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* Poincaré inequalities * UQ for engineering models
* Sensitivity analysis * Surrogate modelling
. in particular, sparse polynomial chaos
expansions

Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions, https://arxiv.org/abs/2107.00394
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https://arxiv.org/abs/2107.00394

Poincaré chaos expansions: Topics

Black-box model

Surrogate modelling
Sensitivity analysis

Using derivative information

model evaluations
X1 \ + derivative evaluations?
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Outline

Spectral expansions as surrogate models

Variance-based and derivative-based sensitivity analysis
Poincaré constants and the associated differential operator
Computing Poincaré chaos expansions

Numerical example

Conclusion & Outlook
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Chaos expansions as surrogate models

Setting:
+ Input random vector X with d independent components and joint distribution fx
* Model M € L?«X (square-integrable)
+ Output random variable Y = M(X)

We want to model random variable Y

Let (¢x)ken be a basis of L7, . Then:

Y =M(X) = ) erpr(X)
keN

surrogate model
For example:

* (Fourier expansion)
+ Polynomial chaos expansion
+ Poincaré chaos expansion
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Approximation of Y by orthogonal polynomials in X (d = 1)

Theorem: Density of polynomials in L?-_\, (@2)]

Ernst et al (2012)

Assume that X possesses finite moments of all orders, and that Fx is continuous.
If the distribution function is uniquely defined by the sequence of its moments, then the polynomials are

densein L} (D).

Hermite chaos Wiener (1938); Ghanem, Spanos (1991)

+ X Gaussian — Hermite polynomials:

po(x) =1, P1(x) =z, Y2(x)

Generalized chaos
* X uniform — Legendre polynomials
+ X Beta — Jacobi polynomials

+ X Gamma — Laguerre polynomials
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Xiu, Karniadakis (2002)
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Approximation of Y by orthogonal polynomials in X (d = 1) Ernst et al (2012)

Theorem: Density of polynomials in L?-X (@2)]

Assume that X possesses finite moments of all orders, and that Fx is continuous.
If the distribution function is uniquely defined by the sequence of its moments, then the polynomials are
densein L} (D).

» Notable exception: lognormal distribution!

Arbitrary chaos Wan and Karniadakis (2006); Oladyshkin and Nowak (2012)

5
4
3
» One can compute an orthogonal polynomial basis for any 2
distribution that fulfills the assumptions (e.g., with compact :
1
2
3
4

support)

By the way: the term polynomial chaos goes back to Wiener (1938)
— Use of the word "chaos" older than Chaos theory in mathematics! — !
(1938 vs 1977) Orth. polynomials for arbitrary distribution
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Polynomial chaos expansion (d > 1)

Model Surrogate model

Input
Output \ \ npu Coefficients

MPCE( )_ Z Cawa(X)
acA Multivariate polynomial

with tensor product basis functions
/ 1D polynomial in x; of degree a;

H 1/)(” where the multi-index o = (a1, ... , aq) defines the degree

and set of multi-indices A, e.g., total-degree basis of degree p:

d
A:{QGNd:ZaiSP}

i=1
« If for each X; the moment problem is uniquely solvable, then the multivariate polynomials are dense in
LZ}X (D) and this approximation converges in mean-square to Y’ Ernst et al (2012)
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How to compute a PCE?

Y = M(X) ~ MPE(X) = 3 catba(X)
acA
Ingredients of a PCE:

« (Basis functions {1 : o € N} defined by input distribution.)
+ Need to decide subset of multi-indices .A  N¢
» Need to choose points © € X C D (experimental design) and collect the corresponding model
evaluations y = M(x)
» Need to compute the coefficients ¢
— Projection:

ca = (M, Ya) integration in d dimensions

— Regression:

¢ = min Hy — o H2 (+ regularization) properties of ¥ are crucial
C

AT, ooy s
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Outline

Variance-based and derivative-based sensitivity analysis
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Sobol’-Hoeffding / ANOVA decomposition Hoeffding (1948); Sobol (1993)

Any M € Lfcx can be decomposed uniquely as a sum of terms of increasing complexity

MEX)=mo+ Y miX)+ > mag(Xi, Xp) 4 +ma (X, Xa)

1<i<d 1<i<j<d

where the terms satisfy [ m(X1)fx, (zx)dzr =0forallk € I C {1, ... ,d}.

