

Poincaré chaos expansions for derivative-enhanced surrogate modelling and sensitivity analysis

UQSay \#41
N. Lüthen with O. Roustant, F. Gamboa, B. looss, S. Marelli, and B. Sudret

Olivier Roustant

Bertrand looss

Fabrice Gamboa

Nora Lüthen

Stefano Marelli

Bruno Sudret

Chair of Risk, Safety and Uncertainty Quantification, ETH Zürich, Switzerland

- UQ for engineering models
- Surrogate modelling in particular, sparse polynomial chaos expansions
- ...

Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions, https://arxiv.org/abs/2107.00394

캐zürich

Poincaré chaos expansions: Topics

Black-box model
Surrogate modelling
Sensitivity analysis
Using derivative information

캐zürich

Outline

Spectral expansions as surrogate models

Variance-based and derivative-based sensitivity analysis

Poincaré constants and the associated differential operator

Computing Poincaré chaos expansions

Numerical example

Conclusion \& Outlook

배zürich

Chaos expansions as surrogate models

Setting:

- Input random vector \boldsymbol{X} with d independent components and joint distribution f_{X}
- Model $\mathcal{M} \in L_{f_{\boldsymbol{X}}}^{2}$ (square-integrable)
- Output random variable $Y=\mathcal{M}(\boldsymbol{X})$

We want to model random variable Y

Let $\left(\psi_{k}\right)_{k \in \mathbb{N}}$ be a basis of $L_{f_{X}}^{2}$. Then:

$$
Y=\mathcal{M}(\boldsymbol{X})=\underbrace{\sum_{k \in \mathbb{N}} c_{k} \psi_{k}(\boldsymbol{X})}_{\text {surrogate model }}
$$

For example:

- (Fourier expansion)
- Polynomial chaos expansion
- Poincaré chaos expansion

Approximation of Y by orthogonal polynomials in $X(d=1)$

Theorem: Density of polynomials in $L_{f_{X}}^{2}(\mathcal{D})$
Assume that X possesses finite moments of all orders, and that F_{X} is continuous.
If the distribution function is uniquely defined by the sequence of its moments, then the polynomials are dense in $L_{f_{X}}^{2}(\mathcal{D})$.

Hermite chaos
Wiener (1938); Ghanem, Spanos (1991)

- X Gaussian \rightarrow Hermite polynomials:

$$
\psi_{0}(x)=1, \psi_{1}(x)=x, \psi_{2}(x)=\frac{x^{2}-1}{2}, \ldots
$$

Generalized chaos
Xiu, Karniadakis (2002)

- X uniform \rightarrow Legendre polynomials
- X Beta \rightarrow Jacobi polynomials
- X Gamma \rightarrow Laguerre polynomials

Approximation of Y by orthogonal polynomials in $X(d=1)$

Theorem: Density of polynomials in $L_{f_{X}}^{2}(\mathcal{D})$
Assume that X possesses finite moments of all orders, and that F_{X} is continuous.
If the distribution function is uniquely defined by the sequence of its moments, then the polynomials are dense in $L_{f_{X}}^{2}(\mathcal{D})$.

- Notable exception: lognormal distribution!

Arbitrary chaos Wan and Karniadakis (2006); Oladyshkin and Nowak (2012)

- One can compute an orthogonal polynomial basis for any distribution that fulfills the assumptions (e.g., with compact support)

By the way: the term polynomial chaos goes back to Wiener (1938)
\rightarrow Use of the word "chaos" older than Chaos theory in mathematics!
(1938 vs 1977)

Polynomial chaos expansion ($d \geq 1$)

with tensor product basis functions

$$
\psi_{\boldsymbol{\alpha}}(\boldsymbol{x})=\prod_{i=1}^{d} \psi_{\alpha_{i}}^{(i)}\left(x_{i}\right), \quad \text { where the multi-index } \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \text { defines the degree }
$$

and set of multi-indices \mathcal{A}, e.g., total-degree basis of degree p :

$$
\mathcal{A}=\left\{\boldsymbol{\alpha} \in \mathbb{N}^{d}: \sum_{i=1}^{d} \alpha_{i} \leq p\right\}
$$

