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Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions, https://arxiv.org/abs/2107.00394
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Poincaré chaos expansions: Topics

Black-box model
Surrogate modelling
Sensitivity analysis
Using derivative information
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Chaos expansions as surrogate models

Setting:
• Input random vector X with d independent components and joint distribution fX
• ModelM∈ L2

fX
(square-integrable)

• Output random variable Y =M(X)

We want to model random variable Y

Let (ψk)k∈N be a basis of L2
fX

. Then:

Y =M(X) =
∑
k∈N

ckψk(X)︸ ︷︷ ︸
surrogate model

For example:
• (Fourier expansion)
• Polynomial chaos expansion
• Poincaré chaos expansion
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Approximation of Y by orthogonal polynomials in X (d = 1)

Theorem: Density of polynomials in L2
fX

(D) Ernst et al (2012)

Assume that X possesses finite moments of all orders, and that FX is continuous.
If the distribution function is uniquely defined by the sequence of its moments, then the polynomials are
dense in L2

fX
(D).

Hermite chaos Wiener (1938); Ghanem, Spanos (1991)

• X Gaussian→ Hermite polynomials:

ψ0(x) = 1, ψ1(x) = x, ψ2(x) = x2 − 1
2 , . . .

Generalized chaos Xiu, Karniadakis (2002)

• X uniform→ Legendre polynomials

• X Beta→ Jacobi polynomials

• X Gamma→ Laguerre polynomials
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Approximation of Y by orthogonal polynomials in X (d = 1) Ernst et al (2012)

Theorem: Density of polynomials in L2
fX

(D)

Assume that X possesses finite moments of all orders, and that FX is continuous.
If the distribution function is uniquely defined by the sequence of its moments, then the polynomials are
dense in L2

fX
(D).

• Notable exception: lognormal distribution!

Arbitrary chaos Wan and Karniadakis (2006); Oladyshkin and Nowak (2012)

• One can compute an orthogonal polynomial basis for any
distribution that fulfills the assumptions (e.g., with compact
support)

By the way: the term polynomial chaos goes back to Wiener (1938)
→ Use of the word "chaos" older than Chaos theory in mathematics!
(1938 vs 1977)
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Polynomial chaos expansion (d ≥ 1)

Y =M(X) ≈ MPCE(X) =
∑
α∈A

cαψα(X)

Model
InputOutput

Surrogate model

Coefficients

Multivariate polynomial
with tensor product basis functions

ψα(x) =
d∏
i=1

ψ
(i)
αi (xi), where the multi-index α = (α1, . . . , αd) defines the degree

1D polynomial in xi of degree αi

and set of multi-indices A, e.g., total-degree basis of degree p:

A = {α ∈ Nd :
d∑
i=1

αi ≤ p}

• If for each Xi the moment problem is uniquely solvable, then the multivariate polynomials are dense in
L2
fX

(D) and this approximation converges in mean-square to Y Ernst et al (2012)
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How to compute a PCE?

Y =M(X) ≈MPCE(X) =
∑
α∈A

cαψα(X)

Ingredients of a PCE:
• (Basis functions {ψα : α ∈ Nd} defined by input distribution.)

• Need to decide subset of multi-indices A ⊂ Nd

• Need to choose points x ∈ X ⊂ D (experimental design) and collect the corresponding model
evaluations y =M(x)

• Need to compute the coefficients c

– Projection:

cα = 〈M, ψα〉 integration in d dimensions

– Regression:

c = min
c′

∥∥y −Ψc′
∥∥

2
(+ regularization) properties of Ψ are crucial
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Sobol’-Hoeffding / ANOVA decomposition Hoeffding (1948); Sobol (1993)

AnyM∈ L2
fX

can be decomposed uniquely as a sum of terms of increasing complexity

M(X) = m0 +
∑

1≤i≤d

mi(Xi) +
∑

1≤i<j≤d

mi,j(Xi, Xj) + · · ·+m1,...,d(X1, . . . , Xd)

where the terms satisfy
∫
mI(XI)fXk (xk)dxk = 0 for all k ∈ I ⊂ {1, . . . , d}.

Variance decomposition

Var [M(X)] =
∑

1≤i≤d

Var [mi(Xi)] +
∑

1≤i<j≤d

Var [mi,j(Xi, Xj)] + · · ·+ Var [m1,...,d(X1, . . . , Xd)]

→ ANalysis Of VAriance decomposition
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Sobol’ indices

Variance decomposition

Var [M(X)]︸ ︷︷ ︸
:=D

=
∑

1≤i≤d

Var [mi(Xi)] +
∑

1≤i<j≤d

Var [mi,j(Xi, Xj)] + · · ·+ Var [m1,...,d(X1, . . . , Xd)]

total variance

First-order Sobol’ index:

S1
i = Var [mi(Xi)]

D
,

Total Sobol’ index:
S tot
i = 1

D

∑
J:i∈J

Var [mJ(XJ)]

Poincaré chaos expansions N. Lüthen 8 / 26



PCE � Sobol’ indices Sudret (2008)