Variance decomposition

Var [M(X)] = > Var[mi(X)]+ Y Var[mi;(Xi, X;)] + - + Var[ma,_a(X1, ..., Xa)]

1<i<d 1<i<j<d

— ANalysis Of VAriance decomposition
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Sobol’ indices

Variance decomposition

Var [M(X)] = > Var[mi(X)]+ Y Var[mi;(Xi, X;)] + - + Var[ma,_a(X1, ..., Xa)]

1<:i<d 1<i<j<d
=D == s1eI=

)

total variance

First-order Sobol’ index:
7 D )

Total Sobol” index: 1
s=5 > Var[my (X))

Jued
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PCE Q Sobol’ indices Sudret (2008)
The ANOVA decomposition of a PCE M™% (X)) = 3~ . catha(X) is given by

mi(X) = Y cata(X)

eio; >0,1
a;=0,j¢1 P constantin j ¢ I
From orthonormality in Lix it follows that

Var[mi(X)] = Y
azo; >0,0€1
a;=0,j¢1
and the total variance and the Sobol indices are given by

D=3, sl=5 Y so=1 3

a#0 a:a; >0, a:a; >0
o;=0,j7#i

Any tensor-product orthonormal basis, made from 1D bases that each contain the constant
function, allows the same construction
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Derivative-based global sensitivity measure (DGSM) Kucherenko et al. (2009)

Another sensitivity measure: DGSM

Vi_E{(aaﬁj(X)ﬂ :/D(f‘;g( %)) Ixt@yz = |2

Relation to Sobol’ indices: Sobol and Kucherenko (2009); Lamboni et al. (2013)

2

S®'D < Cp s

with Poincaré constant Cp of measure fx,dx;
— low-cost variable screening
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Outline

Poincaré constants and the associated differential operator

AT, oo meys
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The Poincaré constant in 1D

Definition: The Poincaré constant C'r associated to a measure p is the best possible constant C' with

/deu < C/(g')2du (1)

“A function with a small (weak) derivative (in the sense of 1)
is close to a constant function (in the sense of u).”

forall g € Hy with [ gdu = 0.

Useful for:
+ Bounding total Sobol’ indices Lamboni et al (2013)
» Convergence rate of Markov chains Pillaud-Vivien et al (2020)

Quantifying multimodality of p

In 1D, C'p (1) can be computed accurately for a large class of measures ! Roustant, Barthe, looss (2017)

A Risk, Safety &
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Eigenproblem for Poincaré differential operator Roustant, Barthe, looss (2017)

Assume that fx is supported on a bounded interval (a, b) and that fx (z) = e~V (®) with V continuous and
piecewise C" on [a, b].

Theorem: 1D Poincaré basis
Under this assumption, for the solutions of the eigenproblem
Ly :=9" V'Y’ = -y,
P'(a) =¢'(b) =0
it holds that
+ The eigenfunctions (v« ) x>0 form an orthonormal basis of L}X
* Eigenvalues: 0 = Ao < A1 < ... = 0
* Ao =0and ¢o(z) =1
» Cp(fx) = 5, and 4 attains equality in Eq. (1)

= T
|||III||
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Poincaré basis (1D) Roustant, Gamboa, looss (2020)

8 0.45
6 0.4
+ In general not polynomial . 03s

— Exception: fx Gaussian — Hermite polynomials
— fx uniform leads to cosine basis functions (Fourier basis)

+ Behavior similar to polynomials:
— 1 has k zeros, i.e., higher-order functions oscillate more

c If fx € C™, 2y, € C™ 1 (fx € C° by assumption) T T ]
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Poincaré basis (1D)

Special property

(9" 0h), =Mk lg,n)y, forallg € Hyy

» Consequence: the derivatives of the Poincaré basis form again an orthogonal basis of LfX, i.e.,, an
orthogonal system that is dense in Lfcx

Ak, ifj =k
0 else

<¢§,¢§c>fx = Ak (Y5, %0) = {

— Well suited for dealing with derivatives.

» The Poincaré basis is the only basis with this property! Lithen et al (2021, preprint)

Poincaré chaos expansions N. Lithen 14/26




Outline

Computing Poincaré chaos expansions
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Poincaré chaos expansion (Z 1D) Roustant, Gamboa, looss (2020)

Define the Poincaré chaos expansion (PoinCE) by

M(X) ~ MPE(X) = catba(X)
acA
with (¥a)ac.4 tensorized Poincaré basis associated to fx = Hle Ix;
+ Basis for L7, (D) — chaos expansion just like PCE
« In particular, coefficients of PoinCE yield moments and Sobol’ sensitivity indices

« Partial derivatives of multivariate basis functions are orthogonal: for all g € H}X,

0 0
<3Tﬂiwa’87’ig>fx = iy o 9) g
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Computation of DGSM from Poincaré coefficients Liithen et al (2021, preprint)

Proposition: DGSM formula for Poincaré chaos

Let M = Za ca®a be the expansion of M € H}X in the Poincaré basis. Then the DGSM index of M

with respect to X; is
Vi = Z )\i,ai (Ca)2

oo >0
This is an extension of a previous result for Hermite PCE. Sudret and Mai (2015)

