Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

Locally induced GPs for modelling large-scale simulations

Austin Cole

GlaxoSmithKline formerly of Virginia Tech

UQSay February 17, 2022

Table of Contents

Locally induced GPs

Gaussian Processes (GPs) background Locally Induced

GPs (LIGP)
LIGP for
stochastic
experiments

References

• Gaussian Processes (GPs) background

2 Locally Induced GPs (LIGP)

3 LIGP for stochastic experiments

Table of Contents

Locally induced GPs

Gaussian Processes (GPs) background Locally Induced

GPs (LIGP)
LIGP for
stochastic
experiments

References

• Gaussian Processes (GPs) background

2 Locally Induced GPs (LIGP)

3 LIGP for stochastic experiments

Computer simulation models

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Computer programs that mathematically models a physical process by incorporating domain knowledge
- Often desired over physical experiments due to cost and time savings
- Applications span many different fields:

Gaussian processes (GPs)

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

ullet Assume the response Y_N follows a multivariate Normal distribution:

$$Y_N \sim \mathcal{N}_N(\mu, \Sigma_N)$$
, where $\Sigma_N = au^2(K_N + g\mathbb{I}_N)$

- \bullet A common simplification assumes $\mu=0,$ offloading the relationship in the data to Σ_N
- Includes hyperparameters: $\psi = \{\tau^2 \text{ (scale)}, g \text{ (nugget)}, \text{and } \theta \text{ (lengthscale)}\}$
- ullet The correlation matrix K_N is defined as a function of the squared Euclidean distance between pairs of inputs, e.g.

$$k(x_i, x_j) = \exp \left\{ -\frac{||x_i - x_j||^2}{\theta} \right\}$$

GP predictions

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

Conditional predictive equations:

$$\mu(x^*|X_N, Y_N, \psi) = \Sigma(x^*, X_N) \Sigma_N^{-1} Y_N$$
$$\sigma^2(x^*|X_N, \psi) = \Sigma(x^*, x^*) - \Sigma(x^*, X_N) \Sigma_N^{-1} \Sigma(x^*, X_N)^\top$$

- Interpolates well, providing accurate out-of-sample predictions
- ullet Conditioning on hyperparameters, $\sigma^2(x^\star)$ doesn't depend on Y_N

GP sequential design for computer experiments

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

Sequential design acquisition functions

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Expected Improvement (EI): balances information gain close to max/min versus reducing model uncertainty
- Entropy: maximizes information gain about events
- Integrated mean-squared error (IMSE): reduces global variance

$$\mathsf{IMSE}(X_N) = \int_{x \in \mathcal{X}} \frac{\sigma_N^2(x)}{\tau^2} dx$$

Limitations of GPs

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- The standard GP framework computationally relies heavily on the inversion of the covariance, Σ_N , an $N \times N$ matrix
- Without special structure in Σ_N , the computation is $O(N^3)$, which limits modern computers to data sets in the 1000s

Methods using GPs with Big Data

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Approximation of the covariance or precision matrix:
 - Nearest Neighbor GPs (Datta et al., 2016)
 - Vecchia approximation (Katzfuss and Guinness, 2017)
 - Compactly supported kernels (Kaufman et al., 2011)
 - Inducing points (Snelson and Ghahramani, 2006)
- Local models:
 - Piecewise GPs (Kim et al., 2005)
 - Treed GPs (Gramacy and Lee, 2008)
 - Local GP approximation (Gramacy and Apley, 2015)

Local approximate GPs (LAGP)

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Introduced by Gramacy and Apley (2015)
- Fits a distinct GP for each predictive location
- Uses a subset of the data for each local neighborhood around a predictive location
- Produces accurate mean predictions
- Local scope limits uncertainty approximation

Table of Contents

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

1 Gaussian Processes (GPs) background

2 Locally Induced GPs (LIGP)

S LIGP for stochastic experiments

Inducing points formulation

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Let \bar{X}_M be **inducing points**, a set of $M \times d$ $(M \ll N)$ latent variables that represent design locations
- Using inducing points, we can creates a low rank covariance matrix with

$$K_N pprox \bar{K} = k_{NM} K_M^{-1} k_{MN} + \mathsf{Diag}(K_N - k_{NM} K_M^{-1} k_{MN})$$