The ANOVA decomposition of a PCEMPCE(X) =
∑

α∈Nd cαψα(X) is given by

mI(X) :=
∑

α:αi>0,i∈I,
αj=0,j /∈I

cαψα(X)

ψα constant in j /∈ I

From orthonormality in L2
fX

it follows that

Var [mI(X)] =
∑

α:αi>0,i∈I
αj=0,j /∈I

c2
α

and the total variance and the Sobol’ indices are given by

D =
∑
α 6=0

c2
α, S1

i = 1
D

∑
α:αi>0,
αj=0,j 6=i

c2
α, S tot

i = 1
D

∑
α:αi>0

c2
α

Any tensor-product orthonormal basis, made from 1D bases that each contain the constant
function, allows the same construction
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Derivative-based global sensitivity measure (DGSM) Kucherenko et al. (2009)

Another sensitivity measure: DGSM

νi = E

[(
∂M
∂xi

(X)
)2
]

=
∫
D

(
∂M
∂xi

(x)
)2
fX(x)dx =

∥∥∥∂M
∂xi

∥∥∥2
.

Relation to Sobol’ indices: Sobol and Kucherenko (2009); Lamboni et al. (2013)

S tot
i D ≤ CP νi

with Poincaré constant CP of measure fXidxi
→ low-cost variable screening
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The Poincaré constant in 1D
Definition: The Poincaré constant CP associated to a measure µ is the best possible constant C with∫

g2dµ ≤ C
∫

(g′)2dµ (1)

for all g ∈ H1
µ with

∫
gdµ = 0.

“A function with a small (weak) derivative (in the sense of µ)
is close to a constant function (in the sense of µ).”

Useful for:

• Bounding total Sobol’ indices Lamboni et al (2013)

• Convergence rate of Markov chains Pillaud-Vivien et al (2020)

Quantifying multimodality of µ

• . . .

In 1D, CP (µ) can be computed accurately for a large class of measures µ! Roustant, Barthe, Iooss (2017)
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Eigenproblem for Poincaré differential operator Roustant, Barthe, Iooss (2017)

Assumption

Assume that fX is supported on a bounded interval (a, b) and that fX(x) = e−V (x) with V continuous and
piecewise C1 on [a, b].

Theorem: 1D Poincaré basis

Under this assumption, for the solutions of the eigenproblem

Lψ := ψ′′ − V ′ψ′ = −λψ,
ψ′(a) = ψ′(b) = 0

it holds that
• The eigenfunctions (ψk)k≥0 form an orthonormal basis of L2

fX

• Eigenvalues: 0 = λ0 < λ1 < . . .→∞
• λ0 = 0 and ψ0(x) = 1
• CP (fX) = 1

λ1
, and ψ1 attains equality in Eq. (1)
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Poincaré basis (1D) Roustant, Gamboa, Iooss (2020)

• In general not polynomial
– Exception: fX Gaussian→ Hermite polynomials
– fX uniform leads to cosine basis functions (Fourier basis)

• Behavior similar to polynomials:
– ψk has k zeros, i.e., higher-order functions oscillate more

• If fX ∈ Cm, ψk ∈ Cm+1 (fX ∈ C0 by assumption) -3 -2 -1 0 1 2 3
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Poincaré basis (1D)

Special property

〈
g′, ψ′k

〉
fX

= λk 〈g, ψk〉fX for all g ∈ H1
fX

• Consequence: the derivatives of the Poincaré basis form again an orthogonal basis of L2
fX

, i.e., an
orthogonal system that is dense in L2

fX
:

〈
ψ′j , ψ

′
k

〉
fX

= λk 〈ψj , ψk〉fX =

{
λk, if j = k

0 else

→Well suited for dealing with derivatives.

• The Poincaré basis is the only basis with this property! Lüthen et al (2021, preprint)
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Poincaré chaos expansion (≥ 1D) Roustant, Gamboa, Iooss (2020)

Define the Poincaré chaos expansion (PoinCE) by

M(X) ≈ MPoinCE(X) =
∑
α∈A

cαψα(X)

with (ψα)α∈A tensorized Poincaré basis associated to fX =
∏d

i=1 fXi

• Basis for L2
fX

(D)→ chaos expansion just like PCE

• In particular, coefficients of PoinCE yield moments and Sobol’ sensitivity indices

• Partial derivatives of multivariate basis functions are orthogonal: for all g ∈ H1
fX

,〈
∂

∂xi
ψα,

∂

∂xi
g
〉
fX

= λi,αi 〈ψα, g〉fX
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Computation of DGSM from Poincaré coefficients Lüthen et al (2021, preprint)

Proposition: DGSM formula for Poincaré chaos

LetM =
∑

α
cαψα be the expansion ofM∈ H1

fX
in the Poincaré basis. Then the DGSM index ofM

with respect to Xi is
νi =

∑
α:αi>0

λi,αi(cα)2

This is an extension of a previous result for Hermite PCE. Sudret and Mai (2015)