- If for each X_{i} the moment problem is uniquely solvable, then the multivariate polynomials are dense in $L_{f_{\boldsymbol{X}}}^{2}(\mathcal{D})$ and this approximation converges in mean-square to Y

How to compute a PCE?

$$
Y=\mathcal{M}(\boldsymbol{X}) \approx \mathcal{M}^{\mathrm{PCE}}(\boldsymbol{X})=\sum_{\boldsymbol{\alpha} \in \mathcal{A}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{X})
$$

Ingredients of a PCE:

- (Basis functions $\left\{\psi_{\boldsymbol{\alpha}}: \boldsymbol{\alpha} \in \mathbb{N}^{d}\right\}$ defined by input distribution.)
- Need to decide subset of multi-indices $\mathcal{A} \subset \mathbb{N}^{d}$
- Need to choose points $x \in \mathcal{X} \subset \mathcal{D}$ (experimental design) and collect the corresponding model evaluations $y=\mathcal{M}(\boldsymbol{x})$
- Need to compute the coefficients c
- Projection:

$$
c_{\boldsymbol{\alpha}}=\left\langle\mathcal{M}, \psi_{\boldsymbol{\alpha}}\right\rangle
$$

- Regression:

$$
\boldsymbol{c}=\min _{\boldsymbol{c}^{\prime}}\left\|\boldsymbol{y}-\boldsymbol{\Psi} \boldsymbol{c}^{\prime}\right\|_{2}(+ \text { regularization }) \quad \quad \text { properties of } \Psi \text { are crucial }
$$

ㅂIzürich
 Outline

Spectral expansions as surrogate models

Variance-based and derivative-based sensitivity analysis

Poincaré constants and the associated differential operator

Computing Poincaré chaos expansions

Numerical example

Conclusion \& Outlook

Sobol'-Hoeffding / ANOVA decomposition

Any $\mathcal{M} \in L_{f_{X}}^{2}$ can be decomposed uniquely as a sum of terms of increasing complexity

$$
\mathcal{M}(\boldsymbol{X})=m_{0}+\sum_{1 \leq i \leq d} m_{i}\left(X_{i}\right)+\sum_{1 \leq i<j \leq d} m_{i, j}\left(X_{i}, X_{j}\right)+\cdots+m_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)
$$

where the terms satisfy $\int m_{I}\left(\boldsymbol{X}_{I}\right) f_{X_{k}}\left(x_{k}\right) \mathrm{d} x_{k}=0$ for all $k \in I \subset\{1, \ldots, d\}$.

Variance decomposition

$$
\operatorname{Var}[\mathcal{M}(\boldsymbol{X})]=\sum_{1 \leq i \leq d} \operatorname{Var}\left[m_{i}\left(X_{i}\right)\right]+\sum_{1 \leq i<j \leq d} \operatorname{Var}\left[m_{i, j}\left(X_{i}, X_{j}\right)\right]+\cdots+\operatorname{Var}\left[m_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)\right]
$$

\rightarrow ANalysis Of VAriance decomposition

GIIzürich

Sobol' indices

Variance decomposition

$$
\underbrace{\operatorname{Var}[\mathcal{M}(\boldsymbol{X})]}_{\begin{array}{c}
:=D \\
\text { total variance }
\end{array}}=\sum_{1 \leq i \leq d} \operatorname{Var}\left[m_{i}\left(X_{i}\right)\right]+\sum_{1 \leq i<j \leq d} \operatorname{Var}\left[m_{i, j}\left(X_{i}, X_{j}\right)\right]+\cdots+\operatorname{Var}\left[m_{1, \ldots, d}\left(X_{1}, \ldots, X_{d}\right)\right]
$$

First-order Sobol' index:

$$
S_{i}^{1}=\frac{\operatorname{Var}\left[m_{i}\left(X_{i}\right)\right]}{D}
$$

Total Sobol' index:

$$
S_{i}^{\text {tot }}=\frac{1}{D} \sum_{J: i \in J} \operatorname{Var}\left[m_{J}\left(X_{J}\right)\right]
$$

