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UNCERTAINTY	:		
represenCng	graded	belief.	

•  AN	AGENT	IS	UNCERTAIN	ABOUT	A	PROPOSITION	IF	
(S)HE	DOES	NOT	KNOW	ITS	TRUTH	VALUE	
–  Examples	

•  The	probability	that	the	trip	is	more	than	one	hour	long	is	0.7.	
•  	It	is	quite	possible	it	snows	to-morrow.	
•  The	agent	has	no	certainty	that	Jean	comes	to	the	meeCng	

•  HOW	TO	EVALUATE	THE	PROBABILITY,	THE	
POSSIBILITY,	THE	CERTAINTY,	THAT	A	PROPOSITION	
IS	TRUE	OR	FALSE	



Origins	of	uncertainty	

•  The	variability	of	natural	phenomena	:	
randomness.	
–  Coins,	dice…:	what	about	the	outcome	of	the	next	

throw?		
•  The	lack	of	informaCon:	incompleteness	
–  because	of	informaCon	is	o\en	lacking,	knowledge	

about	issues	of	interest	is	generally	not	perfect.	
•  ConflicCng	tesCmonies	or	reports:	inconsistency	
–  The	more	sources,	the	more	likely	the	inconsistency	



Probability	Representa:ons	(on	finite	sets)	
•  A	 finite	 set	 S	 with	 n	 elements:	 A	 probability	measure	 is	

characterized	by	a	 set	of	non	negaCve	weights	p1,	…,	pn,	
such	that	∑i=1,n	pi	=	1. 	 		
–  pi	=	probability	of	state	si	

•  Possible	meanings	of	a	degree	of	probability:		
–  CounCng	 favourable	 cases	 for	 si	 over	 the	 number	 of	
possible	cases	assuming	symmetry	(coins,	dice,	cards)	

–  Frequencies	 from	 sta3s3cal	 informa3on:	 pi	 =	 limit	
frequency	of	occurrence	of	si	(Objec:ve	probabili:es)	

– Money	 involved	 in	 a	 be7ng	 scheme	 (Subjec:ve	
probabili:es)	



Remarks	on	using	a	single	probability	distribu:on	
•  Computa:onally	simple	:	P(A)	=	∑s	∈	A	p(s)	
•  Conven:ons:	P(A)	=	0	iff	A	impossible;		
	P(A)	=	1	iff	A	is	certain;	
		Usually	P(A)	=	1/2	for	ignorance		
•  	Meaning	:		
– ObjecCve	probability	is	generic	knowledge	
(staCsCcs	from	a	populaCon)	

– SubjecCve	probability	on	singular	events	
(degrees	of	belief)	



The	two	roles	of	probability	

Probability	theory	is	generally	used	for	
represen:ng	uncertainty	due	to	the	two	
types	of	issues:	

1.   Randomness:	capturing	variability	through	
repeated	observaCons.	

2.   Par:al	knowledge:	represenCng	belief	in	the	
face	of	informaCon	defect.	

	
Note	:	these	two	issues	are	not	mutually	
exclusive.		



Measuring		beliefs	

Probability	theory		for	uncertainty	whatever	its	origin	
1.   Frequencies	capture	variability	(Hacking	principle)	
Degrees	of	belief	on	n+1th	trial	outcome	are	equated	to	frequencies	of	
the	n	previous	observaCons	of	a	repeatable	phenomenon:	P(A)	=	F(A)	
	

2.						Belief	in	unique	events		due	to	lack	of	informaCon	
–  via	being	on	lojery	Cckets	for	non-repeatable	events	
–  	by	analogical	reasoning	using	thought	frequenCst	experiment		

(balls	in	an	urn)	

			
	



SUBJECTIVE	PROBABILITIES		
(Bruno	de	FineT,	1935)	

•  pi	=	belief	degree	of	an	agent	on	the	occurrence	of	si	
•  measured	as	the	price	of	a	lojery	Ccket	with	reward	1	€	if	

state	is	si	in	a	being	game	
•  Rules	of	the	game:		
–  Banker	sells	Cckets;	gambler	proposes	prices	pi	
–  They	exchange	roles	if	price	pi	is	too	low	

•  Why	a	belief	state	is	a	single	distribu:on	(∑j	pj=	1):	
–  Assume	player	buys	all	lojery	Cckets	i	=	1,	…m.	
–  If	state	sj	is	observed,	the	gambler	gain	is	1	–	∑j	pj	and	
∑j	pj–	1	for	the	banker	