- \bullet Woodbury identities allow for more computationally efficient calculations of \bar{K}^{-1} and $|\bar{K}|$
- Reduces the computational burden to $O(NM^2)$

Correlation Approximation with Inducing Points

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

Selection of Inducing Points

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Early literature used optimization of the negative log-likelihood
- ullet Jointly optimizing the inducing points (\bar{X}_M) is very difficult due to high dimensionality and many local minima

Figure 1: Negative log-likelihood surface

LIGP Framework

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

- Initialize: neighborhood size (n), number of inducing points (m), and hyperparameters (θ, g) For each predictive location x^* :
- **2** Build a **local neighborhood** of $\mathbf n$ points nearest to x^\star
- **3** Create an **inducing point design** centered at x^*
 - Select points with weighted integrated mean-squared error
 - Scale a space-filling design
- Optimize hyperparameters

Steps 2-4 are computationally independent for each x^\star and can be done in parallel

Log-likelihood used for optimization

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

$$\ell(X_{n}, Y_{n}, \bar{X}_{m}, \tau^{2}, \theta)$$

$$\propto \text{const.} - n \log(\tau^{2}) - \log |Q_{m}^{(n)}| + \log |K_{m}| - \mathbf{1}_{n}^{\top} \log(\Omega_{n}^{(m)}) \mathbf{1}_{n}$$

$$- \tau^{-2} Y_{n}^{\top} \left(\Omega_{n}^{-1(m)} - \Omega_{n}^{-1(m)} k_{nm} Q_{m}^{-1(n)} k_{nm}^{\top} \Omega_{n}^{-1(m)}\right) Y_{n}.$$

where
$$Q_m^{(n)} = K_m + k_{nm}^{\intercal} \Omega_n^{-1(m)} k_{nm} + \epsilon_Q \mathbb{I}_m$$
 and $\Omega_n^{(m)} = \mathrm{Diag}\{K_n - k_{nm} K_m^{-1} k_{nm}^{\intercal}\} + \epsilon_K \mathbb{I}_n$

Weighted Integrated Mean Squared Error (wIMSE)

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

• For a given predictive location x^* , integrate the weighted predictive variance given a new proposed inducing point over the design space:

$$\int_{\tilde{x}\in\mathcal{X}} k_{\theta}(\tilde{x}, x^{\star}) \frac{\sigma_{m+1, n}^{2}(\tilde{x})}{\tau^{2}} d\tilde{x}$$

• By using a Gaussian kernel for the weight (centered at x^*), we can express wIMSE in closed form (Binois et al., 2018b):

$$\frac{\sqrt{\theta\pi}}{2} \prod_{k=1}^d \left(\operatorname{erf} \left\{ \frac{x^\star - a_k}{\sqrt{\theta}} \right\} - \operatorname{erf} \left\{ \frac{x^\star - b_k}{\sqrt{\theta}} \right\} \right) - \operatorname{tr} \left\{ \left(K_{m+1}^{-1} - Q_{m+1}^{-1(n)} \right) W_{m+1}^* \right\}$$

wIMSE-based Inducing Point Design

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

Figure 2: Left: wIMSE surface for selecting 10th inducing point; Right: order of inducing point selection

Inducing Points Template

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Create an inducing point design centered around the middle of the design space
- 2 Shift the inducing point design to be centered at each \boldsymbol{x}^{\star}

Figure 3: Inducing Point designs for two predictive locations

Space-filling Templates

We can scale a LatinHypercube sample (LHS) to use as the inducing points

Gaussian Processes (GPs) background

Locally Induced

Locally induced

GPs (LIGP)
LIGP for
stochastic

experiments References

Figure 4: 2D projections of an 8D LHS. Left: Circumscribed HyperRectangle (cHR) scaling; Right: Inverse Gaussian CDF (qNorm) scaling

Borehole (8D): 100K training pts, 10K predictions

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

GP Method	n	Minutes ¹
LAGP(ALC)	50	0.95
LAGP(NN)	50	0.08
LAGP(NN)	150	1.25
LIGP(wIMSE)	150	3.04
LIGP(cHR)	150	0.71
LIGP(qNorm)	150	0.72

