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* AN AGENT IS UNCERTAIN ABOUT A PROPOSITION IF
(S)HE DOES NOT KNOW ITS TRUTH VALUE

— Examples

* The probability that the trip is more than one hour longis 0.7.
* Itis quite possible it snows to-morrow.
* The agent has no certainty that Jean comes to the meeting

* HOW TO EVALUATE THE PROBABILITY, THE

POSSIBILITY, THE CERTAINTY, THAT A PROPOSITION
IS TRUE OR FALSE



 The variability of natural phenomena :
randomness.

— Coins, dice...: what about the outcome of the next
throw?

 The lack of information: incompleteness

— because of information is often lacking, knowledge
about issues of interest is generally not perfect.

 Conflicting testimonies or reports: inconsistency
— The more sources, the more likely the inconsistency



* A finite set S with n elements: A probability measure is
characterized by a set of non negative weights p,, ..., p,,

suchthat 3., , p; = 1.
— p, = probability of state s,
* Possible meanings of a degree of probability:

— Counting favourable cases for s, over the number of
possible cases assuming symmetry (coins, dice, cards)

— Frequencies from statistical information: p, = limit
frequency of occurrence of s, (Objective probabilities)

— Money involved in a betting scheme (Subjective
probabilities)



* Computationally simple : P(A) =3 <, p(s)
 Conventions: P(A) = 0 iff A impossible;
P(A) = 1 iff Ais certain;
Usually P(A) = 1/2 for ignorance
* Meaning:

— Objective probability is generic knowledge
(statistics from a population)

— Subjective probability on singular events
(degrees of belief)



Probability theory is generally used for
representing uncertainty due to the two

types of issues:

1. Randomness: capturing variability through
repeated observations.

2. Partial knowledge: representing belief in the
face of information defect.

Note : these two issues are not mutually
exclusive.



Probability theory for uncertainty whatever its origin

1. Frequencies capture variability (Hacking principle)

Degrees of belief on n+1th trial outcome are equated to frequencies of
the n previous observations of a repeatable phenomenon: P(A) = F(A)

2. Belief in unique events due to lack of information
— via betting on lottery tickets for non-repeatable events

— by analogical reasoning using thought frequentist experiment
(balls in an urn)



* p, = belief degree of an agent on the occurrence of s,

 measured as the price of a lottery ticket with reward 1 € if
state is s. in a betting game

* Rules of the game:
— Banker sells tickets; gambler proposes prices p.
— They exchange roles if price p, is too low

 Why a belief state is a single distribution (Zj P;= 1):
— Assume player buys all lottery ticketsi=1, ..m.

— If state s; is observed, the gambler gain is 1 — 3, p; and
>; pi— 1 for the banker

— if >p; > 1 gambler always loses money ;
— if 2p; < 1 banker exchanges roles with gambler
— Only ; p;= 1is rational



* Bayesian postulate : any state of knowledge
should be represented by a single probability
distribution:

— Either via an exchangeable betting procedure
— Or by using frequencies (real or thought ones)

* Not to do it is considered to be irrational (sure
money loss, Dutch book argument)



Consequence of the Bayesian credo: in case of ignorance
one is bound to use a uniform distribution.

But
Do uniform distributions represent ignorance ?

1. Ambiguity : do uniform bets express knowledge of
randomness or plain ighorance?

2. Instability : the shape of a probability distribution is not
scale-invariant, while ignorance is.

3. Empirical falsification: When information is missing,
decision-makers do not always choose according to a
single subjective probability (Ellsberg paradox).



Laplace principle of insufficient
reason
* What is EQUIPOSSIBLE must be EQUIPROBABLE

* He states the problem in such a way make the elementary
events equiprobable

— Argument of preserved symmetry
— Also justified by the principle of maximal entropy

Hence it is easy to believe that uniform distributions
represent ignorance



VARIABILITY: Precisely observed random observations
INCOMPLETENESS: Missing information

Example: uniform probability on facets of a die

— A fair die tested many times: Values are known to be
equiprobable

— A new die never tested: No argument in favour of a

hypothesis against other ones, but frequencies are
unknown.