–  if	∑pj	>	1	gambler	always	loses	money	;		
–  if	∑pj	<	1	banker	exchanges	roles	with	gambler	
–  Only	∑j	pj=	1	is	raConal	



Bayesian	probability	

•  Bayesian	postulate	:	any	state	of	knowledge	
should	be	represented	by	a	single	probability	
distribuCon:		
– Either	via	an	exchangeable	being	procedure	
– Or	by	using	frequencies	(real	or	thought	ones)	

•  Not	to	do	it	is	considered	to	be	irraConal	(sure	
money	loss,	Dutch	book	argument)	



What	is	the	expressive	power	of	probability	
distribu:ons	

Consequence	of	the	Bayesian	credo:		in	case	of	ignorance	
one	is	bound	to	use	a	uniform	distribuCon.	

	But		
Do	uniform	distribu3ons	represent	ignorance	?		
1.   Ambiguity	:	do	uniform	bets	express	knowledge	of	

randomness	or	plain	ignorance?		
2.   Instability	:	the	shape	of	a	probability	distribuCon	is	not	

scale-invariant,	while	ignorance	is.	
3.   Empirical	falsifica:on:	When	informaCon	is	missing,	

decision-makers	do	not	always	choose	according	to	a	
single	subjecCve	probability	(Ellsberg	paradox).			



Laplace	principle	of	insufficient	
reason	

•  	What	is	EQUIPOSSIBLE	must	be	EQUIPROBABLE	

•  He	states	the	problem	in	such	a	way	make	the	elementary	
events	equiprobable	

–  Argument	of	preserved	symmetry	
–  Also	jus3fied	by	the	principle	of	maximal	entropy		
	
	
Hence	it	is	easy	to	believe	that	uniform	distribu5ons	
represent	ignorance	



Single	distribu:ons	do	not	dis:nguish	between	
incompleteness	and	variability	

•  VARIABILITY:	Precisely	observed	random	observaCons	
•  INCOMPLETENESS:	Missing	informaCon	
•  Example:	uniform	probability	on	facets	of	a	die	
–  A	fair	die	tested	many	3mes:	Values	are	known	to	be	

equiprobable	
–  A	new	die	never	tested:	No	argument	in	favour	of	a	

hypothesis	against	other	ones,	but	frequencies	are	
unknown.	

•  BOTH	 CASES	 LEAD	 TO	 TOTAL	 INDETERMINACY	 ABOUT	
THE	NEXT	THROW	(!	uniform	distribu3on)	

•  BUT	THEY	DIFFER	AS	TO	THE	QUANTITY	OF	AVAILABLE	
INFORMATION	



The	instability	of	uniform	probabilis:c	
representa:ons	of	ignorance	

•  Suppose	different	domains	U1	and	U2	are	used	to	
describe	the	same	problem	(e.g.	different	vocabularies)	

•  So	there	is	a	most	refined	state	space	U	and	different	
one-to-many	maps	from	U	to	U1	and	U2	

•  Claim:	a	uniform	probability	distribuCon	on	U1	is	
generally	not	compaCble	with	a	uniform	probability	on	
U2.		
–  This	is	natural	if	the	distribuCons	represent	
frequencies.	

–  This	is	paradoxical	if	ignorance	is	represented	by	a	
uniform	distribuCon	



THE	PARADOX	OF	IGNORANCE:	finite	case		
•  Case	1:								life	outside	earth/	no	life	 		

–  ignorant's	response 	 	1/2 					1/2	

•  Case	2:				Animal	life	/	vegetal	only/	no	life	
–  ignorant's	response		 	1/3 	1/3			1/3	

•  They	are	inconsistent	answers:		
–  case	1	from	case	2	:	P(life)	=	2/3	>	P(no	life)	
–  case	2	from	case	1:	P(Animal	life)	=	1/4	<	P(no	life)	

•  ignorance	produces	informa:on	!!!!!		
•  Uniform	probabili5es	on	dis5nct	representa5ons	of	the	

state	space	are	inconsistent.		
•  Conclusion	:	a	probability	distribu3on	cannot	model	

incompleteness	



THE	PARADOX	OF	IGNORANCE:	infinite	case	

You	have	the	same	knowledge	about	x	>0		as	about	y	=	
f(x)	(f	bijec3on	non	linear		such	as	1/x,	or	Logx…).		
•  x	in	[a,	b]	is	equivalent	to	1/x	in	[1/b,	1/a]	
•  But	a	uniform	distribu3on	on	[a,	b]	is	incompa3ble	
with	a	uniform	distribu3on	on	[1/b,	1/a]	:	no	scale	
invariance!	