Model

¹LAGP is coded in C, while LIGP is coded in R

SARCOS (21D): \approx 45K training, 4400 predictions

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

LIGP summary

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Optimizing inducing points globally is fraught with challenges
- Marrying local GP approximations with inducing points provides faster predictions that in some cases are more accurate
- Using an inducing point template (especially a space-filling design) provides further computational savings
- Efficient inducing point designs space-fill around the predictive location x^* (i.e. the neighborhood's center)

Table of Contents

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

Gaussian Processes (GPs) background

② Locally Induced GPs (LIGP)

S LIGP for stochastic experiments

Stochastic simulations pose a greater challenge

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Distinguishing signal-from-noise requires more data
 - Often include replicated inputs
- Input-dependent noise (heteroskedasticity)
 - Existing methods including stochastic kriging (Ankenman et al., 2010), and heteroskedastic GPs (hetGP; Binois et al., 2018a) buckle with a large number of unique locations

Leveraging the Woodbury identities (again)

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

From Gneiting and Raftery (2007),

$$(\mathbf{B} + \mathbf{CDE})^{-1} = \mathbf{B}^{-1} - \mathbf{B}^{-1}\mathbf{C}(\mathbf{D}^{-1} + \mathbf{EB}^{-1}\mathbf{C})^{-1}\mathbf{EB}^{-1}$$
(1)
$$\log |\mathbf{B} + \mathbf{CDE}| = \log |\mathbf{D}^{-1} + \mathbf{EB}^{-1}\mathbf{C}| + \log |\mathbf{D}| + \log |\mathbf{B}|.$$

$$\mathbf{B} = \mathsf{Diag}\{K_n - \mathbf{U}k_{\bar{n}m}K_m^{-1}k_{\bar{n}m}^{\top}\mathbf{U}^{\top}\} + g\mathbb{I}_n, \quad \mathbf{D} = K_m^{-1} \quad \text{and } \mathbf{E} = \mathbf{C}^{\top} = k_{\bar{n}m}^{\top}\mathbf{U}^{\top}.$$

where m is the number of inducing points, n is the local neighborhood size, and \bar{n} is the number of **unique** neighborhood locations $\to m \ll \bar{n} \ll n$. U is a block diagonal matrix comprises of 1-vectors of lengths equal to the number of replicates at each unique design location.

Log-likelihood with low rank matrices

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

stochastic experiments

References

$$\ell(X_n, Y_n, \bar{X}_m; \tau^2, \theta, g) \propto -n \log(\tau^2) - \log |Q_m^{(\bar{n})}| + \log |K_m| - \sum_{i=1}^{\bar{n}} a_i \log \omega_i^{(\bar{n}, m)}$$
$$- \tau^{-2} \left(Y_n^{\top} \Omega_n^{-1(m)} Y_n - \bar{Y}_{\bar{n}}^{\top} \Lambda_{\bar{n}}^{(m)} k_{\bar{n}m} Q_m^{-1(\bar{n})} k_{\bar{n}m}^{\top} \Lambda_{\bar{n}}^{(m)} \bar{Y}_{\bar{n}} \right),$$

$$\Lambda^{(m)} k_{-} \qquad \Lambda^{(m)} - \Lambda_{-} \Omega^{-1(m)}$$

where $Q_m^{(\bar{n})}=K_m+k_{\bar{n}m}^{\top}\Lambda_{\bar{n}}^{(m)}k_{\bar{n}m}$, $\Lambda_{\bar{n}}^{(m)}=A_{\bar{n}}\Omega_{\bar{n}}^{-1(m)}$, $A_{\bar{n}}$ is a diagonal matrix of the number of replicates at each $X_{\bar{n}}$, and $\omega_i^{(\bar{n},m)}$ is the i^{th} diagonal term in $\Omega_{\bar{n}}^{(m)}$. $\bar{Y}_{\bar{n}}$ is a vector of averaged responses for each location in $X_{\bar{n}}$.

