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NASA Langley Uncertainty Quantification Challenge on
Optimization Under Uncertainty — Motivation

= New complex dynamic engineering systems (e.g., civil, nuclear, aerospace, chemical, ...) must
operate under a wide range of uncertain conditions

= These are high-consequence safety-critical systems for which data is either very sparse or
very expensive to collect

= Modeling and simulation standards (in particular, for government agencies) require the
quantification of uncertainties and the evaluation of risk

Dynamic Systems

https://uqgtools.larc.nasa.gov/nasa-uqg-challenge-problem-2020/
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‘ Uncertainty Classification in This Work

= Aleatory uncertainty
> Caused by intrinsic variability (state of the system)
> lrreducible
> Modeled as a random vector
a ~ f, (joint multi-dimensional PDF, n, =5, A = [0, 2]")

= Epistemic uncertainty
> (Caused by ignorance (state of the modeler) A
> Reducible with additional experiments/simulations shriking
> (Can take on any fixed value within a set
> A refinement entails reducing the size of this set

(Crespo et al., 2019)

e ~ E (hyper-rectangular set, n, = 4, B = [0, 2]")

» \ Dynamic Systems ‘——

L (oo} —
‘Control [«
ranch

B

v

Uncertainty Model (UM) & =(a, e)~(f 4, E)
Nicola Pedroni [N B I
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(Sub)-System Configuration

.
Dynamic Systems

Disturbance d I |

J M.

|
Subsystem (model) | |
y(a, e, 1

v

https://ugtools.larc.nasa.gov/nasa-ug-challenge-problem-2020/ (Crespo et al., 2022)
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Integrated System Configuration
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Disturbance d

LA —

C(6)

(6 = design parameters, ny = 9)

Subsystem (model) | . |
y(a, e 1)

v

https://uqgtools.larc.nasa.gov/nasa-uqg-challenge-problem-2020/

(Crespo et al., 2022)
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Integrated System — Analysis Framework

Dynamic Systems

(random process)

Disturbance d

r Y1 2 a4 s Subsystem (model) |~ 5 o
—»©—> C(6) y ( ) R
A y(35 e’ t)
(6 = design parameters, ny = 9)

https://ugtools.larc.nasa.gov/nasa-ug-challenge-problem-2020/ (Crespo et al., 2022)
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s [ 3 = max |z(a,e,0,1)] - 4 ) = z1(a, e, 0,0 - 0.0
S & :cl(u‘ll‘ 52 ,E}‘}?g’frﬂ 1(a, e, 6,0 = 0.02
| Branch |

Disturbance d

r Tz s i s Subsystem (model) | v+ &> 5 i
—»©—> C(6) y ( ) R
A y(35 e’ t)
(6 = design parameters, ny = 9)

Closed-loop stability

= There are reliability requirements g(a, e, 6) < 0 that define conflicting objectives: stability (z
and z, not to infinity) (g;), settling time (g.), control effort/energy consumption (gs)

= Epistemic uncertainty makes probabilistic metrics vary in a range

https://ugtools.larc.nasa.gov/nasa-uqg-challenge-problem-2020/ (Crespo et al., 2022)
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NASA Langley Uncertainty Quantification Challenge on
Optimization Under Uncertainty — Tasks Considered in This Talk

|
2 (O» Dynamic Systems
1SA “

Control 2,

_Branch | 3

= max |za(a, e, 0,0 — 4 = z —0.
& {dimfcz( )| 2 :eg"l?l).(?"] lz1(a, e, 8,0 - 0.02

01
z4(f)

Disturbance d

|

r N Subsystem (model) | <, . . . .
— c(e
@ ya, e, b

Closed-loop stability

/ \

A. Model Calibration & Uncertainty Quantification B. Reliability-Based Design Optimization
(using time series from the subsystem and the integrated system)

‘ (6 = design parameters, ng = 9)