GIHzürich

PCE \bigcirc Sobol' indices

The ANOVA decomposition of a PCE $\mathcal{M}^{\mathrm{PCE}}(\boldsymbol{X})=\sum_{\boldsymbol{\alpha} \in \mathbb{N}^{d}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{X})$ is given by

$$
m_{I}(\boldsymbol{X}):=\sum_{\substack{\alpha: \alpha_{i}>0, i \in \mathrm{X} \\ \alpha_{j}=0, j \notin I}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{X})
$$

From orthonormality in $L_{f_{X}}^{2}$ it follows that

$$
\operatorname{Var}\left[m_{I}(\boldsymbol{X})\right]=\sum_{\substack{\alpha: \alpha_{i}>0, i \in I \\ \alpha_{j}=0, j \notin I}} c_{\boldsymbol{\alpha}}^{2}
$$

and the total variance and the Sobol' indices are given by

$$
D=\sum_{\boldsymbol{\alpha} \neq \mathbf{0}} c_{\boldsymbol{\alpha}}^{2}, \quad S_{i}^{1}=\frac{1}{D} \sum_{\substack{\alpha: \alpha_{i}>0, \alpha_{j}=0, j \neq i}} c_{\boldsymbol{\alpha}}^{2}, \quad S_{i}^{\text {tot }}=\frac{1}{D} \sum_{\alpha: \alpha_{i}>0} c_{\boldsymbol{\alpha}}^{2}
$$

Any tensor-product orthonormal basis, made from 1D bases that each contain the constant function, allows the same construction

Derivative-based global sensitivity measure (DGSM)

Another sensitivity measure: DGSM

$$
\nu_{i}=\mathbb{E}\left[\left(\frac{\partial \mathcal{M}}{\partial x_{i}}(\boldsymbol{X})\right)^{2}\right]=\int_{\mathcal{D}}\left(\frac{\partial \mathcal{M}}{\partial x_{i}}(\boldsymbol{x})\right)^{2} f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\left\|\frac{\partial \mathcal{M}}{\partial x_{i}}\right\|^{2}
$$

Relation to Sobol' indices:

$$
S_{i}^{\mathrm{tot}} D \leq C_{P} \nu_{i}
$$

with Poincaré constant C_{P} of measure $f_{X_{i}} \mathrm{~d} x_{i}$
\rightarrow low-cost variable screening

Spectral expansions as surrogate models

Variance-based and derivative-based sensitivity analysis

Poincaré constants and the associated differential operator

Computing Poincaré chaos expansions

Numerical example

Conclusion \& Outlook

The Poincaré constant in 1D

Definition: The Poincaré constant C_{P} associated to a measure μ is the best possible constant C with

$$
\begin{equation*}
\int g^{2} d \mu \leq C \int\left(g^{\prime}\right)^{2} d \mu \tag{1}
\end{equation*}
$$

for all $g \in H_{\mu}^{1}$ with $\int g d \mu=0$.
"A function with a small (weak) derivative (in the sense of μ)
is close to a constant function (in the sense of μ)."
Useful for:

- Bounding total Sobol' indices
- Convergence rate of Markov chains

Quantifying multimodality of μ

- ...

In 1D, $C_{P}(\mu)$ can be computed accurately for a large class of measures μ !

Eigenproblem for Poincaré differential operator

Assumption

Assume that f_{X} is supported on a bounded interval (a, b) and that $f_{X}(x)=e^{-V(x)}$ with V continuous and piecewise C^{1} on $[a, b]$.

Theorem: 1D Poincaré basis

Under this assumption, for the solutions of the eigenproblem

$$
\begin{aligned}
L \psi:=\psi^{\prime \prime}-V^{\prime} \psi^{\prime} & =-\lambda \psi, \\
\psi^{\prime}(a) & =\psi^{\prime}(b)=0
\end{aligned}
$$

it holds that

- The eigenfunctions $\left(\psi_{k}\right)_{k \geq 0}$ form an orthonormal basis of $L_{f_{X}}^{2}$
- Eigenvalues: $0=\lambda_{0}<\lambda_{1}<\ldots \rightarrow \infty$
- $\lambda_{0}=0$ and $\psi_{0}(x)=1$
- $C_{P}\left(f_{X}\right)=\frac{1}{\lambda_{1}}$, and ψ_{1} attains equality in Eq. (1)