. BOTH CASES LEAD TO TOTAL INDETERMINACY ABOUT
THE NEXT THROW (=2 uniform distribution)

. BUT THEY DIFFER AS TO THE QUANTITY OF AVAILABLE
INFORMATION



The instability of uniform probabilistic
representations of ighorance

* Suppose different domains U1 and U2 are used to
describe the same problem (e.g. different vocabularies)

* So there is a most refined state space U and different
one-to-many maps from U to U1 and U2

e Claim: a uniform probability distribution on U1 is
generally not compatible with a uniform probability on
U2.

— This is natural if the distributions represent
frequencies.

— This is paradoxical if ignorance is represented by a
uniform distribution



e (Case 1: life outside earth/ no life
— ighorant's response 1/2  1/2

 Case 2: Animal life / vegetal only/ no life
— ignorant's response 1/3 1/3 1/3

* They are inconsistent answers:
— case 1 from case 2 : P(life) = 2/3 > P(no life)

— case 2 from case 1: P(Animal life) = 1/4 < P(no life)

* Uniform probabilities on distinct representations of the
state space are inconsistent.

* Conclusion : a probability distribution cannot model
incompleteness



THE PARADOX OF IGNORANCE: infinite case

You have the same knowledge about x >0 as about y =
f(x) (f bijection non linear such as 1/x, or Logx...).

* xin [a, b]is equivalent to 1/x in [1/b, 1/a]

* But a uniform distribution on [a, b] is incompatible

with a uniform distribution on [1/b, 1/a] : no scale
invariance!

Conclusion: uniform probability distributions do not
represent ignorance.

(It does not apply to frequentist distributions)



* Ignorance: identical belief in any event different from the sure
or the impossible ones

* Asingle probability cannot represent ignorance: except on a

2-element set, the function g(A) =1/2 VA #S, @, is NOT a
probability measure.

In the life on other planets example: 6 possible events that
cannot have the same probability.



Savage claims that rational decision-makers choose according to
expected utility with respect to a subjective probability

Counterexample:An Urn containing

— 1/3redballs (pg=1/3)

—  2/3 black or white balls(p,, + pg = 2/3)
For the ignorant Bayesian: p; = py, = pg = 1/3.

The game is to choose between games where you pick a ball and
win or lose some money depending on the outcome.

Gambles should be prefered according to their Expected utility :
ua(R)pR +ua(W)pW + ua(B)pB
based on a subjective probability dstribution.



1. Choose between two bets
B1: Win 1S if red (1/3) and 0S otherwise (2/3)
B2: Win 1S if white (< 2/3) and 0S otherwise
Most people prefer B1 to B2

2. Choose between two other bets (just add 1S on Black)
B3: Win 1S if red or black (= 1/3) and 0S if white
B4: Win 1 S if black or white (2/3) and 0S if red (1/3)
Most people prefer B4 to B3

But this is overwhelming empirical evidence that people make
decisions in contradiction with utility theory based on a subjective
probability



Let O < u(0) < u(1) be the utilities of gain.

If decision is made according to a subjective probability
assessment for red black and white: (1/3, pg, pyw):
— B1>B2:

EU(B1) = u(1)/3 + 2u(0)/3 > EU(B2) = u(0)/3 +u(1)p,,+u(0)p,
— B4 > B3:

EU(B4) = u(0)/3 + 2u(1)/3 > EU(G) = u(1) (1/3 + pg) +u(0)py,
=> (summing, as pg+py,= 2/3) 2(u(0) + u(1))/3 > 2(u(0) + u(1))/3:

CONTRADICTION!

Such an agent cannot reason with a unique probability
distribution: Violation of the sure thing principle.



An act a is a function from states S to consequences X:
— If the state is s € S then consequence of ais a(s) EX
—al >a2iff EU(al) > EU(a2)

Ordering acts using expected utility satisfies the property that
the preference of al over a2 does not depend on states where
both acts have the same consequences.

Example:

—al(s)=1ifsin A, 0 otherwise, then EU(al) = P(A)
— a2(s)=1if sin B, 0 otherwise then EU(a2) = P(B)
— Cdisjoint from A and B

STP: A2Bifandonlyif AUC>BUC



* Plausible Explanation of Ellsberg paradox: In the face of
ignorance, the decision maker is pessimistic.