Conclusion:	uniform	probability	distribuCons	do	not	
represent	ignorance.	
(It	does	not	apply	to	frequen3st	distribu3ons)	



LIMITATIONS	OF	BAYESIAN	PROBABILITY	FOR	THE	
REPRESENTATION	OF	IGNORANCE	

•  Ignorance:	iden3cal	belief	in	any	event	different	from	the	sure	
or	the	impossible	ones		

•  A	single	probability	cannot	represent	ignorance:	except	on	a	
2-element	set,	the	funcCon	g(A)	=	1/2	∀A	≠	S,	Ø,	is	NOT	a	
probability	measure.	

•  In	the	life	on	other	planets	example:	6	possible	events	that	
cannot	have	the	same	probability.	



Ellsberg	Paradox	
•  Savage	claims	that	raConal	decision-makers	choose	according	to	

expected	uClity	with	respect	to	a	subjecCve	probability		
•  Counterexample:An	Urn	containing		

–  1/3	red	balls	 	(pR	=	1/3)	
–  2/3	black	or	white	balls	(pW	+	pB	=	2/3)	

•  For	the	ignorant	Bayesian:	pR	=	pW	=	pB	=	1/3.	

•  The	game	is	to	choose	between	games	where	you	pick	a	ball	and	
win	or	lose	some	money	depending	on	the	outcome.	

•  Gambles	should	be	prefered	according	to	their	Expected	u:lity	:	
ua(R)pR	+ua(W)pW	+	ua(B)pB		

												based	on	a	subjecCve	probability	dstribuCon.	
	
	



Ellsberg	Paradox	
1.  Choose	between	two	bets	

B1:	Win	1$	if	red	(1/3)	and	0$	otherwise	(2/3)	
B2:	Win	1$	if	white	(≤	2/3)	and	0$	otherwise		

	Most	people	prefer	B1	to	B2	

2.  	Choose	between	two	other	bets	(just	add	1$	on	Black)	
B3:	Win	1$	if	red	or	black	(≥	1/3)	and	0$	if	white	
B4:	Win	1	$	if	black	or	white	(2/3)	and	0$	if	red	(1/3)		

	Most	people	prefer	B4	to	B3	
	
But	this	is	overwhelming	empirical	evidence		that	people	make	

decisions	in	contradic:on	with	u:lity	theory	based	on	a	subjec:ve	
probability	



Ellsberg	Paradox	
•  Let	0	<	u(0)	<	u(1)	be	the	uCliCes	of	gain.	
•  If	decision	is	made	according	to	a	subjecCve	probability	

assessment	for	red	black	and	white:	(1/3,	pB,	pW):	
–  B1	>	B2:		
				EU(B1)	=	u(1)/3	+	2u(0)/3	>	EU(B2)	=	u(0)/3	+u(1)pw+u(0)pB	
–  B4	>	B3:	
				EU(B4)	=	u(0)/3	+	2u(1)/3	>	EU(G)	=	u(1)	(1/3	+	pB)	+u(0)pW 
⇒ (summing,	as	pB+pW=	2/3)	2(u(0)	+	u(1))/3	>	2(u(0)	+	u(1))/3:	

CONTRADICTION!	
•  Such	 an	 agent	 cannot	 reason	 with	 a	 unique	 probability	

distribuCon:	Viola:on	of	the	sure	thing	principle.	



The	sure	thing	principle	
•  An	act	a	is	a	funcCon	from	states	S	to	consequences	X:		
–  If	the	state		is	s	∈ S	then	consequence	of	a	is	a(s)	∈ X	
–  a1	≥	a2	iff	EU(a1)	≥	EU(a2)	

•  Ordering	acts	using	expected	u3lity	sa3sfies	the	property	that	
the	preference	of	a1	over	a2	does	not	depend	on	states	where	
both	acts	have	the	same	consequences.	