Uncertainty Mod@\) 0 =(a,e)~(fq E) Optimal design 6,
- =

https://uqgtools.larc.nasa.gov/nasa-uqg-challenge-problem-2020/
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NASA Langley Uncertainty Quantification Challenge on
Optimization Under Uncertainty — Tasks Considered in This Talk

= max |za(a, e, 0,0 — 4 = z —0.
& rdimfcz( )| 2 :eg}%}l&ﬂ lz1(a, e, 8,0 - 0.02

ZAl) 0.1
’ 2| z4(f)
/A & _ Disturbance d o

0 ) v "

2 u.‘I 0.05

f

r o 1z 3 4 Subsystem (model) | ©,
—'( )—1{ C(0
- y@a et

‘ (6 = design parameters, ng = 9)

Closed-loop stability

/ \

A. Model Calibration & Uncertainty Quantification B. Reliability-Based Design Optimization
(using time series from the subsystem and the integrated system)

Uncertainty Mod@\) 0 =(a,e)~(fq E) Optimal design 6,
- =

Nicola Pedroni NN
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‘ A. Model Calibration & Uncertainty Quantification
|

1. First stage (sub-step): functional (time-series) data from the real subsystem

Real sub-system observations D,

Y D =R =1, 2, ..., =100
| k=0,1, ..., N, =5001

Real Subsystem —

0
Time, [s]

Subsystem model y(a, e, t) [ ¥(t) = [X0), ..., ¥(N7)]
(discrete time history)

—

(Fist stage) Uncertainty Model (UM-y) 8(y) = (a,e)~{f,, E)
Nicola Pedroni NS B -
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‘ A. Model Calibration & Uncertainty Quantification
|

2. Second stage (sub-step) - Refinement: functional (time-series) data from the real integrated system
(after a «round» of design optimization,
from ebase,,-,,e to e,,ew) Real integrated system observations D,

D, ={z0(k), z)(K)}, i=1,2, ..., np= 100
k=01, ..., Ny =5001

Measured z,({)

Physical Integrated

System, 6,_,, | t

$

B—

Measured z,(f)

Refined UM 6(yz)

a ""fa System mode]| — Z4(t) = [24(0), --., Z4(N7)]
e~E

Z(a, e, 0,.,, ) F— z)()=[20), ..., Zs(Ny)]
] Update UM

—..
(Refined) Uncertainty Model (UM-yz) 6(yz) = (a,e)~{f ., E)
Nicola Pedroni RIS ..
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Considered

‘ A. Model Calibration & Uncertainty Quantification — Approaches

1. Dimensionality reduction by Singular Value Decomposition (SVD)
2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNSs) to reduce the

computational burden
3. Evaluation of the plausibility of the epistemic parameter values (= refinement of the

epistemic space) by a global, (average) Likelihood-based search
(+ additional refinements based on model predictive capabilities)

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization
5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the

retrieved input data with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification

Nicola Pedroni NN
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1. Dimensionality reduction by Singular Value Decomposition (SVD)

Real sub-system observations Real sub-system observations
01— ime-domain 3 (projected space)
f o Lo PR g Hore
C " K ™
. Vo5 * M%‘
= - * t
t o Singular Value »% oL
= decomposition (SVD) 3
-0.05 gk "
L - Centering: D;" = D, — Mean,, .l
01 : - : : ; _SVD: D1* _U.s.v . e - PrOjec;tlon C; _ 1
Time, [s] . . . * = 0. i
. - Projection: €, =D;" -V|1:n
D1={y(l)(k)}=l=1=2! '=n1_100 J ! ' [ NTB] , C1={C1:it}si=1=25---=n1=100
k= 0, 1, ,NT=5001 Cit(a(i))zz y(l)(k)vt(k) t=1,2, ___,nB(y)=10
k=1

Projection of the dataset D, onto an orthonormal basis 3= {v, t=1, 2, ..., ng(y)}, such that ng(y) << Ny
and at least € (here 99%) of the total variance is retained (= here ng(y) = 10)