— In the first choice, agent supposes p,, = 0: no white ball
EU(B1) =u(1)/3 + 2u(0)/3 > EU(B2) = u(0)

— In the 2d choice, agent supposes pg = 0: no black ball

EU(B4) = u(0)/3 + 2u(1)/3 > EU(B3) = 2u(0)/3 + u(1)/3

* The agent does not use the same probability in both
cases (because of pessimism):
— the subjective probability depends on the proposed game.’
— The epistemic state is a family of probability distributions
— Ranking decisions by the lower expectation



e  The Bayesian dogma that any state of knowledge can be
represented by a single probability is due to the
exchangeable betting framework

—  Cannot distinguish randomness from a lack of knowledge in the
computations.

. Representations by single probability distributions are
language- (or scale-) sensitive

. When information is missing, decision-makers do not
always choose according to a single subjective probability.



Main issue with single probability
measures

* With a probability measure it is impossible to
distinguish between

— Disbelief in A (there is strong evidence against A)
— Lack of belief in A (no evidence in favor of A)

because P(A¢) =1 — P(A)
* |gnorance= no evidence for nor against A.

 We need two set functions, one for certainty
one for plausibility.



e 2 monotonic set-functions Pl and Cr from Eto
[0,1] called plausibility and certainty functions

— generalize probability functions (Pl = Cr = P).

* Conventions:
— PI(A) =0 "impossible" ;
— Cr(A) =1 "certain"
— PI(A) =1 ; Cr(A) =0 "ignorance, Lack of belief "
(no information)
— Cr(A) < PI(A) "certain implies plausible"
— PI(A) =1 —Cr(A®) duality certain/plausible



How to represent partial ignorance?

* Using a subset of possible mutually exclusive
values E for the variable x on S: « x in E »

E is an epistemic state

* Ecan be afuzzy set to express that some
states are more possible than others

* Incomplete frequentist knowledge: epistemic
state 7P on frequentist distributions P:
typically is a convex set of probabilities

(credal set)



How to represent belief ?

Using a credal set P. To each event A is attached a
probability interval [P«(A), P*(A)] such that

— Cr(A) = P«(A) = inf{P(A), PE P}
— PI(A) = P*(A) = sup{P(A), PE P} =1 — P.(A°)

Subjectivist interpretation : P.(A) is a degree of belief
measured by the maximal price for buying a lottery ticket

with no exchangeability assumption (Walley).
P*(A) =minimal price for selling a lottery ticket
> P.(A)



Special cases

Boolean necessity/possibility functions based on epistemic state E
N(A) =1 if EC A, 0 otherwise (for belief)
IT(A) =1-N(A°)=1if EN A # @, 0 otherwise (for plausibility
Represents a credal set £ = {P: P(E) = 1}

Graded necessity/possibility functions based on fuzzy epistemic
state E:

I1(A) = max c, 1t(s); N(A) = 1 —TI(A°)
Represents a credal set £ = {P: P(A) > N(A) for all events A}

Using a random epistemic state (Dempster-Shafer), a probability
distribution m over epistemic states:
— Bel(A)= ) m(E) (expected necessity) PI(A) =1 — Bel(A)
ECAE=0Q
Represents a credal set = {P: P(A) > Bel(A) for all events A}



* Following Smets, one may distinguish two representation
levels

— The credal level: representing the belief state of the agent,
accounting for partial ignorance ( using belief functions)

— The betting level: representing excnageable betting rates to form
a probability function and compute expected utility.

* Betting rates are induced by belief states, but are not in
one-to-one correspondence with them : several states of
knowledge may lead to the same betting rates.

— For instance, ignorance and randomness lead to uniform betting
rates.

 One may want to derive a betting probability from a
belief function



Why not max entropy ?

* Suppose a person assesses belief that a coin falls on head (H)
and tails (T).

e Cannot assess precise probabilities, only belief degrees as
lower bounds

e Suppose he gives Cr(H) =0.4, Cr(T) = 0.1 (lower probabilities),
indicating a preference for H

 Maxent gives P(H) = P(T) =0.5

When a credal set contains the uniform distribution, maxent
always gives it.

It does not reflect the magnitudes of belief degrees.