We obtain lower and upper bounds to total partial variances:∑
α∈A:αi>0

(cα)2 ≤ Stot
i D ≤ CP (fXi) νi =

∑
α∈Nd:αi>0

λi,αi
λi,1

(cα)2 .
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Poincaré derivative expansion Roustant, Gamboa, Iooss (2020)

PoinCE

M(x) ≈
∑
α∈A

cαψα(x)

An alternative way to compute the coefficients (cα)α∈A: Make use of model partial derivatives

PoinCE-der
∂

∂xi
M(x) ≈

∑
α∈A,αi>0

c̃α
∂

∂xi
ψα(x)

• Theoretically cα = c̃α for α ∈ A with αi > 0
• In practice (when computed from data) they are not equal!
• Terms with αi = 0 vanish when differentiated w.r.t. xi

+ Fewer coefficients to estimate from same number of data points!
− Some coefficients cannot be estimated from a single partial derivative expansion: unnormalized Sobol indices

can be computed, but not e.g. variance

• Aggregate the coefficients from the partial derivative expansions to get the full picture
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Poincaré derivative expansion: Aggregation of coefficients Lüthen et al (2021, preprint)

PoinCE-der-i

∂

∂xi
M(x) ≈

∑
α∈A,αi>0

c̃∂,iα
∂

∂xi
ψα(x)

• PoinCE-der-i computes the coefficients corresponding to the multi-indices {α ∈ A, αi > 0}
• For each multi-index α 6= 0, average over all active variables:

c̃ ∂,avg
α = 1

#{i : 1 ≤ i ≤ d, αi > 0︸ ︷︷ ︸
ψα is not constant in xi

}
∑

i:1≤i≤d,
αi>0

c̃ ∂,iα

→ The coefficients (c̃ ∂,avg
α )α∈A\0 can be used for computing total variance and sensitivity indices

• For surrogate modelling: Compute the remaining coefficient c̃ ∂,avg
0 of the constant term by OLS on the

residual
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Application to dyke cost toy model

The model describes the cost in million euros given by

Y = 1S>0 +
[
0.2 + 0.8

(
1− exp−

1000
S4
)]

1S≤0 + 1
20 (81Hd≤8 +Hd1Hd>8)

where Hd is the dyke height and S is the maximal annual overflow given by

S =

(
Q

BKs

√
Zm−Zv

L

)0.6

+ Zv −Hd − Cb

Q Maximal annual flowrate truncated Gumbel

Ks Strickler coefficient truncated Gaussian

Zv River downstream level Triangular

Zm River upstream level Triangular

Hd Dyke height Uniform

Cb Bank level Triangular

L Length of river stretch Triangular

B River width Triangular
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Methods for estimating sensitivity indices

Sobol’ indices

• Sample-based estimation Janon et al (2014)

• Through ANOVA decomposition
– Poincaré basis, coefficients computed through MC-projection Roustant, Gamboa, Iooss (2020)
– sparse regression Lüthen et al (2021, preprint)
– Poincaré derivative basis, coefficients computed through MC-projection Roustant, Gamboa, Iooss (2020)
– sparse regression, aggregated Lüthen et al (2021, preprint)
– PCE basis, coefficients computed through sparse regression

DGSM indices

• Sample-based estimation Kucherenko et al (2009)

• Analytical computation from Poincaré derivative basis, coefficients computed through sparse
regression Lüthen et al (2021, preprint)
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Results: Sobol’ indices – MC-projection vs sparse regression

• Projection underestimates the Sobol’ index, sparse regression gives more accurate estimates

• PoinCE-der estimates have a smaller variance than PoinCE estimates
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Results: Sobol’ indices – PoinCE vs PCE and sample-based

• PoinCE-der outperforms PCE especially for low-importance variables (→ screening)

• Sample-based estimation shows large variability for important variables
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Results: DGSM indices
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• Poincaré-based estimate for DGSM underestimates the true value (CP νi =
∑

α:αi>0
λi,αi
λi,1

(cα)2)

• Sample-based DGSM more accurate
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Results: Total variance

Variance

• PoinCE-der (aggregated coefficients) estimates the variance well
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Results: Performance as global surrogate model

Relative mean squared error

=
EX
[(
M(X)− M̂(X)

)2
]

Var [M(X)]

Relative mean-squared error Number of nonzeros in expansion

• PoinCE-der estimates the variance well, but PCE gives a better approximation in terms of L2
fX

-error
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Conclusion

• Poincaré chaos expansions (PoinCE) are like PCE, but with a different basis consisting of the
eigenfunctions of the Poincaré differential operator

• Sobol’ indices and DGSM can be computed analytically from the PoinCE coefficients

• The Poincaré basis is the only orthogonal basis for L2
fX

(D) for which the partial derivatives form
again an orthogonal basis for the same space

• PoinCE is well suited to sensitivity analysis and to utilizing derivatives

Outlook:

• Work in progress: Use model evaluations and derivatives at once for computing the coefficients (in the
spirit of gradient-enhanced PCE)

• Non-polynomial basis with special derivative property – usefulness for UQ in practice?

Thank you for your attention!
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