캐zürich

Poincaré basis (1D)

- In general not polynomial
- Exception: f_{X} Gaussian \rightarrow Hermite polynomials
- f_{X} uniform leads to cosine basis functions (Fourier basis)
- Behavior similar to polynomials:
- ψ_{k} has k zeros, i.e., higher-order functions oscillate more
- If $f_{X} \in C^{m}, \psi_{k} \in C^{m+1}\left(f_{X} \in C^{0}\right.$ by assumption)

Triangular
Poincaré chaos expansions

ElHzürich

Poincaré basis (1D)

Special property

$$
\left\langle g^{\prime}, \psi_{k}^{\prime}\right\rangle_{f_{X}}=\lambda_{k}\left\langle g, \psi_{k}\right\rangle_{f_{X}} \text { for all } g \in H_{f_{X}}^{1}
$$

- Consequence: the derivatives of the Poincaré basis form again an orthogonal basis of $L_{f_{X}}^{2}$, i.e., an orthogonal system that is dense in $L_{f_{\boldsymbol{X}}}^{2}$:

$$
\left\langle\psi_{j}^{\prime}, \psi_{k}^{\prime}\right\rangle_{f_{X}}=\lambda_{k}\left\langle\psi_{j}, \psi_{k}\right\rangle_{f_{X}}=\left\{\begin{array}{l}
\lambda_{k}, \text { if } j=k \\
0 \text { else }
\end{array}\right.
$$

\rightarrow Well suited for dealing with derivatives.

- The Poincaré basis is the only basis with this property!

Spectral expansions as surrogate models

Variance-based and derivative-based sensitivity analysis

Poincaré constants and the associated differential operator

Computing Poincaré chaos expansions

Numerical example

Conclusion \& Outlook

GIHzürich

Poincaré chaos expansion (\geq 1D)

Define the Poincaré chaos expansion (PoinCE) by

$$
\mathcal{M}(\boldsymbol{X}) \approx \mathcal{M}^{\text {PoinCE }}(\boldsymbol{X})=\sum_{\boldsymbol{\alpha} \in \mathcal{A}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{X})
$$

with $\left(\psi_{\boldsymbol{\alpha}}\right)_{\boldsymbol{\alpha} \in \mathcal{A}}$ tensorized Poincaré basis associated to $f_{\boldsymbol{X}}=\prod_{i=1}^{d} f_{X_{i}}$

- Basis for $L_{f_{\boldsymbol{X}}}^{2}(\mathcal{D}) \rightarrow$ chaos expansion just like PCE
- In particular, coefficients of PoinCE yield moments and Sobol' sensitivity indices
- Partial derivatives of multivariate basis functions are orthogonal: for all $g \in H_{f_{\boldsymbol{X}}}^{1}$,

$$
\left\langle\frac{\partial}{\partial x_{i}} \psi_{\boldsymbol{\alpha}}, \frac{\partial}{\partial x_{i}} g\right\rangle_{f_{\boldsymbol{X}}}=\lambda_{i, \alpha_{i}}\left\langle\psi_{\boldsymbol{\alpha}}, g\right\rangle_{f_{\boldsymbol{X}}}
$$

Computation of DGSM from Poincaré coefficients

Proposition: DGSM formula for Poincaré chaos
Let $\mathcal{M}=\sum_{\boldsymbol{\alpha}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}$ be the expansion of $\mathcal{M} \in H_{f_{\boldsymbol{X}}}^{1}$ in the Poincaré basis. Then the DGSM index of \mathcal{M} with respect to X_{i} is

$$
\nu_{i}=\sum_{\alpha: \alpha_{i}>0} \lambda_{i, \alpha_{i}}\left(c_{\boldsymbol{\alpha}}\right)^{2}
$$

This is an extension of a previous result for Hermite PCE.