—~———

Calibration and uncertainty quantification in the (static multivariate) projected space (i.e., in the space
defined by the orthonormal basis /3) rather than in the (dynamic multivariate) time domain

Nicola Pedroni NN
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|
2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNSs) to reduce the

computational burden

Train ng metamodels to reproduce the coefficients of the SVD decomposition
(only dependent on inputs a,e)

> hy (a®,e®)

. . HP (l) (a(l) e(l) k ) } [N ] A
a® ¢®) __,| Original Model 8% ,e®, .
{ } y(a, e, 1) i=1,2 . Naun | SVD hy (ai ,e®)

k=1,2,.., Ny

i = 1,2,...,NANN

> hnB (a(i)’ e(i))

A

A 4

ANN Meta Model 1

ANN Meta Model t

A 4

A 4

ANN Meta Model ng

‘ ANN estimated
—

npg .
Given new inputs a, e one can generate a “metamodel-based” transient: ¥(a e k) = Zt_lht (a,e) - ve(k)

Nicola Pedroni NN
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3. Evaluation of the plausibility of the epistemic parameter values (= refinement of the
epistemic space) by a global, (average) Likelihood-based search

: fhy(hy)

= Fit PDFs f,,(h,), f,,(h,) in the reduced SVD space on the data R i
C1 = {C1Jit}= i = 1,2, ..., ny = 100, t=1, 2, ..., nB(y) =10 :
CZ= {Cg,,'t}, i= 1, 2, ey N = 100, = 1, 2, ceey nB(Z1)+nB(22)= 17

Projection hy,
- 'rfu

&
&

Projection h,

-0.5 0 0.5 1

For example: by (rough) multivariate Kernel Density Estimation (KDE) - Projection h,,

S

, 1
Notice:  fge(a) ~ th(h(a, e)) (f, defines a likelihood for any h(a, €) which we assign to a)

= For apoint e € E to be plausible: it should be possible to find at least
some a for which f;,(h(a, e)) is high “
v Sample several epistemic vectors e, k=1, 2, ..., N, L(ey)
v Sample many aleatory vectors a, i=1, 2, ..., N, ’
v Evaluate the plausibility of each e, as its “average likelihood”:

£~ D fuy (@, ) i ((a®,¢0))

Nicola Pedroni _ I
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3. Evaluation of the plausibility of the epistemic parameter values (= refinement of the

epistemic space) by a global, (average) Likelihood-based search

L€31)

= Basedon L(ey)~ Zivzal fny (hy(a(i), e(k))) * fha (hz(a(i), e(k)))

v define the UM E as the smallest hyper- o a iéVéIS
rectangle enveloping the joint four-dimensional
a% Confidence Interval (Cl) of e

e;
Degree of confidence and robustness in model g
calibration (in the presence of scarce data) a% Cl
‘ Degree of conservatism in system design
h — Epistemic box E
&

»
| »

Nicola Pedroni NN
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Space Plausibility (Refinement) — Results

Data from sub-system (n, = 100) Additional data from integrated system

¥(a, e i) < (n,=100), z(a, e, 6,,,, 1)
- UM-yz

o N .O,,.. L 63 —
Epistemic box of the joint 95% Confidence Interval

NOTE: results in picture obtained without the refinements suggested by the challengers

Nicola Pedroni NN
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Considered

‘ A. Model Calibration & Uncertainty Quantification — Approaches

1. Dimensionality reduction by Singular Value Decomposition (SVD)

2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNSs) to reduce the
computational burden

3. Evaluation of the plausibility of the epistemic parameter values (= refinement of the

epistemic space) by a global, (average) Likelihood-based search
(+ additional refinements based on model predictive capabilities)

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization
5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the

retrieved input data with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification

Nicola Pedroni NN
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A. Model Calibration & Uncertainty Quantification

|
4. Retrieval of the (unknown) input dataset by inverse optimization

a, ! ® ® g Optimal model inputs
«Optimal» input aleatory vectors ..‘: ®
= Select the value of e with maximum plausibility et ® ® o.
= Retrieve the input aleatory vectors a, i=1, 2, ..., ny+n,, corresponding to ® .‘. ®_0
the output data (coming from the real system) projected in the SVD space: o® ®
a
a,°Pt = arg min{dist([Cl, C,], [hy (a, e’’),h,(a, e"pt)])} >
% e v J
Projected data Projected model outputs
0 a®
% 00'-
1 O

Optimal model |1puts
- Plau5|ble Model inputs 2

Build robustness in the retrieval of the aleatory vectors
= Select d|fferent values e® within the refined E
= For each el® repeat the optimization above to obtain different sets of
aleatory vectors (corresponding to different plausible aleatory models)
a(l) a@ “u a(k)
l i i

Qo
. oo
a;

Plau3|ble Model inputs 3 >

i= 1, 2, ey n1+n2

Nicola Pedroni NN
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5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the
retrieved input data a 0 q®
N O‘ ®
$ oo
‘...- Plausible Model inputs 2
Sliced Normal (SN) distributions .O.. g ® Optimal moce nputs
= Parametric class of distributions ®e Y
= Flexibility and versatility that allow accurate modelling of multivariate data ¢ ‘Plo e Hod s
ausible Model inputs >

= (Capability to capture very complex dependencies
= Relatively small modelling effort
(Colbert et al., 2019)

1.2}

0.8
0.6
04|
0.2}

-0.2

oo apl
W N =4 0O <4 N L & 0o o =~ o

-0.4 |

-06 (Crespo et al., 2019)

Nicola Pedroni _ I



«352nr. | POLITECNICO
7742 | DITORINO

‘ A. Model Calibration & Uncertainty Quantification
|

5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the
retrieved input data

Sliced Normal (SN) distributions
exp(—1/2¢(a; u, P,d))
(Zﬂ)nw/z\/ﬁ

(Colbert et al., 2020)

fla;u,P,d)~ (u, P, d) = hyperparameters

Where:
P = positive semi-definite matrix

¢pla;p, P,d) = Wy(a) —p)" - P-(Wy(a) — p)
W ;(a) = monomials of degree d (or less) of a (in lexicographic order)

a
Example: W, (a) = ([;D = [a4, az,a%;% ) azya%]T
2

Dim(W) = Dim(y) = nW=<”a * d) _1

Ng

Dim(P) = ny,* ny

For d > 1 SN PDFs can model complex, multi-modal distributions
Nicola Pecroni [ INN"N .
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A. Model Calibration & Uncertainty Quantification

|
5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the

retrieved input data

Fitting Sliced Normal (SN) distributions 2 S°°
(Maximum Likelihood Estimation in the polynomial space) _ 4 ‘.:O:
Retrieved input dataset 4, = {a;,i = 1,2, ...,n; + n,} opimemene npms‘.‘- Plausible Modelinputs 2
. . : ® ’%
Retrieved input dataset Ay = {w;,i =1,2,..,n1 + ny} .". ]
(polynomial space) .2 ®
ny+n, [ ) ““ ’ ®
L(Aw; u P, d) = Z ) lOg(fw(Wi; u P, d)) Plausible Model inputs 3 a;
l:
* * n1+n2
(u ,P )= argmax {Z log(fw(wi; u P, d))} (Size: n,*(n,+3)/2) i
u, i=1
‘ (Bootstrap to limit overfitting) 05|
* 1 n{+n,
® _n1 +nzzi=1 Wi %
* 1 ni+n; * * ! N——
P =<n I z w,—pu ) -(w,— )T) 'O'SZ(Crespoet (
1 2 /==l 1 0.5 0 0.5 1
Nicola Pedroni [N B I
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5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the
retrieved input data

