The limited expressiveness of single probability measures

Didier Dubois Emeritus CNRS researcher IRIT, Université Paul Sabatier Toulouse, France

UNCERTAINTY: representing graded belief.

- AN AGENT IS UNCERTAIN ABOUT A PROPOSITION IF (S)HE DOES NOT KNOW ITS TRUTH VALUE
 - Examples
 - The **probability** that the trip is more than one hour long is 0.7.
 - It is quite **possible** it snows to-morrow.
 - The agent has no **certainty** that Jean comes to the meeting
- HOW TO EVALUATE THE PROBABILITY, THE POSSIBILITY, THE CERTAINTY, THAT A PROPOSITION IS TRUE OR FALSE

Origins of uncertainty

- The variability of natural phenomena : randomness.
 - Coins, dice...: what about the outcome of the next throw?
- The lack of information: incompleteness
 - because of information is often lacking, knowledge about issues of interest is generally not perfect.
- Conflicting testimonies or reports: inconsistency
 - The more sources, the more likely the inconsistency

Probability Representations (on finite sets)

- A finite set S with n elements: A probability measure is characterized by a set of non negative weights p_1 , ..., p_n , such that $\sum_{i=1.n} p_i = 1$.
 - $-p_i = probability of state s_i$

Possible meanings of a degree of probability:

- Counting favourable cases for s_i over the number of possible cases assuming symmetry (coins, dice, cards)
- Frequencies from statistical information: p_i = limit frequency of occurrence of s_i (Objective probabilities)
- Money involved in a betting scheme (Subjective probabilities)

Remarks on using a single probability distribution

- Computationally simple : $P(A) = \sum_{s \in A} p(s)$
- Conventions: P(A) = 0 iff A impossible;
 P(A) = 1 iff A is certain;
 Usually P(A) = 1/2 for ignorance

• Meaning:

- Objective probability is generic knowledge (statistics from a population)
- Subjective probability on singular events (degrees of belief)

The two roles of probability

Probability theory is generally used for representing uncertainty due to the two types of issues:

- 1. Randomness: capturing variability through repeated observations.
- **2. Partial knowledge:** representing belief in the face of information defect.

Note: these two issues are not mutually exclusive.

Measuring beliefs

Probability theory for uncertainty whatever its origin

1. Frequencies capture variability (Hacking principle)

Degrees of belief on n+1th trial outcome are equated to frequencies of the n previous observations of a repeatable phenomenon: P(A) = F(A)

- 2. Belief in unique events due to lack of information
 - via betting on lottery tickets for non-repeatable events
 - by analogical reasoning using thought frequentist experiment (balls in an urn)

SUBJECTIVE PROBABILITIES (Bruno de Finetti, 1935)

- p_i = belief degree of an agent on the occurrence of s_i
- measured as the price of a lottery ticket with reward 1 € if state is s_i in a betting game
- Rules of the game:
 - Banker sells tickets; gambler proposes prices p_i
 - They exchange roles if price p_i is too low
- Why a belief state is a single distribution ($\sum_i p_i = 1$):
 - Assume player buys all lottery tickets i = 1, ...m.
 - If state s_j is observed, the gambler gain is $1-\sum_j\,p_j$ and $\sum_i\,p_i-1$ for the banker
 - $-if \sum p_i > 1$ gambler always loses money;
 - $-if \sum p_i$ < 1 banker exchanges roles with gambler
 - Only $\sum_i p_i$ = 1 is rational

Bayesian probability

- **Bayesian postulate**: any state of knowledge should be represented by a single probability distribution:
 - Either via an exchangeable betting procedure
 - Or by using frequencies (real or thought ones)
- Not to do it is considered to be irrational (sure money loss, Dutch book argument)

What is the expressive power of probability distributions

Consequence of the Bayesian credo: in case of ignorance one is bound to use a uniform distribution.

But

Do uniform distributions represent ignorance?

- **1. Ambiguity :** do uniform bets express knowledge of randomness or plain ignorance?
- 2. Instability: the shape of a probability distribution is not scale-invariant, while ignorance is.
- **3. Empirical falsification**: When information is missing, decision-makers do not always choose according to a single subjective probability (Ellsberg paradox).