•  Example:	
–  a1(s)	=	1	if	s	in	A,	0	otherwise,	then	EU(a1)	=	P(A)	
–  a2(s)	=	1	if	s	in	B,	0	otherwise	then	EU(a2)	=	P(B)	
–  C	disjoint	from	A	and	B	

•  STP:		A	≥	B	if	and	only	if	A	∪ C	≥	B	∪ C	



When	informa:on	is	missing,	decision-makers	do	not	
always	choose	according	to	a	single	subjec:ve	probability	
•  Plausible	 Explana3on	 of	 Ellsberg	 paradox:	 In	 the	 face	 of	

ignorance,	the	decision	maker	is	pessimisCc.		
–  In	the	first	choice,	agent	supposes	pw	=	0:	no	white	ball		
			EU(B1)	=	u(1)/3	+	2u(0)/3	>	EU(B2)	=	u(0)	
–  In	the	2d	choice,	agent	supposes	pB	=	0:	no	black	ball	
EU(B4)	=	u(0)/3	+	2u(1)/3	>	EU(B3)	=	2u(0)/3	+	u(1)/3		
	

•  The	 agent	 does	 not	 use	 the	 same	 probability	 in	 both	
cases	(because	of	pessimism):		
–  the	subjec:ve	probability	depends	on	the	proposed	game.`	
–  The	epistemic	state	is	a	family	of	probability	distribu:ons	
–  Ranking	decisions	by	the	lower	expecta:on		



Summary	on	expressiveness	limita:ons	of	
subjec:ve	probability	distribu:ons		

•  The	Bayesian	dogma	that	any	state	of	knowledge	can	be	
represented	by	a	single	probability	is	due	to	the	
exchangeable	being	framework	
–  Cannot	disCnguish	randomness	from	a	lack	of	knowledge	in	the	

computaCons.	

•  RepresentaCons	by	single	probability	distribuCons	are	
language-	(or	scale-)	sensiCve	

•  When	informaCon	is	missing,	decision-makers	do	not	
always	choose	according	to	a	single	subjecCve	probability.		



Main	issue	with	single	probability	
measures	

•  With	a	probability	measure	it	is	impossible	to	
disCnguish	between	
– Disbelief	in	A	(there	is	strong	evidence	against	A)	
– Lack	of	belief	in	A	(no	evidence	in	favor	of	A)	

	 	 	 	because	P(Ac)	=	1	–	P(A)	
•  Ignorance=	no	evidence	for	nor	against	A.	
•  We	need	two	set	funcCons,	one	for	certainty	
one	for	plausibility.	



A	GENERAL	SETTING	FOR	REPRESENTING	GRADED	
PLAUSIBILITY	AND	CERTAINTY	

•  2	monotonic	set-funcCons	Pl	and	Cr	from	E	to	
[0,1]	called	plausibility	and	certainty	funcCons	
–  	generalize	probability	funcCons	(Pl	=	Cr	!	P).	

•  Conven:ons:		
–  Pl(A)	=	0	"impossible"	;		
–  Cr(A)	=	1		"certain"	
–  Pl(A)	=1	;	Cr(A)	=	0		"ignorance,	Lack	of	belief	"								

	 	 	 	 				(no	informa:on)	
–  Cr(A)	≤ Pl(A)	"certain	implies	plausible"	
–  Pl(A)	=	1 -	Cr(Ac) 	duality	certain/plausible	
	



How	to	represent	parCal	ignorance?	

•  Using	a	subset	of	possible	mutually	exclusive	
values	E	for	the	variable	x	on	S:	«	x	in	E	»	
	 	 	 	E	is	an	epistemic	state	

•  E	can	be	a	fuzzy	set	to	express	that	some	
states	are	more	possible	than	others	

•  Incomplete	frequenCst	knowledge:	epistemic	
state	P	on	frequenCst	distribuCons	P:	
typically	is	a	convex	set	of	probabili3es		

																											(credal	set)	



How	to	represent	belief	?	
•  Using	a	credal	set		P: 	To	each	event	A	is	ajached	a	

probability	interval	[P*(A),	P*(A)]	such	that		
–  Cr(A)	=	P*(A)	=	inf{P(A),	P∈	P}	
–  Pl(A)	=	P*(A)	=	sup{P(A),	P∈	P}	=	1	–	P*(Ac)		

•  Subjec:vist	interpreta:on	:		P*(A)	is	a	degree	of	belief	
measured	by	the	maximal	price	for	buying	a	lojery	Ccket	

•  with	no	exchangeability	assumpCon	(Walley).	
P*(A)	=minimal	price	for	selling	a	lojery	Ccket		

≥	P*(A)	



Special	cases	
•  Boolean	necessity/possibility	func:ons	based	on	epistemic	state	E	

	 	N(A)	=	1	if	E	⊆ A,	0	otherwise	(for	belief)	
	 	Π(A)	=	1	–	N(Ac)	=	1	if	E	∩ A	≠	Ø,	0	otherwise	(for	plausibility	
Represents	a	credal	set	P =	{P:	P(E)	=	1}	
	

