint multivariate PDF  for the aleatory input variables by fitting the
retrieved input data with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification

Nicola Pedroni I



A. Model Calibration & Uncertainty Quantification

4. Retrieval of the (unknown) input dataset by inverse optimization

a, 1 ® ... Optimal model inputs
«Optimal» input aleatory vectors o ®0 g
Select the value of e with maximum plausibility e°pt o : e °
Retrieve the input aleatory vectors a;, i =1, 2, ..., n;+n,, corresponding to ® .‘:. PS
the output data (coming from the real system) projected in the SVD space: o® ®
a,
/@ BCDE) (AIGH 1[5 (, @) 5,(, @)} :
\_Y_} { Y J
Projected data Projected model outputs
% 0;‘:
Optimal model inputs :“ B lausible Model inbuts 2
Build robustness in the retrieval of the aleatory vect ors o “asibie Modet lputs
Select different values e® within the refined E ’%'
For each e® repeat the optimization above to obtain different sets of @ °
aleatory vectors (corresponding to different plausible aleatory models ) . o
L# 1P# I'# . Plau5|ble Model inputs 3 ai

i=1,2,..,n+n,

Nicola Pedroni I



A. Model Calibration & Uncertainty Quantification

5. Construction of a joint multivariate PDF  for the aleatory input variables by fitting the

retrieved input data a 0 q®
N 0‘ ®
¥ e
‘..- Plausible Model inputs 2

Sliced Normal (SN) distributions .%tomumal model inputs

Parametric class of distributions 'o

. " . o ®e Qe
Flexibility and versatility that allow accurate modelling of multivariate data ® o | a,
Capability to capture very complex dependencies —lausible Modellnputs 3,
Relatively small modelling effort

(Colbert et al., 2019)

(Crespo et al., 2019)
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A. Model Calibration & Uncertainty Quantification

Construction of a joint multivariate PDF  for the aleatory input variables by fitting the
retrieved input data

Sliced Normal (SN) distributions
=N@ P*Q (KL M P)
(*R)OSP?\/W

(Colbert et al., 2020)

(KLMB (L M P) = hyperparameters

Where:
M = positive semi-definite matrix

QIKLMBP Uy()L "M (Uy()L )

U v( ) = monomials of degree d (or less) of a (in lexicographic order)

Example: U »( ) (K D [X X% XX X, X3W

DIM(W) = Dim( ) = ny, =< YiF>

Dim(P) = ny, * ny,

For d > 1 SN PDFs can model complex, multi-modal distribu  tions
Nicola Pedron -



5. Construction of a joint multivariate PDF

A. Model Calibration & Uncertainty Quantification

retrieved input data
Fitting Sliced Normal (SN) distributions

(Maximum Likelihood Estimation in the polynomial sp

Retrieved input dataset [ { ) *+ Z -}
)+ Z o}

ace)

Retrieved input dataset [, {_
(polynomial space)
0-a0p

9([ yKL M F (\]A (W KLMF)

0-a0p

(L° M°) BCD EXN{ \]A
LM

( v(HKL M Pf)} (Size: n,*(n,*+3)/2)
(

Nicola Pedroni

for the aleatory input variables

a,
A

Optimal model inputs

by fitting the

@ ©
‘.‘- Plausible Model inputs 2
p s"::;ﬁ
o g®

®o ®
@
.“O "
2o

Plausible Model inputs 3 >

(Crespo et al., 2019)



A. Model Calibration & Uncertainty Quantification

5. Construction of a joint multivariate PDF  for the aleatory input variables by fitting the
retrieved input data

Fitting Sliced Normal (SN) distributions ., °e®
(Maximum Likelihood Estimation in the polynomial sp ace) A ‘..‘O'
—NCQ P*Q (KL M F)) Optimal model imuts“-‘ ® . _
(KLMBP — Q(KLMP Uy()L WM (Uy()L ) ® Plausible Model inputs 2
(*R)OSP?\/W .’. @ '
o g® °
®e ‘m:
‘ ¢ “o. o ¢
Plausible Model inputs 3 aé