Laplace principle of insufficient reason

- What is EQUIPOSSIBLE must be EQUIPROBABLE
- He states the problem in such a way make the elementary events equiprobable
 - Argument of preserved symmetry
 - Also justified by the principle of maximal entropy

Hence it is easy to believe that uniform distributions represent ignorance

Single distributions do not distinguish between incompleteness and variability

- VARIABILITY: Precisely observed random observations
- INCOMPLETENESS: Missing information
- Example: uniform probability on facets of a die
 - A fair die tested many times: Values are known to be equiprobable
 - A new die never tested: No argument in favour of a hypothesis against other ones, but frequencies are unknown.
- BOTH CASES LEAD TO TOTAL INDETERMINACY ABOUT THE NEXT THROW (→ uniform distribution)
- BUT THEY DIFFER AS TO THE QUANTITY OF AVAILABLE INFORMATION

The instability of uniform probabilistic representations of ignorance

- Suppose different domains U1 and U2 are used to describe the same problem (e.g. different vocabularies)
- So there is a most refined state space U and different one-to-many maps from U to U1 and U2
- Claim: a uniform probability distribution on U1 is generally not compatible with a uniform probability on U2.
 - This is natural if the distributions represent frequencies.
 - This is paradoxical if ignorance is represented by a uniform distribution

THE PARADOX OF IGNORANCE: finite case

- Case 1: life outside earth/ no life
 - ignorant's response1/21/2
- Case 2: Animal life / vegetal only/ no life
 - <u>ignorant's response</u> 1/3 1/3 1/3
- They are inconsistent answers:
 - case 1 from case 2 : P(life) = 2/3 > P(no life)
 - case 2 from case 1: P(Animal life) = 1/4 < P(no life)</p>
- ignorance produces information !!!!!
- Uniform probabilities on distinct representations of the state space are inconsistent.
- Conclusion: a probability distribution cannot model incompleteness

THE PARADOX OF IGNORANCE: infinite case

You have the same knowledge about x > 0 as about y = f(x) (f bijection non linear such as 1/x, or Logx...).

- x in [a, b] is equivalent to 1/x in [1/b, 1/a]
- But a uniform distribution on [a, b] is incompatible with a uniform distribution on [1/b, 1/a]: no scale invariance!

Conclusion: uniform probability distributions do not represent ignorance.

(It does not apply to frequentist distributions)

LIMITATIONS OF BAYESIAN PROBABILITY FOR THE REPRESENTATION OF IGNORANCE

- Ignorance: identical belief in any event different from the sure or the impossible ones
- A single probability cannot represent ignorance: except on a 2-element set, the function g(A) = 1/2 ∀A ≠ S, Ø, is NOT a probability measure.
- In the *life on other planets* example: 6 possible events that cannot have the same probability.

Ellsberg Paradox

- Savage claims that rational decision-makers choose according to expected utility with respect to a subjective probability
- Counterexample: An Urn containing
 - 1/3 red balls (p_R = 1/3)
 - 2/3 black or white balls ($p_W + p_B = 2/3$)
- For the ignorant Bayesian: $p_R = p_W = p_B = 1/3$.
- The game is to choose between games where you pick a ball and win or lose some money depending on the outcome.
- Gambles should be preferred according to their Expected utility : $u_a(R)p_R + u_a(W)p_W + u_a(B)p_B$

based on a subjective probability dstribution.

Ellsberg Paradox

1. Choose between two bets

B1: Win 1\$ if red (1/3) and 0\$ otherwise (2/3)

B2: Win 1\$ if white (≤ 2/3) and 0\$ otherwise Most people prefer B1 to B2

2. Choose between two other bets (just add 1\$ on Black)

B3: Win 1\$ if red or black (≥ 1/3) and 0\$ if white

B4: Win 1 \$ if black or white (2/3) and 0\$ if red (1/3) Most people prefer B4 to B3

But this is overwhelming empirical evidence that people make decisions in contradiction with utility theory based on a subjective probability

Ellsberg Paradox

- Let 0 < u(0) < u(1) be the utilities of gain.
- If decision is made according to a subjective probability assessment for red black and white: $(1/3, p_R, p_W)$:

```
- B1 > B2:

EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)/3 + u(1)p<sub>w</sub>+u(0)p<sub>B</sub>

- B4 > B3:

EU(B4) = u(0)/3 + 2u(1)/3 > EU(G) = u(1) (1/3 + p<sub>B</sub>) + u(0)p<sub>W</sub>

\Rightarrow (summing, as p<sub>B</sub>+p<sub>W</sub>= 2/3) 2(u(0) + u(1))/3 > 2(u(0) + u(1))/3:

CONTRADICTION!
```

 Such an agent cannot reason with a unique probability distribution: Violation of the sure thing principle.

