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Computer simulation models

Computer programs that mathematically models a physical process by
incorporating domain knowledge

Often desired over physical experiments due to cost and time savings

Applications span many different fields:

Engineering Science Public Health
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Gaussian processes (GPs)

Assume the response YN follows a multivariate Normal distribution:
YN ∼ NN (µ,ΣN ), where ΣN = τ2(KN + gIN )

A common simplification assumes µ = 0, offloading the relationship in the
data to ΣN

Includes hyperparameters: ψ = {τ2 (scale), g (nugget), and θ (lengthscale)}
The correlation matrix KN is defined as a function of the squared Euclidean
distance between pairs of inputs, e.g.

k(xi, xj) = exp

{
− ||xi − xj ||

2

θ

}
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GP predictions

Conditional predictive equations:

µ(x⋆|XN , YN , ψ) = Σ(x⋆, XN )Σ−1
N YN

σ2(x⋆|XN , ψ) = Σ(x⋆, x⋆)− Σ(x⋆, XN )Σ−1
N Σ(x⋆, XN )⊤

Interpolates well, providing accurate out-of-sample predictions

Conditioning on hyperparameters, σ2(x⋆) doesn’t depend on YN
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GP sequential design for computer experiments

Space-filling
design

Fit GP

Optimize
acquisition

function

Select next
sample

N ← N + 1
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Sequential design acquisition functions

Expected Improvement (EI): balances information gain close to max/min
versus reducing model uncertainty

Entropy: maximizes information gain about events

Integrated mean-squared error (IMSE): reduces global variance

IMSE(XN ) =

∫
x∈X

σ2N (x)

τ2
dx
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Limitations of GPs

The standard GP framework computationally relies heavily on the inversion
of the covariance, ΣN , an N ×N matrix
Without special structure in ΣN , the computation is O(N3), which limits
modern computers to data sets in the 1000s
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Methods using GPs with Big Data

Approximation of the covariance or precision matrix:

Nearest Neighbor GPs (Datta et al., 2016)
Vecchia approximation (Katzfuss and Guinness, 2017)
Compactly supported kernels (Kaufman et al., 2011)
Inducing points (Snelson and Ghahramani, 2006)

Local models:

Piecewise GPs (Kim et al., 2005)
Treed GPs (Gramacy and Lee, 2008)
Local GP approximation (Gramacy and Apley, 2015)
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Local approximate GPs (LAGP)

Introduced by Gramacy and Apley
(2015)

Fits a distinct GP for each
predictive location

Uses a subset of the data for each
local neighborhood around a
predictive location

Produces accurate mean predictions

Local scope limits uncertainty
approximation
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Inducing points formulation

Let X̄M be inducing points, a set of M × d (M ≪ N) latent variables that
represent design locations

Using inducing points, we can creates a low rank covariance matrix with

KN ≈ K̄ = kNMK
−1
M kMN + Diag(KN − kNMK

−1
M kMN )

Woodbury identities allow for more computationally efficient calculations of
K̄−1 and |K̄|
Reduces the computational burden to O(NM2)
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Correlation Approximation with Inducing Points

(    )≈ × ×=

𝑲𝑁

𝑲𝑀
−1

𝒌𝑁𝑀

𝒌𝑀𝑁
−1

𝑲𝑁
(𝑴)
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Selection of Inducing Points

Early literature used optimization of the negative log-likelihood
Jointly optimizing the inducing points (X̄M ) is very difficult due to high
dimensionality and many local minima

Figure 1: Negative log-likelihood surface
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LIGP Framework

1 Initialize: neighborhood size (n), number of inducing points (m), and
hyperparameters (θ, g)
For each predictive location x⋆:

2 Build a local neighborhood of n points nearest to x⋆

3 Create an inducing point design centered at x⋆

Select points with weighted integrated mean-squared error
Scale a space-filling design

4 Optimize hyperparameters

Steps 2-4 are computationally independent for each x⋆ and can be done in parallel
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Log-likelihood used for optimization

ℓ(Xn,Yn, X̄m, τ
2, θ)

∝const.− n log(τ2)− log |Q(n)
m |+ log |Km| − 1⊤n log(Ω

(m)
n )1n

− τ−2Y ⊤
n

(
Ω−1(m)
n − Ω−1(m)

n knmQ
−1(n)
m k⊤nmΩ−1(m)

n

)
Yn.

where Q
(n)
m = Km + k⊤nmΩ

−1(m)
n knm + ϵQIm and

Ω
(m)
n = Diag{Kn − knmK−1

m k⊤nm}+ ϵKIn
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Weighted Integrated Mean Squared Error (wIMSE)

For a given predictive location x⋆, integrate the weighted predictive variance
given a new proposed inducing point over the design space:∫

x̃∈X
kθ(x̃, x

⋆)
σ2m+1,n(x̃)

τ2
dx̃

By using a Gaussian kernel for the weight (centered at x⋆), we can express
wIMSE in closed form (Binois et al., 2018b):

√
θπ

2

d∏
k=1

(
erf

{
x⋆ − ak√

θ

}
− erf

{
x⋆ − bk√

θ

})
−tr

{(
K−1

m+1 −Q
−1(n)
m+1

)
W ∗

m+1

}
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wIMSE-based Inducing Point Design