Family of nested, closed, semi-algebraic confidence sets:
des) { Uv(DL "M (Uy()L ge ¢}

is the desired confidence (coverage) level
e; to be determined (numerically) such that % of the data is enclosed in d(e; )
Members of this family can be used to tightly enclose the data
Polynomial structure  simple treatment for rigorous uncertainty quantification

(Crespo et al., 2019)
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A. Model Calibration & Uncertainty Quantification

5. Construction of a joint multivariate PDF  for the aleatory input variables by fitting the

retrieved input data a ®q®
% OP®. _
A “‘QRUmal model inputs
Ensure robustness in the joint multivariate PDF esti mation ‘... Plausible Model inputs 2
o o® ®
o
Option 1 (negligible discrepancies are observed in the models): ® ®
: : : : Qe oo
Use the aleatory model obtained in correspondence of the epistemic vector ® _ a
Plausible Model inputs 3 S

e with maximum plausibility e°Pt
,(KLc Mc F6@4)

(6 @

Option 2 (discrepancies are observed in the model):

Account for it by merging different aleatory models obtained for different values e within the refined E

%

h u(_KLc Mc F6'*) - ()

(weight by the corresponding plausibility or
consider equally plausible epistemic values in E)

Nicola Pedroni I




z1(t)

A. Model Calibration & Uncertainty Quantification —

Joint Multivariate
Aleatory Models — Input Retrieval — Results

Subsystem y(t)

BEST —dist = 0.0759 WORST - dist = 0.2330
Data
Prediction
=
Time [s] Time [s]
Integrated system z,(t), z,(t)
BEST —dist = 0.0962 WORST - dist = 0.3344
S
N
Time [s] Time [s] Time [s] Time [s]

Nicola Pedroni
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A. Model Calibration & Uncertainty Quantification — Joint Multivariate
Aleatory Models — Input Retrieval and Fitting by Sli  ced Normals — Results

Data from integrated system (n, = 100), z(a, €, ., t) + Data from subsystem (n, = 100), y(a, e,t) UM-yz

Sliced Normals of degree 3 Input retrieval allows identifying (and treating)
(MLE) 54 parameters possible model discrepancies

Y

Larger epistemic sets or multiple

————— 20% ClI (mixed) aleatory models
66% ClI L . . :
90% Cl Optimization-based input retrieval is
———— 95% C] computationally convenient  with scarce data
SN: Accurate modelling of multivariate data and
— 99% ClI :
of complex dependencies
SN: Data tightly enclosed by nested semi-
algebraic sets of polynomial nature (  rigorous
and simple treatment)
SN: Parametric nature avoid kernels that
perform poorly with scarce data
X 2 0 Xo 2 0 X 2

Nicola Pedroni I
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A. Model Calibration & Uncertainty Quantification — Joint Multivariate
Aleatory Models — Input Retrieval and Fitting by Sli  ced Normals — Results

Data from integrated system (n, = 100), z(a, €, .. t) + Data from subsystem (n, = 100), y(a, e,t) UM-yz

Sliced Normals of degree 4
(MLE) 119 parameters

20% ClI

66% ClI Increase the degree of the polynomial increase
— 90%Cl the capability to tightly enclose the data and
———— 95% ClI capture complex patterns
_— 99% Cl The analyst can «play» with the polynomial degree

to obtain more or less conservative/robust
designs , paying attention to model generalization
capabilities (overfitting )

X 2 0 Xo 2.0 %S 2

Nicola Pedroni I




A. Model Calibration & Uncertainty Quantification — Approaches
Considered

Dimensionality reduction by Singular Value Decomposition (SVD)

2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNs ) to reduce the
computational burden

3. Evaluation of the plausibility of the epistemic  parameter values ( refinement of the

epistemic space ) by a global, (average) Likelihood-based search
(+ additional refinements based on model predictive capabilities )

=

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization
5. Construction of a joint multivariate PDF  for the aleatory input variables by fitting the
retrieved input data (in the physical space) with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification

Nicola Pedroni I



A. Model Calibration & Uncertainty Quantification

Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions  in the
SVD space (maximum- and worst-case)