•  Graded	necessity/possibility	func:ons	based	on	fuzzy	epistemic	
state	E:	

Π(A)	=	maxs∈A	π(s); 	 	Ν(A)	=	1	–	Π(Ac)	
Represents	a	credal	set	P =	{P:	P(A)	≥	Ν(A)	for	all	events	A}	

	
•  Using	a	random	epistemic	state	(Dempster-Shafer),	a	probability	

distribuCon	m	over	epistemic	states:		
–  Bel(A)	=					∑						m(Ei)	(expected	necessity)	 	 	Pl(A)	=	1	–	Bel(Ac)	
	 	 	Ei	⊆	A,	Ei	≠	Ø	

Represents	a	credal	set	P =	{P:	P(A)	≥	Bel(A)	for	all	events	A}	
	



BeTng	rates	vs.	States	of	Knowledge	
•  Following	Smets,	one	may	dis3nguish	two	representa3on	

levels	
–  The	credal	level:	represen3ng	the	belief	state	of	the	agent,	

accoun3ng	for	par3al	ignorance	(	using	belief	func3ons)	
–  The	be?ng	level:	represen3ng	excnageable		be7ng	rates	to	form	

a	probability	func3on	and	compute	expected	u3lity.	
	
•  Be7ng	rates	are	induced	by	belief	states,	but	are	not	in	

one-to-one	correspondence	with	them	:	several	states	of	
knowledge	may	lead	to	the	same	being	rates.	
–  For	instance,	ignorance	and	randomness	lead	to	uniform	be7ng	

rates.		
•  One	may	want	to	derive	a	beTng	probability	from	a	

belief	func:on	



Why	not	max	entropy	?		
•  Suppose	a	person	assesses		belief	that	a	coin	falls	on	head	(H)	

and	tails	(T).	
•  Cannot	assess	precise	probabiliCes,	only	belief	degrees	as	

lower	bounds	
•  Suppose	he	gives		Cr(H)	=	0.4,	Cr(T)	=	0.1	(lower	probabiliCes),	

indicaCng	a	preference	for	H	
•  Maxent	gives	P(H)	=	P(T)	=	0.5		
When	a	credal	set	contains	the	uniform	distribu3on,	maxent	
always	gives	it.	
	It	does	not	reflect	the	magnitudes	of	belief	degrees.	
	



Being	based	on	a	belief	funcCon	
•  According	to	Smets	
–  An	agent	has	state	of	knowledge	described	by	a	mass	
funcCon	m.	

–  The	agent	ranks	decision	using	expected	uClity	
•  Generalized	Laplace	principle:		
–  Select	an	epistemic	state	E	with	probability	m(E)	
–  Select	an	element	at	random	in	E	(uniform	on	E)	

•  The	being	probability	used	by	the	agent	is		
	 	betp(s)	=	∑{m(E)/|E|,	s	∈	E}	
•  It	is	the	Shapley	value	of	the	belief	funcCon	Bel,	
and	the	center	of	gravity	of	its	credal	set.		



Maxent	vs.	Shapley	value	
	

 
•  On	the	problem	of	Head	vs.	Tail	

assessments		based	on		lower	probabiliCes		
														Cr(H)	=	0.4,	Cr(T)	=	0.1	:	

	
•  Maxent	:	Pr(H)	=Pr(T)	=		0.5		
•  Shapley	value	:		
Pr(H)	=	(Cr(H)	+1-	Cr(T))/2	=	(0.4+	1-0.1)/2	=	0.65	
						Pr(T)	=	0.35	
	
	
	



Maxent	vs.	Shapley	value	
	

D.	Dubois,	A.	Gilio	and	G.	Kern-Isberner,	Int.	J.	of	Approx.	Reasoning,	47(3):	333-351	(2008)	

•  Hypothesis		H,	piece	of	evidence	E	
•  Suppose	we	know	probabiliCes	P(E|H)	=	a	and	
P(E|Hc)	=	b	

•  We	do	not	have	any	prior	probability	on	H.			
•  Credal	set	P =	{P:	P(E|H)	=	a	and	P(E|Hc)	=	b}	
•  How	to	compute	the	posterior	P(H|E)	?	
–  Shapley	value:	P(H|E)	=	a/(a+b)	(like	uniform	prior)	
– Maxent:	P(H|E)	=f(a)/(f(a)+f(b))	with		
						f(x)	=		[x/(1-x)](1-x)		Why	?????				