Figure 2: Left: wIMSE surface for selecting 10th inducing point; Right: order of inducing
point selection
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Inducing Points Template

1 Create an inducing point design centered around the
middle of the design space

2 Shift the inducing point design to be centered at each x⋆

Figure 3: Inducing Point designs for two predictive locations
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Space-filling Templates

We can scale a LatinHypercube sample (LHS) to use as the inducing points

Figure 4: 2D projections of an 8D LHS. Left: Circumscribed HyperRectangle (cHR)
scaling; Right: Inverse Gaussian CDF (qNorm) scaling
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Borehole (8D): 100K training pts, 10K predictions

GP Method n Minutes1

LAGP(ALC) 50 0.95
LAGP(NN) 50 0.08
LAGP(NN) 150 1.25

LIGP(wIMSE) 150 3.04
LIGP(cHR) 150 0.71

LIGP(qNorm) 150 0.72

1LAGP is coded in C, while LIGP is coded in R
22 / 39
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SARCOS (21D): ≈45K training, 4400 predictions
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LIGP summary

Optimizing inducing points globally is fraught with challenges

Marrying local GP approximations with inducing points provides faster
predictions that in some cases are more accurate

Using an inducing point template (especially a space-filling design) provides
further computational savings

Efficient inducing point designs space-fill around the predictive location x⋆

(i.e. the neighborhood’s center)
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Stochastic simulations pose a greater challenge

Distinguishing signal-from-noise requires more data

Often include replicated inputs

Input-dependent noise (heteroskedasticity)

Existing methods including stochastic kriging (Ankenman et al., 2010), and
heteroskedastic GPs (hetGP; Binois et al., 2018a) buckle with a large number
of unique locations
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Leveraging the Woodbury identities (again)

From Gneiting and Raftery (2007),

(B+CDE)−1 = B−1 −B−1C(D−1 +EB−1C)−1EB−1 (1)

log |B+CDE| = log |D−1 +EB−1C|+ log |D|+ log |B|,

B = Diag{Kn−Ukn̄mK−1
m k⊤n̄mU⊤}+gIn, D = K−1

m and E = C⊤ = k⊤n̄mU⊤.

where m is the number of inducing points, n is the local neighborhood size, and
n̄ is the number of unique neighborhood locations → m≪ n̄≪ n.
U is a block diagonal matrix comprises of 1-vectors of lengths equal to the
number of replicates at each unique design location.
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Log-likelihood with low rank matrices

ℓ(Xn, Yn, X̄m; τ2, θ, g) ∝− n log(τ2)− log |Q(n̄)
m |+ log |Km| −

n̄∑
i=1

ailogω
(n̄,m)
i

− τ−2
(
Y ⊤
n Ω−1(m)

n Yn − Ȳ ⊤
n̄ Λ

(m)
n̄ kn̄mQ

−1(n̄)
m k⊤n̄mΛ

(m)
n̄ Ȳn̄

)
,

where Q
(n̄)
m = Km + k⊤n̄mΛ

(m)
n̄ kn̄m, Λ

(m)
n̄ = An̄Ω

−1(m)
n̄ ,

An̄ is a diagonal matrix of the number of replicates at each Xn̄, and ω
(n̄,m)
i is the

ith diagonal term in Ω
(m)
n̄ . Ȳn̄ is a vector of averaged responses for each location

in Xn̄.
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Building a local neighborhood with replicates
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Estimating mean and variance in SIR model
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Results versus LAGP, HetGP

LAGP models fit with neighborhoods n = 50 (default)

HetGP models use random subset of N̄ = 1000

LIGP models use m = 10 (2d) and m = 30 (4d) and n̄ = 100

30 Monte Carlo repetitions were conducted, each with
N̄ = 10000 unique data locations (with varying replication strategies) and
N⋆ = 10000 unique predictive locations

Comparison metrics are:

RMSE =

√√√√N⋆∑
i=1

(µ̂(xi)− y(xi))2 Score = −
N⋆∑
i=1

( µ̂(xi)− y(xi)

σ̂2(xi)

)2
−

N⋆∑
i=1

σ̂2(xi)
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Herbie’s Tooth (2d) experiment
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Ocean oxygen concentration (4d) experiment
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Summary

LIGP marrying local GP approximations with inducing points, opening the
door for larger local neighborhoods and faster computation

When the data includes replicates, building neighborhoods based on the
number of unique points allows more data to be included

Efficient inducing point designs space-fill around the predictive location x⋆

(i.e. the neighborhood’s center), allowing us to use template schemes

LIGP can be faster than LAGP/HetGP and often provide more accurate
mean predictions and noise estimates
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To learn more

Cole, D. Austin, Ryan B. Christianson, and Robert B. Gramacy. “Locally
induced Gaussian processes for large-scale simulation experiments.”
Statistics and Computing 31.3 (2021): 1-21.

Cole, D. Austin, Robert B. Gramacy, and Mike Ludkovski. “Large-scale local
surrogate modeling of stochastic simulation experiments.” arXiv preprint
arXiv:2109.05324 (2021).

liGP R package: https://CRAN.R-project.org/package=liGP
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