The sure thing principle

- An act **a** is a function from states S to consequences X:
 - − If the state is $s \in S$ then consequence of a is $a(s) \in X$
 - $-a1 \ge a2$ iff EU(a1) ≥ EU(a2)
- Ordering acts using expected utility satisfies the property that the preference of a1 over a2 does not depend on states where both acts have the same consequences.
- Example:
 - -a1(s) = 1 if s in A, 0 otherwise, then EU(a1) = P(A)
 - -a2(s) = 1 if s in B, 0 otherwise then EU(a2) = P(B)
 - C disjoint from A and B
- STP: $A \ge B$ if and only if $A \cup C \ge B \cup C$

When information is missing, decision-makers do not always choose according to a single subjective probability

- Plausible Explanation of Ellsberg paradox: In the face of ignorance, the decision maker is pessimistic.
 - In the first choice, agent supposes $p_w = 0$: no white ball EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)
 - In the 2d choice, agent supposes $p_B = 0$: no black ball EU(B4) = u(0)/3 + 2u(1)/3 > EU(B3) = 2u(0)/3 + u(1)/3
- The agent does not use the same probability in both cases (because of pessimism):
 - the subjective probability depends on the proposed game.`
 - The epistemic state is a family of probability distributions
 - Ranking decisions by the lower expectation

Summary on expressiveness limitations of subjective probability distributions

- The Bayesian dogma that any state of knowledge can be represented by a single probability is due to the exchangeable betting framework
 - Cannot distinguish randomness from a lack of knowledge in the computations.
- Representations by single probability distributions are language- (or scale-) sensitive
- When information is missing, decision-makers do not always choose according to a single subjective probability.

Main issue with single probability measures

- With a probability measure it is impossible to distinguish between
 - Disbelief in A (there is strong evidence against A)
 - Lack of belief in A (no evidence in favor of A) because $P(A^c) = 1 - P(A)$
- Ignorance= no evidence for nor against A.
- We need two set functions, one for certainty one for plausibility.

A GENERAL SETTING FOR REPRESENTING GRADED PLAUSIBILITY AND CERTAINTY

- 2 monotonic set-functions PI and Cr from \mathcal{E} to [0,1] called *plausibility* and *certainty* functions
 - generalize probability functions (PI = $Cr \rightarrow P$).

Conventions:

- Pl(A) = 0 "impossible";
- Cr(A) = 1 "certain"
- PI(A) =1; Cr(A) = 0 "ignorance, Lack of belief"

(no information)

- $Cr(A) \le Pl(A)$ "certain implies plausible"
- $Pl(A) = 1 Cr(A^c)$ duality certain/plausible

How to represent partial ignorance?

- Using a subset of possible mutually exclusive values E for the variable x on S: « x in E »
 - E is an epistemic state
- E can be a fuzzy set to express that some states are more possible than others
- Incomplete frequentist knowledge: epistemic state \mathcal{P} on frequentist distributions P: typically is a convex set of probabilities (credal set)

How to represent belief?

- Using a **credal set** \mathcal{P} : To each event A is attached a probability interval $[P_*(A), P^*(A)]$ such that
 - $Cr(A) = P_*(A) = \inf\{P(A), P \in \mathcal{P}\}\$
 - $PI(A) = P^*(A) = \sup\{P(A), P \in P\} = 1 P_*(A^c)$
- Subjectivist interpretation : $P_*(A)$ is a degree of belief measured by the maximal price for buying a lottery ticket
- with no exchangeability assumption (Walley).