Fitting Sliced Normal (SN) distributions °e®
: . A : 4z L >
(Maximum Likelihood Estimation in the polynomial space) f & ®
_ Optimal model inputs Qo _
fla; P, d)~ exp(_l/z‘ib(a’ B P, d)) dla;u, P, d) = Wy(a) — )T -P-(Wy(a) — p) ‘..- Plausible Model inputs 2
s (2m)mw/2PL ° s"{’ﬂ
¢ o.. @
$ Sy L
o a
Plausible Model inputs 3 ,

Family of nested, closed, semi-algebraic confidence sets:
S(Ba) ={a:(Wg(a) — )" - P- (Wy(a) — p) < Bo} '

a is the desired confidence (coverage) level

B, to be determined (numerically) such that a% of the data is enclosed in S(8,)

Members of this family can be used to tightly enclose the data ol
Polynomial structure - simple treatment for rigorous uncertainty quantification

0.5}
(Crespo et a
-1 0.5 0 05 1

Nicola Pedroni _ I
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5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the

retrieved input data a ®o®
N P :
“‘Q&tlmal model inputs
Ensure robustness in the joint multivariate PDF estimation ‘... Plausible Model inputs 2
o _oN®
o®
Option 1 (negligible discrepancies are observed in the models): : ".
» Use the aleatory model obtained in correspondence of the epistemic vector ® o . a
Plausible Model inputs 3 J

e with maximum plausibility et
fw(w; u P x d|ePt) —— f.(alePt)

Option 2 (discrepancies are observed in the model):
= Account for it by merging different aleatory models obtained for different values e®¥ within the refined E

N
). fw(Wiﬂ*»P x,d|e®) - fol@)
A

(weight by the corresponding plausibility or
consider equally plausible epistemic values in E)

Nicola Pedroni NN



A. Model Calibration & Uncertainty Quantification — Joint Multivariate
Aleatory Models — Input Retrieval — Results

Subsystgm‘ U

008
008t
004

BEST —dist = 0.0759

Time [s]

POLITECNICO
DI TORINO

WORST L diét = 10.23ISOf

Time [s]

Data

Prediction

Integrated system z,(f), z,({)

BEST - dist = 0.0962

WORST - dist = 0.3344

Time [s]

| Time [s]

-z2(t) -

HM
Els
2

_Time [s]

Time [s]

Nicola Pedroni _ I
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Aleatory Models — Input Retrieval and Fitting by Sliced Normals — Results

Data from integrated system (n, = 100), z(a, e, 0,.,, ) + Data from subsystem (n, = 100), y(a, e, t) > UM-yz

Sliced Normals of degree 3 = Input retrieval allows identifying (and treating)
(MLE) > 54 parameters possible model discrepancies

Larger epistemic sets or multiple
20% Cl (mixed) aleatory models

66% ClI S _ _ _
90% Cl = Optimization-based input retrieval is

—— 959 Cl computationally convenient with scarce data
=  SN: Accurate modelling of multivariate data and

of complex dependencies

= SN: Data tightly enclosed by nested semi-
algebraic sets of polynomial nature (= rigorous
and simple treatment)

= SN: Parametric nature - avoid kernels that
perform poorly with scarce data

99% ClI

# & ¥ ¥ r & =

|
!
|
|
\
|
]
\
|
— 0.. 212‘ R A T 2

Nicola Pedroni NN
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Aleatory Models — Input Retrieval and Fitting by Sliced Normals — Results
|

Data from integrated system (n, = 100), z(a, e, 0,.,, ) + Data from subsystem (n, = 100), y(a, e, t) > UM-yz

Sliced Normals of degree 4
(MLE) - 119 parameters

————— 20%Cl
66% Cl = Increase the degree of the polynomial = increase
— 90%ClI the capability to tightly enclose the data and
——— 95%Cl capture complex patterns
—_— 99%Cl * The analyst can «play» with the polynomial degree
to obtain more or less conservative/robust
designs, paying attention to model generalization
capabilities (overfitting)
as | 2