We obtain lower and upper bounds to total partial variances:

ST () < SUD < Colfx)m = Y A (o),

acA:a; >0 a€EN:a; >0

||IIII||
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Poincaré derivative expansion Roustant, Gamboa, looss (2020)
PoinCE

M(@) = Y catha(®)

acA

An alternative way to compute the coefficients (cq)ac.4: Make use of model partial derivatives

PoinCE-der

) )
e M(@) ~ > a T Va(®)

acA,a; >0

 Theoretically co = ¢o for a € A with a;; > 0

+ In practice (when computed from data) they are not equal!
» Terms with o; = 0 vanish when differentiated w.r.t. x;
+ Fewer coefficients to estimate from same number of data points!
— Some coefficients cannot be estimated from a single partial derivative expansion: unnormalized Sobol indices
can be computed, but not e.g. variance

» Aggregate the coefficients from the partial derivative expansions to get the full picture

A Risk, Safety &
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Poincaré derivative expansion: Aggregation of coefficients Liithen et al (2021, preprint)

PoinCE-der-¢

S M@~ Y @ Lyl

8901-
acA,a; >0

+ PoinCE-der-i computes the coefficients corresponding to the multi-indices {a € A, a; > 0}

+ For each multi-index o« # 0, average over all active variables:

~8 avg 1 Z ~8 i
< <
- #i \_1 ! d_/al >0} i1<i<d,
a; >0

%« is not constant in x;
— The coefficients (¢a 5 a"g)aeA\o can be used for computing total variance and sensitivity indices

~8 ,avg

+ For surrogate modelling: Compute the remaining coefficient ¢ of the constant term by OLS on the

residual

A Risk, Sarety &
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Numerical example

Poincaré chaos expansions N. Lithen 18/26




Maximal annual flowrate

River downstream level
River upstream level

Length of river stretch

Application to dyke cost toy model

The model describes the cost in million euros given by
_ 1000
Y =1ss0+ [0.2 + 0.8 <1 — exp ?()} 1s<o+

where H, is the dyke height and S is the maximal annual overflow given by

(81m,<8 + Halm,>8)

0.6
S\ oz | T2 Ha G

BK,\/Zm—2u

truncated Gumbel 05

truncated Gaussian 0.4
Triangular §

. 5 0.3
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Methods for estimating sensitivity indices

Sobol’ indices

+ Sample-based estimation Janon et al (2014)
+ Through ANOVA decomposition

— Poincaré basis, coefficients computed through MC-projection Roustant, Gamboa, looss (2020)

- sparse regression Lithen et al (2021, preprint)

— Poincaré derivative basis, coefficients computed through MC-projection Roustant, Gamboa, looss (2020)

)

- sparse regression, aggregated Luthen et al (2021, preprint
— PCE basis, coefficients computed through sparse regression

DGSM indices

» Sample-based estimation Kucherenko et al (2009)

+ Analytical computation from Poincaré derivative basis, coefficients computed through sparse
regression Lithen et al (2021, preprint)

A Risk, Sarety &
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Results: Sobol’ indices — MC-projection vs sparse regression
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+ Projection underestimates the Sobol’ index, sparse regression gives more accurate estimates

» PoinCE-der estimates have a smaller variance than PoinCE estimates

= S
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Results: Sobol’ indices — PoinCE vs PCE and sample-based
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+ PoinCE-der outperforms PCE especially for low-importance variables (— screening)

+ Sample-based estimation shows large variability for important variables
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Results: DGSM indices
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* Poincaré-based estimate for DGSM underestimates the true value (Cpvi = . Af—;(ca)2)
plet3 i,

+ Sample-based DGSM more accurate
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Results: Total variance
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» PoinCE-der (aggregated coefficients) estimates the variance well
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Results: Performance as global surrogate model
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+ PoinCE-der estimates the variance well, but PCE gives a better approximation in terms of Lfcx -error
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Conclusion

+ Poincaré chaos expansions (PoinCE) are like PCE, but with a different basis consisting of the
eigenfunctions of the Poincaré differential operator

» Sobol’ indices and DGSM can be computed analytically from the PoinCE coefficients

+ The Poincaré basis is the only orthogonal basis for Lfcx (D) for which the partial derivatives form
again an orthogonal basis for the same space

» PoinCE is well suited to sensitivity analysis and to utilizing derivatives

Outlook:
+ Work in progress: Use model evaluations and derivatives at once for computing the coefficients (in the
spirit of gradient-enhanced PCE)
» Non-polynomial basis with special derivative property — usefulness for UQ in practice?

Thank you for your attention!
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