We obtain lower and upper bounds to total partial variances:

$$
\sum_{\boldsymbol{\alpha} \in \mathcal{A}: \alpha_{i}>0}\left(c_{\boldsymbol{\alpha}}\right)^{2} \leq S_{i}^{\mathrm{tot}} D \leq C_{P}\left(f_{X_{i}}\right) \nu_{i}=\sum_{\boldsymbol{\alpha} \in \mathbb{N}^{d}: \alpha_{i}>0} \frac{\lambda_{i, \alpha_{i}}}{\lambda_{i, 1}}\left(c_{\boldsymbol{\alpha}}\right)^{2}
$$

Poincaré derivative expansion

PoinCE

$$
\mathcal{M}(\boldsymbol{x}) \approx \sum_{\alpha \in \mathcal{A}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{x})
$$

An alternative way to compute the coefficients $\left(c_{\boldsymbol{\alpha}}\right)_{\boldsymbol{\alpha} \in \mathcal{A}}$: Make use of model partial derivatives
PoinCE-der

$$
\frac{\partial}{\partial x_{i}} \mathcal{M}(\boldsymbol{x}) \approx \sum_{\boldsymbol{\alpha} \in \mathcal{A}, \alpha_{i}>0} \tilde{c}_{\boldsymbol{\alpha}} \frac{\partial}{\partial x_{i}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{x})
$$

- Theoretically $c_{\boldsymbol{\alpha}}=\tilde{c}_{\boldsymbol{\alpha}}$ for $\boldsymbol{\alpha} \in \mathcal{A}$ with $\alpha_{i}>0$
- In practice (when computed from data) they are not equal!
- Terms with $\alpha_{i}=0$ vanish when differentiated w.r.t. x_{i}
+ Fewer coefficients to estimate from same number of data points!
- Some coefficients cannot be estimated from a single partial derivative expansion: unnormalized Sobol indices can be computed, but not e.g. variance
- Aggregate the coefficients from the partial derivative expansions to get the full picture

Poincaré derivative expansion: Aggregation of coefficients

PoinCE-der- i

$$
\frac{\partial}{\partial x_{i}} \mathcal{M}(\boldsymbol{x}) \approx \sum_{\boldsymbol{\alpha} \in \mathcal{A}, \alpha_{i}>0} \tilde{c}_{\boldsymbol{\alpha}}^{\partial, i} \frac{\partial}{\partial x_{i}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{x})
$$

- PoinCE-der- i computes the coefficients corresponding to the multi-indices $\left\{\boldsymbol{\alpha} \in \mathcal{A}, \alpha_{i}>0\right\}$
- For each multi-index $\boldsymbol{\alpha} \neq \mathbf{0}$, average over all active variables:

$$
\tilde{\boldsymbol{c}}_{\boldsymbol{\alpha}}^{\partial, \text { avg }}=\frac{1}{\#\{i: \underbrace{1 \leq i \leq d, \alpha_{i}>0}_{\psi_{\boldsymbol{\alpha}} \text { is not constant in } x_{i}}} \sum_{\substack{i: 1 \leq i \leq d, \alpha_{i}>0}} \tilde{c}_{\boldsymbol{\alpha}}^{\partial, i}
$$

\rightarrow The coefficients $\left(\tilde{c}_{\alpha}^{\partial, \text { avg }}\right)_{\alpha \in \mathcal{A} \backslash 0}$ can be used for computing total variance and sensitivity indices

- For surrogate modelling: Compute the remaining coefficient $\tilde{c}_{0}^{\partial, a v g}$ of the constant term by OLS on the residual

Spectral expansions as surrogate models

Variance-based and derivative-based sensitivity analysis

Poincaré constants and the associated differential operator

Computing Poincaré chaos expansions

Numerical example

Conclusion \& Outlook

Application to dyke cost toy model

The model describes the cost in million euros given by

$$
Y=\mathbb{1}_{S>0}+\left[0.2+0.8\left(1-\exp ^{-\frac{1000}{S^{4}}}\right)\right] \mathbb{1}_{S \leq 0}+\frac{1}{20}\left(8 \mathbb{1}_{H_{d} \leq 8}+H_{d} \mathbb{1}_{H_{d}>8}\right)
$$

where H_{d} is the dyke height and S is the maximal annual overflow given by

$$
S=\left(\frac{Q}{B K_{s} \sqrt{\frac{Z_{m}-Z_{v}}{L}}}\right)^{0.6}+Z_{v}-H_{d}-C_{b}
$$