Building a local neighborhood with replicates

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

Estimating mean and variance in SIR model

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

Results versus LAGP. HetGP

Locally induced GPe

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

• LAGP models fit with neighborhoods n = 50 (default)

- HetGP models use random subset of $\bar{N} = 1000$
- LIGP models use m=10 (2d) and m=30 (4d) and $\bar{n}=100$
- 30 Monte Carlo repetitions were conducted, each with $ar{N}=10000$ unique data locations (with varying replication strategies) and $N^{\star} = 10000$ unique predictive locations
- Comparison metrics are:

$$\mathsf{RMSE} = \sqrt{\sum_{i=1}^{N^\star} (\hat{\mu}(\mathbf{x}_i) - y(\mathbf{x}_i))^2} \quad \mathsf{Score} = -\sum_{i=1}^{N^\star} \Bigl(\frac{\hat{\mu}(\mathbf{x}_i) - y(\mathbf{x}_i)}{\hat{\sigma}^2(\mathbf{x}_i)}\Bigr)^2 - \sum_{i=1}^{N^\star} \hat{\sigma}^2(\mathbf{x}_i)$$

Herbie's Tooth (2d) experiment

Locally induced ĞPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

Ocean oxygen concentration (4d) experiment

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

Summary

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- LIGP marrying local GP approximations with inducing points, opening the door for larger local neighborhoods and faster computation
- When the data includes replicates, building neighborhoods based on the number of unique points allows more data to be included
- Efficient inducing point designs space-fill around the predictive location x^* (i.e. the neighborhood's center), allowing us to use **template schemes**
- LIGP can be **faster** than LAGP/HetGP and often provide **more accurate mean predictions and noise estimates**

To learn more

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Cole, D. Austin, Ryan B. Christianson, and Robert B. Gramacy. "Locally induced Gaussian processes for large-scale simulation experiments." Statistics and Computing 31.3 (2021): 1-21.
- Cole, D. Austin, Robert B. Gramacy, and Mike Ludkovski. "Large-scale local surrogate modeling of stochastic simulation experiments." arXiv preprint arXiv:2109.05324 (2021).
- IiGP R package: https://CRAN.R-project.org/package=liGP

Special Thanks

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Robert B. Gramacy
- Ryan B. Christianson, Mike Ludkovski
- Julien Bect
- National Science Foundation (Grant DMS-1821258)

Bibliography I

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Ankenman, B., Nelson, B. L., and Staum, J. (2010). "Stochastic kriging for simulation metamodeling." *Operations research*, 58, 2, 371–382.
- Binois, M., Gramacy, R. B., and Ludkovski, M. (2018a). "Practical heteroskedastic Gaussian process modeling for large simulation experiments." *Journal of Computational and Graphical Statistics*, 27, 4, 808–821.
- Binois, M., Huang, J., Gramacy, R. B., and Ludkovski, M. (2018b). "Replication or exploration? Sequential design for stochastic simulation experiments." *Technometrics*, 61, 1, 7–23.
- Datta, A., Banerjee, S., Finley, A. O., and Gelfand, A. E. (2016). "Hierarchical nearest-neighbor Gaussian process models for large geostatistical datasets." *Journal of the American Statistical Association*, 111, 514, 800–812.
- Gneiting, T. and Raftery, A. E. (2007). "Strictly proper scoring rules, prediction, and estimation." *Journal of the American statistical Association*, 102, 477, 359–378.

Bibliography II

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

- Gramacy, R. B. and Apley, D. W. (2015). "Local Gaussian process approximation for large computer experiments." *Journal of Computational and Graphical Statistics*, 24, 2, 561–578.
- Gramacy, R. B. and Lee, H. K. (2008). "Bayesian treed Gaussian process models with an application to computer modeling." *Journal of the American Statistical Association*, 103, 483, 1119–1130.
- Katzfuss, M. and Guinness, J. (2017). "A general framework for Vecchia approximations of Gaussian processes." arXiv preprint arXiv:1708.06302.
- Kaufman, C. G., Bingham, D., Habib, S., Heitmann, K., and Frieman, J. A. (2011). "Efficient emulators of computer experiments using compactly supported correlation functions, with an application to cosmology." *The Annals of Applied Statistics*, 5, 4, 2470–2492.
- Kim, H. M., Mallick, B. K., and Holmes, C. C. (2005). "Analyzing nonstationary spatial data using piecewise Gaussian processes." *Journal of the American Statistical Association*, 100, 470, 653–668.

Bibliography III

Locally induced GPs

Gaussian Processes (GPs) background

Locally Induced GPs (LIGP)

LIGP for stochastic experiments

References

Snelson, E. and Ghahramani, Z. (2006). "Sparse Gaussian processes using pseudo-inputs." *Advances in Neural Information Processing Systems 18*, 1257–1264.