Fit PDFs f,, (h,), f,,(h,) in the reduced SVD space on the data 2

C,={cp}i=1,2,....,n,=100,t=1, 2, ..., ng(y) = 10

C,={c,s},1=1,2,...,n,=100,t =1, 2, ..., ng(z,)+ng(z,)= 17

. L ) Projection hy;
Use Sliced Normal (SN) distributions
Precise modeling of complex, nonlinear, multi- f
modal distributions and dependencies %
ng 70% CI

N g

Desirable to obtain an accurate and robust
aleatory model by Bayesian inversion

95% ClI

99% ClI

Projection hy;

Nicola Pedroni I



A. Model Calibration & Uncertainty Quantification

5. Aleatory model calibration by Bayesian inverse uncertainty quantification

Use non-informative priors for a (A = [0, 2]"8), p,(a)
For a given epistemic vector e®, evaluate the posterior PDF of a:

Notice: ¢ i( )7 ) 5(5( '))

(f,, defines a likelihood for any h(a, e) which we assign to a)

4

s () 7B D) o0

(non-parametric estimation : sample the posterior by MCMC)

Repeat for different epistemic vectors ek, to increase robustness in
the PDF estimation (if computational burden accaptable)

Nicola Pedroni

Projection h,,

Projection hy;

Projection h,

70% ClI

95% ClI

99% ClI

Projection hy;
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A. Model Calibration & Uncertainty Quantification — Joint
Multivariate Aleatory Models — Bayesian Inversion — R esults

Data from integrated system (n, = 100), z(a, €, .. t) + Data from subsystem (n, = 100), y(a, e,t) UM-yz

500000 samples by MCMC
Affine-invariant ensemble sampler (AIES)

Comparison with Sliced Normals:
Similar marginals (even if Bayesian inversion
seems to underestimate spread )
Completely different dependence structure!
Higher computational cost  for Bayesian
inversion (input retrieval + SN is more convenient
with scarce data)
MCMC can “skip” areas of the search space with
small likelihood or “isolated” modes

Reflection about the relation () g s(5C D) 0()
and the optimization-based input retrieval adopted
before (if any)...

X 2 0 Xo 2.0 X 2
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A. Model Calibration & Uncertainty Quantification — Joint
Multivariate Aleatory Models — Results

Energy score:
Multivariate generalization of the Continuous Rank Predictive Score (CRPS)

0 Op 04y Op %y Y% %
d( ) ) d (k) — * > 15m 5 all
a ? a ? ( 1Ym( 1 Y

Model comparison

( Projected model outputs Projected rafat;(
Models ES
Input retrieval-SN 3 15.3
Input retrieval-SN 4 18.2
Bayesian inversion 23.8

Nicola Pedroni I




NASA Langley Uncertainty Quantification Challenge o n
Optimization Under Uncertainty — Tasks Considered in This Talk

/ \

A. Model Calibration & Uncertainty Quantification B. Reliability-Based Design Optimization
(using time series from the subsystem and the integrated system)

Uncertainty Model (UM) =( ) ( ) Optimal design

Nicola Pedroni I



B. Reliability Analysis of Baseline Design

Refined Uncertainty

Model (UM)
/gl(a, €, paseline) (Stability)
Requirements model
. —0,(a, €, paseline) (Settling time) Pfa” 7
a! e1 i

g( basellne) \93(a, €, paseline) (ENErgy consumption)
€, eo—e W(a’ €, baseline) (e_BOq G N ( )
€, *—e
€; o—=e
e, O—eo

Failure probability (epistemic) bounds
o9
@ @

Maximum severity of requirements violation

Nicola Pedroni I




B. Reliability Analysis of Baseline Design

Conceptual steps and methods employed:

A. Double-loop simulation to calculate failure probability bounds:
1. Genetic Algorithms (GAs) to thoroughly explore the epistemic parameter ranges
and find extreme (upper and lower) bounds  of the failure probabilities

Evaluate bounds of the epistemic box E!