SUBJECTIVE	POSSIBILITY	DISTRIBUTIONS	

–  There	are	clearly	several	belief	func3ons	with	a	prescribed	
Shapley	value	P.		

•  Consider	the	least	informa:ve	of	those,	in	the	sense	of	a	
non-specificity	index	(expected	cardinality	of	the	random	
set)	:	I(m)	=	∑	Α ⊆ Ω  	m(A)⋅card(A).		

•  Also	the	belief	funcCon	having	the	least	specific	contour	
funcCon	πm(x)	=	∑	x	∈	E	m(E)	among	the	isopignisCc	ones		

•  RESULT	:		The	least	informaCve	belief	funcCon	whose	Shapley	
value	is	P	is	unique	and	consonant.		



SUBJECTIVE	POSSIBILITY	DISTRIBUTIONS	

•  The	least	specific	belief	funcCon	π*	in	the	sense	of	maximizing	
I(m)	is	characterized	by	

                  π*i	=	Σj=i,…n	min(pj,	pi).	

•  It	is	a		probability-possibility	transformaCon,	previously	
suggested	in	1983:	This	is	the	unique	possibility	distribu3on	
whose	pignis3c	(Laplacean)	probability	is	p.	



Revision:	Credal	vs.	Being	levels	

•  Suppose	a	new	sure	informaCon	C	is	obtained	
•  Since	being	rates	cannot	be	equated	with	
belief		states,	what	should	we	revise?	
– condiConing	at	the	credal	level,	and	next,	produce	
new	being	rates	?		

–  	condiConing	the	previous	being	rates	?	

	



		Belief	
func:on	Bel	

Condi:oned	
belief	func:on	
Bel(A	|C)	

BeTng	
probability			
P	=	Bet(Bel)	

		P(A|C)	≠	
Bet(Bel(A|C)	

Bet	
Bet	

condiConing	

condiConing	



EXAMPLE	OF	REVISION	OF	EVIDENCE	:		
The	criminal	case	

•  Evidence	1	:	three	suspects	:	Peter	Paul	Mary	
•  Evidence	 2	 :	 The	 killer	 was	 randomly	 selected	
man	vs.woman	by	coin	tossing.	
–  So,	S	=	{	Peter,	Paul,	Mary}	

•  TBM	modeling:	The	mass	funcCon	is	
											m({Peter,	Paul})	=	1/2	;	m({Mary})	=	1/2	
–  Bel(Paul)	=	Bel(Peter)	=	0.	Pl(Paul)	=	Pl(Peter)	=	1/2	
–  Bel(Mary)	=	Pl(Mary)	=	1/2	

•  Bayesian	Modeling:	A	prior	probability		
–  P(Paul)	=	P(Peter)	=	1/4;	P(Mary)	=	1/2	



•  Evidence	3	:	Peter	was	seen	elsewhere	at	the	Cme	of	the	
killing.	

•  TBM:	So	Pl(Peter)	=	0.		
–  m({Peter,	Paul})	=	1/2;							mt({Mary})	=	1/2		
–  A	uniform		probability	on	{Paul,	Mary}	results.	

•  Bayesian	Modeling:		
–  P(Paul	|	not	Peter)	=	1/3;	P(Mary	|	not	Peter)	=	2/3.	
–  A	 very	 debatable	 result	 that	 depends	 on	 where	 the	
story	starts.	Star3ng	with	i	males	and	j	females:			
•  P(Paul	|	Paul	OR	Mary)	=	j/(i	+	j);		
•  P(Mary	|	Paul	OR	Mary)	=	i/(i	+	j)	

•  Walley	condi3oning:		
–  Bel(Paul)	=	0;		Pl(Paul)	=	1/2	
–  Bel(Mary)	=	1/2;	Pl(Mary)	=	1	



Conclusion	
•  Single	probability	distribuCons	do	not	properly	reflect	

parCal	ignorance	
–  Uncertainty	theories	extend	probability	theory	for	a	more	
faithful/expressive	representaCon	of	uncertainty	

•  Modelling	and	measuring		the	impact	of	ignorance	is	
useful	to	trigger	informaCon	collecCon	decisions.		

•  Uncertainty	theories	allow	for	classical	decision	criteria	
via	being	rates	induced	by	epistemic	states	
–  Shapley	value	bejer	than	maxent.	

•  Other	decision	criteria	can	be	used	(lower	
expectaCon,	generalizaCons	of	Hurwicz,	etc.	)	