Nicola Pedroni NN
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Considered

‘ A. Model Calibration & Uncertainty Quantification — Approaches

1. Dimensionality reduction by Singular Value Decomposition (SVD)
2. Construction of SVD-based metamodels (Artificial Neural Networks-ANNSs) to reduce the

computational burden
3. Evaluation of the plausibility of the epistemic parameter values (= refinement of the

epistemic space) by a global, (average) Likelihood-based search
(+ additional refinements based on model predictive capabilities)

Approach 1 (aleatory uncertainty):
4. Retrieval of the (unknown) input dataset by inverse optimization
5. Construction of a joint multivariate PDF for the aleatory input variables by fitting the
retrieved input data (in the physical space) with Sliced Normal (SN) distributions

Approach 2 (aleatory uncertainty):
4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions

in the SVD space
5. Aleatory model calibration by Bayesian inverse uncertainty quantification

Nicola Pedroni NN
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A. Model Calibration & Uncertainty Quantification

4. Construction of a joint multivariate Likelihood by Sliced Normal (SN) distributions in the
SVD space (maximum- and worst-case)

S ; 1 P .,
S r *,
:48‘ 0.5 e Mﬂ
= Fit PDFs £, (h), f,,(h,) in the reduced SVD space on the data £ 8 s
C,={c.},i=1,2,...,n=100,t=1,2, ..., ng(y) =10 of *
Cz= {CZ’it}’ I= 1, 2, ey n2 = 100, t= 1, 2, ey nB(Z1)+nB(Z2)= 17
05 °F
b Projection h,,
Use Sliced Normal (SN) distributions :

0.5 1

g

Precise modeling of complex, nonlinear, multi-
modal distributions and dependencies

N g

Desirable to obtain an accurate and robust
aleatory model by Bayesian inversion

Projection hy,

————— 70% Cl

—— 95% ClI

— 99% Cl

Y

Projection h

Nicola Pedroni _ I




= Use non-informative priors for a (A = [0, 2]"4), p,(a)

POLITECNICO
A. Model Calibration & Uncertainty Quantification Ll
5. Aleatory model calibration by Bayesian inverse uncertainty quantification
a1 —
‘2 g T P “
2 ",
o} 0.5
&

For a given epistemic vector e, evaluate the posterior PDF of a:

1
Notice:  fqjek(@) ~ th(h(a» ek))

(f, defines a likelihood for any h(a, e) which we assign to a)

4

1
fajex(@) = th(h(a, ek)) - pa(a)

(non-parametric estimation: sample the posterior by MCMC)

Repeat for different epistemic vectors e, to increase robustness in
the PDF estimation (if computational burden accaptable)

Nicola Pedroni _ I
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Projection hy,

o
T

08

Projection hy,

0.5

1

70% Cl

95% Cl

99% ClI

P‘rojeption‘ hi
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Multivariate Aleatory Models — Bayesian Inversion — Results

Data from integrated system (n, = 100), z(a, e, 0,.,, f) + Data from subsystem (n, = 100), y(a, e, t) > UM-yz

500000 samples by MCMC
Affine-invariant ensemble sampler (AIES)

Comparison with Sliced Normals:

= Similar marginals (even if Bayesian inversion
seems to underestimate spread)

= Completely different dependence structure!

= Higher computational cost for Bayesian
inversion (input retrieval + SN is more convenient
with scarce data)

= MCMC can “skip” areas of the search space with
small likelihood or “isolated” modes

1
= Reflection about the relation faie(@ = % fu(h(a, €9) - pa(a)
' and the optimization-based input retrieval adopted
" | ] before (if any)...