P*(A) =minimal price for selling a lottery ticket

$$\geq P_*(A)$$

Special cases

Boolean necessity/possibility functions based on epistemic state E

$$N(A) = 1$$
 if $E \subseteq A$, 0 otherwise (for belief)

$$\Pi(A) = 1 - N(A^c) = 1$$
 if $E \cap A \neq \emptyset$, 0 otherwise (for plausibility Represents a credal set $\mathcal{P} = \{P: P(E) = 1\}$

 Graded necessity/possibility functions based on fuzzy epistemic state E:

$$\Pi(A) = \max_{s \in A} \pi(s);$$
 $N(A) = 1 - \Pi(A^c)$
Represents a credal set $\mathcal{P} = \{P: P(A) \ge N(A) \text{ for all events } A\}$

 Using a random epistemic state (Dempster-Shafer), a probability distribution m over epistemic states:

- Bel(A) =
$$\sum_{i} m(E_i)$$
 (expected necessity) Pl(A) = 1 - Bel(A^c)
 $E_i \subseteq A$, $E_i \neq \emptyset$

Represents a credal set $\mathcal{P} = \{P: P(A) \ge Bel(A) \text{ for all events A} \}$

Betting rates vs. States of Knowledge

- Following Smets, one may distinguish two representation levels
 - The credal level: representing the belief state of the agent, accounting for partial ignorance (using belief functions)
 - The betting level: representing exchageable betting rates to form a probability function and compute expected utility.
- Betting rates are induced by belief states, but are not in one-to-one correspondence with them: several states of knowledge may lead to the same betting rates.
 - For instance, ignorance and randomness lead to uniform betting rates.
- One may want to derive a betting probability from a belief function

Why not max entropy?

- Suppose a person assesses belief that a coin falls on head (H) and tails (T).
- Cannot assess precise probabilities, only belief degrees as lower bounds
- Suppose he gives Cr(H) = 0.4, Cr(T) = 0.1 (lower probabilities), indicating a preference for H
- Maxent gives P(H) = P(T) = 0.5

When a credal set contains the uniform distribution, maxent always gives it.

It does not reflect the magnitudes of belief degrees.

Betting based on a belief function

- According to Smets
 - An agent has state of knowledge described by a mass function m.
 - The agent ranks decision using expected utility
- Generalized Laplace principle:
 - Select an epistemic state E with probability m(E)
 - Select an element at random in E (uniform on E)
- The betting probability used by the agent is betp(s) = $\sum \{m(E)/|E|, s \in E\}$
- It is the Shapley value of the belief function Bel, and the center of gravity of its credal set.

Maxent vs. Shapley value

- On the problem of Head vs. Tail
 assessments based on lower probabilities
 Cr(H) = 0.4, Cr(T) = 0.1:
 - Maxent : Pr(H) = Pr(T) = 0.5
 - Shapley value :

$$Pr(H) = (Cr(H) + 1 - Cr(T))/2 = (0.4 + 1 - 0.1)/2 = 0.65$$

 $Pr(T) = 0.35$

Maxent vs. Shapley value

D. Dubois, A. Gilio and G. Kern-Isberner, Int. J. of Approx. Reasoning, 47(3): 333-351 (2008)

- Hypothesis H, piece of evidence E
- Suppose we know probabilities P(E|H) = a and P(E|H^c) = b
- We do not have any prior probability on H.
- Credal set $\mathcal{P} = \{P: P(E|H) = a \text{ and } P(E|H^c) = b\}$
- How to compute the posterior P(H|E)?
 - Shapley value: P(H|E) = a/(a+b) (like uniform prior)
 - Maxent: P(H|E) = f(a)/(f(a)+f(b)) with $f(x) = [x/(1-x)]^{(1-x)}$ Why ?????

SUBJECTIVE POSSIBILITY DISTRIBUTIONS

- There are clearly several belief functions with a prescribed Shapley value P.
- Consider the least informative of those, in the sense of a non-specificity index (expected cardinality of the random set): I(m) = ∑_{A ⊆ Ω} m(A)·card(A).
- Also the belief function having the least specific contour function $\pi_m(x) = \sum_{x \in F} m(E)$ among the isopignistic ones
- RESULT: The least informative belief function whose Shapley value is P is unique and consonant.