2. Monte Carlo Simulation (MCS) to propagate aleatory uncertainty

B. Artificial Neural Network (ANN) metamodels  to reduce the
computational burden
Possibility to perform several «batch» model evaluations at reasonable cost

Nicola Pedroni I




B. Reliability-Based Design Optimization

Refined Uncertainty

Model (UM)
R . /gl(a’ €, new)
equirements model e )
(a e ) > 028 € new)  Proy ( pew) < Prai
8 new \gs(a’ €, new)
e, eo—e W(a’ €, new) (EBqu(> n ( )
. :
e o New design .,

Optimality criterion
Robust Design: minimize the (epistemic) upper bound of the the failure probability for the worst-
case performance function w(a, e, )

Sos  BCptu {pE;CI wix( s)y Z]}
Nicola Pedroni -




B. Reliability-Based Design Optimization

Conceptual steps and methods employed:

1. Genetic Algorithms (GAs)

2. Double-loop simulation (GA + MCS) & ANNSs
worst-case requirement failure probability

lterative Optimization Algorithm

Set
S % S ~v.j€0j

to explore the design space
to evaluate the upper bound of the

Define search : Use GAs to find an
space " Train ANN updated optimal design
s5] s e s O s x (s SEY Beop{pBarix( s yz
(k = 0.2-0.5) s 5]
SetAVY \ Y JAVY jv CIAVY v -
ng}é S l)jS j :_0jS n_ ™ 9jS "

Nicola Pedroni
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B. Reliability-Based Design Optimization — Results

» final

Failure probabilities

0.2950
Severity of requirements violation
0.1954
0.1771
f— Daseline
0.1393 -
0.0527 0.0540
0 92 93
0.0039 0.0168
91 9, 93

Strong reduction in Ry( ) (2-3 orders of magnitude)
Reduction in R,( ), R3( ), R( ) by factors 3.4-8.3
Violation severity reduced by factors 450 (g,), 21 (9,), 52 (93)
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Conclusions

The NASA Langley Uncertainty Quantification (UQ) Challenge on Optimization Under
Uncertainty — Technical solutions

A. Model Calibration & Uncertainty Quantification:
Functional data (Time series) Calibration in high-dimensional spaces dimensionality
reduction by SVD

Repeated model evaluations  high computational cost SVD-based ANN metamodels

Uncertainties of different nature and representation  joint calibration
Epistemic (sets) plausibility  global (average) Likelihood-based exploration
Aleatory uncertainty (joint multivariate PDFs):

o Nonlinear, complex, multimodal dependencies + few data  Sliced Normal distributions
Optimization-based inverse input data identification (and fitting)
(Non-parametric) Bayesian inversion
Possible overfitting  bootstrap-based parameter estimation
Robustness in the face of uncertainties

e Mixing multiple plausible aleatory models
* Regulate “tightness” of confidence regions (data enclosing sets)
* (Maximum- VS Worst Case-Likelihood Estimation)
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Conclusions

The NASA Langley Uncertainty Quantification (UQ) Challenge on Optimization Under
Uncertainty — Technical solutions

B. Reliability-Based Design Optimization:

Robust Design: minimize the (epistemic) upper bound of the failure probability for the worst-
case performance function

Double-loop simulation to calculate failure probability bounds
Genetic Algorithms (GAs) to thoroughly (globally) explore the epistemic parameter

ranges and find extreme (upper and lower) bounds of the failure probabilities (in abrupt,
multimodal, disconnected search spaces)

Monte Carlo Simulation to propagate aleatory uncertainty

Repeated model evaluations high computational cost (iteratively trained) ANN
metamodels
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Current Issues and Possible Future Developments

Current issues:
Model inaccuracies (“discrepancies”) or just poor calibration strategy and/or poor description of
multivariate dependence structures?
Sampling-based strategies  high flexibility but low “computational efficiency”
Check ANN metamodel accuracy in mapping high-dimensional spaces and estimating small
failure probabilities
Robust designs satisfactory even in the presence of poorly calibrated models, but possibly overly
conservative

Possible future developments:

Rigorous quantification of model overfitting (in particular, for SN distributions)

Assess the proposed calibration approaches by comparison with other sound methods (e.g.,
purely non-parametric/moment matching): bias? under/over-estimation of uncertainty?

Rigorous assessment of model discrepancies (if any)

More efficient (sampling?) methods for estimating small failure probabilities (e.g., bounds of R,)
Other rigorous approaches for robust design: non-parametric distributionally-robust methods and
or Scenario Theory to optimally control, select and possibly discard outliers
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THANK YOU!

QUESTIONS?
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