Nicola Pedroni NN



Model comparison >

0.1

005§

-0.05¢

-0.1

A. Model Calibration & Uncertainty Quantification — Joint
Multivariate Aleatory Models — Results

ni4+N2

1
ES(far B,€) =

0.1

z,(t)
o

Energy score:
Multivariate generalization of the Continuous Rank Predictive Score (CRPS)

> ESUfwB)e) =

POLITECNICO
DI TORINO

1 ni4Ny 1 1 Ng Ng
s > > g 1
S (e S
ni4n; =1 Naq=1 2Na g=1j=1

Projected model outputs Projected data

Models ES
Input retrieval-SN 3 15.3
Input retrieval-SN 4 18.2
Bayesian inversion 23.8

005§ |

-0.05}

1 2Time, [s] 3 4 5

Nicola Pedroni _ I



NASA Langley Uncertainty Quantification Challenge on
Optimization Under Uncertainty — Tasks Considered in This Talk

20 O+ Dynamic Systems

gy = max |z2(a, e, 0,1)] —4
re]0,7]

Control zit)
2}
o 7 A ) YA
2 ]
\:
1 2 3

82

Disturbance d

|
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= max |zj(a,e,0,1)]—-0.02
te(T/2,T)

01
z4(f)

f
@ co

‘ (6 = design parameters, ng = 9)

Subsystem (model) | o,

v(a, e, )

Closed-loop stability

/

A. Model Calibration & Uncertainty Quantification
(using time series from the subsystem and the integrated system)

Uncertainty Model )0 =(a,e)~(f, E)

\

B. Reliability-Based Design Optimization

Optimal design 6,
u
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B. Reliability Analysis of Baseline Design PITORING
=

Refined Uncertainty

Model (UM) 6

\/ /91(6, €, B,a5ciine) (stability)

//\ | e fa ReqUIrementS mOdel —sz(a, e, ebaseline) (settling time) P : ?
- , > _baseline \93(3, e, 0,.../ine) (energy consumption)

e, o—o wa, e, Bpaseiine) = i 11'?%1)(:391'(“» e, Basoiine)

e, —e e ~E 7

€; 0—e

Failure probability (epistemic) bounds

o——e [i(0)
Ri(0) = ll}é%lp[gi((t.f'. ) > 0], 111162}5;@[_(}{_((1,6?9) > O]] i=1,...n i( )

R(#) = lmh_;ﬂb (w(a,e,f) > 0], maxP[w(a,e,f) > ()}} o e [7(0)
ecE ecE

Maximum severity of requirements violation
si(0) = ax {EI gi(a,e,0) | gi(a,e,8) > 0] Pgi(a,e,0) > 0]} i=1,...1
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‘ B. Reliability Analysis of Baseline Design
|

Conceptual steps and methods employed:

A. Double-loop simulation to calculate failure probability bounds:
1. Genetic Algorithms (GAs) to thoroughly explore the epistemic parameter ranges
and find extreme (upper and lower) bounds of the failure probabilities

- Evaluate bounds of the epistemic box E!

2. Monte Carlo Simulation (MCS) to propagate aleatory uncertainty

B. Artificial Neural Network (ANN) metamodels to reduce the
computational burden
- Possibility to perform several «batch» model evaluations at reasonable cost
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‘ B. Reliability-Based Design Optimization

<25 | POLITECNICO
4 2 | DI TORINO

Refined Uncertainty
Model (

\/afa

g:(a e 6,,)

Requirements model/v 1(3 66 )
ga, e 6 % e Praii (Open) < Phai

neW \93(3 e, enew)

€
e, eo—e e~F

€3 o—o
€4

Optimality criterion

(a e, enew) =, 1IIlaX gi(ar e, enew)
i=1,..,ng=3
New de 6.,

Robust Design: minimize the (epistemic) upper bound of the the failure probability for the worst-
case performance function w(a, e, 6)

0,., = arg mm {maXP[W(a e 0) = 0]

€EE

}
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‘ B. Reliability-Based Design Optimization