SUBJECTIVE POSSIBILITY DISTRIBUTIONS

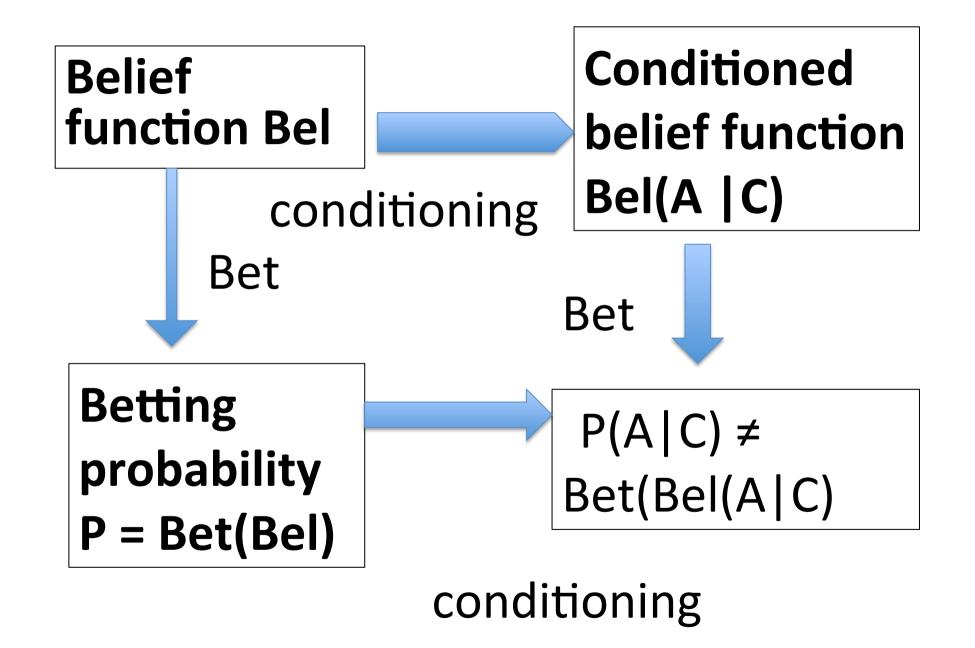
• The least specific belief function π^* in the sense of maximizing I(m) is characterized by

$$\pi *_i = \Sigma_{j=i,...n} \min(p_j, p_i).$$

• It is a probability-possibility transformation, previously suggested in 1983: This is the unique possibility distribution whose pignistic (Laplacean) probability is p.

Revision: Credal vs. Betting levels

- Suppose a new sure information C is obtained
- Since betting rates cannot be equated with belief states, what should we revise?
 - conditioning at the credal level, and next, produce new betting rates ?
 - conditioning the previous betting rates ?



EXAMPLE OF REVISION OF EVIDENCE:The criminal case

- Evidence 1: three suspects: Peter Paul Mary
- Evidence 2: The killer was randomly selected man vs.woman by coin tossing.
 - So, S = { Peter, Paul, Mary}
- TBM modeling: The mass function is m({Peter, Paul}) = 1/2; m({Mary}) = 1/2
 - Bel(Paul) = Bel(Peter) = 0. Pl(Paul) = Pl(Peter) = 1/2
 - Bel(Mary) = Pl(Mary) = 1/2
- Bayesian Modeling: A prior probability
 - P(Paul) = P(Peter) = 1/4; P(Mary) = 1/2

- Evidence 3: Peter was seen elsewhere at the time of the killing.
- **TBM**: So PI(Peter) = 0.
 - $m({Peter, Paul}) = 1/2; m_t({Mary}) = 1/2$
 - A uniform probability on {Paul, Mary} results.

Bayesian Modeling:

- P(Paul | not Peter) = 1/3; P(Mary | not Peter) = 2/3.
- A very debatable result that depends on where the story starts. Starting with i males and j females:
 - P(Paul | Paul OR Mary) = j/(i + j);
 - P(Mary | Paul OR Mary) = i/(i + j)

Walley conditioning:

- Bel(Paul) = 0; Pl(Paul) = 1/2
- Bel(Mary) = 1/2; Pl(Mary) = 1

Conclusion

- Single probability distributions do not properly reflect partial ignorance
 - Uncertainty theories extend probability theory for a more faithful/expressive representation of uncertainty
- Modelling and measuring the impact of ignorance is useful to trigger information collection decisions.
- Uncertainty theories allow for classical decision criteria via betting rates induced by epistemic states
 - Shapley value better than maxent.
- Other decision criteria can be used (lower expectation, generalizations of Hurwicz, etc.)