Q	Max
K_{s}	Stria
Z_{v}	Riv
Z_{m}	Riv
H_{d}	Dyk
C_{b}	Bank
L	Len
B	Riv

truncated Gumbel
truncated Gaussian
Triangular
Triangular
Uniform
Triangular
Triangular
Triangular

Methods for estimating sensitivity indices

Sobol' indices

- Sample-based estimation
- Through ANOVA decomposition
- Poincaré basis, coefficients computed through MC-projection

Roustant, Gamboa, looss (2020)

- _ sparse regression
- Poincaré derivative basis, coefficients computed through MC-projection
-
- PCE basis, coefficients computed through sparse regression

DGSM indices

- Sample-based estimation
- Analytical computation from Poincaré derivative basis, coefficients computed through sparse regression

Results: Sobol' indices - MC-projection vs sparse regression

- Projection underestimates the Sobol' index, sparse regression gives more accurate estimates
- PoinCE-der estimates have a smaller variance than PoinCE estimates

Results: Sobol' indices - PoinCE vs PCE and sample-based

- PoinCE-der outperforms PCE especially for low-importance variables (\rightarrow screening)
- Sample-based estimation shows large variability for important variables

캐zürich

Results: DGSM indices

- Poincaré-based estimate for DGSM underestimates the true value $\left(C_{P} \nu_{i}=\sum_{\alpha: \alpha_{i}>0} \frac{\lambda_{i, \alpha_{i}}}{\lambda_{i, 1}}\left(c_{\alpha}\right)^{2}\right)$
- Sample-based DGSM more accurate

Results: Total variance

- PoinCE-der (aggregated coefficients) estimates the variance well

Results: Performance as global surrogate model

- PoinCE-der estimates the variance well, but PCE gives a better approximation in terms of $L_{f_{X}}^{2}$-error

Conclusion

- Poincaré chaos expansions (PoinCE) are like PCE, but with a different basis consisting of the eigenfunctions of the Poincaré differential operator
- Sobol' indices and DGSM can be computed analytically from the PoinCE coefficients
- The Poincaré basis is the only orthogonal basis for $L_{f_{\boldsymbol{X}}}^{2}(\mathcal{D})$ for which the partial derivatives form again an orthogonal basis for the same space
- PoinCE is well suited to sensitivity analysis and to utilizing derivatives

Outlook:

- Work in progress: Use model evaluations and derivatives at once for computing the coefficients (in the spirit of gradient-enhanced PCE)
- Non-polynomial basis with special derivative property - usefulness for UQ in practice?

캐zürich

Literature

Polynomial chaos expansion

- Wiener (1938): The homogeneous chaos
- Ghanem, Spanos (1991): Stochastic finite element: A spectral approach
- Xiu, Karniadakis (2002): The Wiener-Askey polynomial chaos for stochastic differential equations
- Wan, Karniadakis (2006): Beyond Wiener-Askey expansions: Handling arbitrary PDFs
- Ernst, Mugler, Starkloff, Ullmann (2012): On the convergence of generalized polynomial chaos expansions
- Oladyshkin, Nowak (2012): Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion

Sensitivity analysis

- Sudret (2008): Global sensitivity analysis using polynomial chaos expansion
- Kucherenko, Rodriguez-Fernandez, Pantelides, Shah (2009): Monte Carlo evaluation of derivative-based global sensitivity measures

Literature

Sensitivity analysis (cont.)

- Lamboni, looss, Popelin, Gamboa (2013): Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests
- Janon, Klein, Lagnoux, Nodet, Prieur (2014): Asymptotic normality and efficiency of two Sobol index estimators
- Sudret, Mai (2015): Computing derivative-based global sensitivity measures using polynomial chaos expansions

Poincaré constant and Poincaré chaos expansion

- Roustant, Barthe, looss (2017): Poincaré inequalities on intervals - application to sensitivity analysis
- Roustant, Gamboa, looss (2020): Parseval inequalities and lower bounds for variance-based sensitivity indices
- Pillaud-Vivien, Bach, Lelièvre, Rudi, Stoltz (2020): Statistical Estimation of the Poincaré constant and Application to Sampling Multimodal Distributions
- Lüthen, Roustant, Gamboa, looss, Marelli, Sudret (2021): Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions (preprint)