Conceptual steps and methods employed:
1. Genetic Algorithms (GAs) to explore the design space
2. Double-loop simulation (GA + MCS) & ANNs to evaluate the upper bound of the
worst-case requirement failure probability

lterative Optimization Algorithm

Set Define search : Use GAs to find an
_ > — ) .
Onew = Ovasetine [T space Train ANN updated optimal design
[Q} 5] = QYT + k- |@SYTT (a,e,0) > w(a,e0) 6P — argmin {mEaEx Plw(a, e, 0) > 0]}
(k = 0.2-0.5) 6]~

Set

curr _— updated
enew - Bnew

eupdated _

new new (Patelli et al., 2015)
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0.25
Ri(9)
0.2
0.15¢
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B. Reliability-Based Design Optimization — Results

a ~fa e~k » eﬁna/
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Failure probabilities

l 0.2950
0.1954
| 0.1771 0
l — ebasel/ne
0.1I393 —_,
I 0.0527 I 0.0540

,0.0039 110.0168

91 92 J3 w

= Strong reduction in R,(6) (2-3 orders of magnitude)
= Reduction in R,(8), R5(0), R(8) by factors 3.4-8.3

Severity of requirements violation

10°

1072+

Si(9)

10+

107°

J1 (o] Js

= Violation severity reduced by factors 450 (g,), 21 (g,), 52 (gs)
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» The NASA Langley Uncertainty Quantification (UQ) Challenge on Optimization Under
Uncertainty — Technical solutions:

v" A. Model Calibration & Uncertainty Quantification:

= Functional data (Time series) =» Calibration in high-dimensional spaces =» dimensionality
reduction by SVD

= Repeated model evaluations =» high computational cost = SVD-based ANN metamodels

= Uncertainties of different nature and representation = joint calibration
> Epistemic (sets) plausibility =» global (average) Likelihood-based exploration
» Aleatory uncertainty (joint multivariate PDFs):

o Nonlinear, complex, multimodal dependencies + few data =» Sliced Normal distributions
Optimization-based inverse input data identification (and fitting)
(Non-parametric) Bayesian inversion
Possible overfitting = bootstrap-based parameter estimation
Robustness in the face of uncertainties

« Mixing multiple plausible aleatory models
» Regulate “tightness” of confidence regions (data enclosing sets)
* (Maximum- VS Worst Case-Likelihood Estimation)

O O O O
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Conclusions DI TORINO

» The NASA Langley Uncertainty Quantification (UQ) Challenge on Optimization Under
Uncertainty — Technical solutions:

v B. Reliability-Based Design Optimization:

= Robust Design: minimize the (epistemic) upper bound of the failure probability for the worst-
case performance function

= Double-loop simulation to calculate failure probability bounds

» Genetic Algorithms (GAs) to thoroughly (globally) explore the epistemic parameter
ranges and find extreme (upper and lower) bounds of the failure probabilities (in abrupt,
multimodal, disconnected search spaces)

» Monte Carlo Simulation to propagate aleatory uncertainty

» Repeated model evaluations =» high computational cost = (iteratively trained) ANN
metamodels
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Current Issues and Possible Future Developments &
| e TRy

Current issues:
= Model inaccuracies (“discrepancies”) or just poor calibration strategy and/or poor description of

multivariate dependence structures?

= Sampling-based strategies = high flexibility but low “computational efficiency”

= Check ANN metamodel accuracy in mapping high-dimensional spaces and estimating small
failure probabilities

= Robust designs satisfactory even in the presence of poorly calibrated models, but possibly overly
conservative

Possible future developments:

= Rigorous quantification of model overfitting (in particular, for SN distributions)

= Assess the proposed calibration approaches by comparison with other sound methods (e.g.,
purely non-parametric/moment matching): bias? under/over-estimation of uncertainty?

» Rigorous assessment of model discrepancies (if any)

= More efficient (sampling?) methods for estimating small failure probabilities (e.g., bounds of R;)

= Other rigorous approaches for robust design: non-parametric distributionally-robust methods and
or Scenario Theory to optimally control, select and possibly discard outliers
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THANK YOU!

QUESTIONS?
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