* According to Smets

— An agent has state of knowledge described by a mass
function m.

— The agent ranks decision using expected utility

* Generalized Laplace principle:
— Select an epistemic state E with probability m(E)
— Select an element at random in E (uniform on E)

* The betting probability used by the agent is
betp(s) = 3{m(E)/|E|, s € E}

e Itis the Shapley value of the belief function Bel,
and the center of gravity of its credal set.



Maxent vs. Shapley value

* On the problem of Head vs. Talil
assessments based on lower probabilities
Cr(H)=0.4, Cr(T)=0.1:

e Maxent: Pr(H) =Pr(T) = 0.5

* Shapley value:

Pr(H) = (Cr(H) +1- Cr(T))/2 = (0.4+ 1-0.1)/2 = 0.65
Pr(T) =0.35



Maxent vs. Shapley value

D. Dubois, A. Gilio and G. Kern-Isberner, Int. J. of Approx. Reasoning, 47(3): 333-351 (2008)

 Hypothesis H, piece of evidence E

e Suppose we know probabilities P(E|H) = a and
P(E|HS)=Db

 We do not have any prior probability on H.

* Credal set  ={P: P(E|H) = a and P(E|H°¢) = b}

 How to compute the posterior P(H|E) ?
— Shapley value: P(H|E) = a/(a+b) (like uniform prior)
— Maxent: P(H|E) =f(a)/(f(a)+f(b)) with



— There are clearly several belief functions with a prescribed
Shapley value P.

 Consider the least informative of those, in the sense of a
non-specificity index (expected cardinality of the random

set) : I(m) =3 , c o M(A)-card(A).
* Also the belief function having the least specific contour
function it (x) = 3 , < M(E) among the isopignistic ones

 RESULT : The least informative belief function whose Shapley
value is P is unique and consonant.



* The least specific belief function * in the sense of maximizing
I(m) is characterized by

T = 2jsj . Min(py, py).

* Itisa probability-possibility transformation, previously
suggested in 1983: This is the unique possibility distribution
whose pignistic (Laplacean) probability is p.



Revision: Credal vs. Betting levels

* Suppose a new sure information C is obtained

* Since betting rates cannot be equated with
belief states, what should we revise?

— conditioning at the credal level, and next, produce
new betting rates ?

— conditioning the previous betting rates ?



Belief Conditioned
function Bel belief function
conditioning |Bel(A |C)
Bet
Bet
cetne P(A|C) #
probability Bet(Bel(A|C)
P = Bet(Bel)

conditioning



* Evidence 1 : three suspects : Peter Paul Mary

 Evidence 2 : The killer was randomly selected
man vs.woman by coin tossing.

— So, S = { Peter, Paul, Mary}
« TBM modeling: The mass function is
m({Peter, Paul}) = 1/2 ; m({Mary}) = 1/2
— Bel(Paul) = Bel(Peter) = 0. PI(Paul) = Pl(Peter) = 1/2
— Bel(Mary) = PI(Mary) = 1/2
* Bayesian Modeling: A prior probability
— P(Paul) = P(Peter) = 1/4; P(Mary) = 1/2



Evidence 3 : Peter was seen elsewhere at the time of the
killing.
TBM: So Pl(Peter) = 0.
— m({Reter, Paul}) =1/2; m({Mary}) =1/2
— A uniform probability on {Paul, Mary} results.
Bayesian Modeling:
— P(Paul | not Peter) = 1/3; P(Mary | not Peter) = 2/3.
— A very debatable result that depends on where the
story starts. Starting with i males and j females:
* P(Paul | Paul OR Mary) =j/(i +j);
* P(Mary | Paul OR Mary) =i/(i +j)
Walley conditioning:
— Bel(Paul) =0; PI(Paul)=1/2
— Bel(Mary) = 1/2; PI(Mary) = 1



Conclusion

Single probability distributions do not properly reflect
partial ignorance

— Uncertainty theories extend probability theory for a more
faithful/expressive representation of uncertainty

Modelling and measuring the impact of ignorance is
useful to trigger information collection decisions.

Uncertainty theories allow for classical decision criteria
via betting rates induced by epistemic states

— Shapley value better than maxent.

Other decision criteria can be used (lower
expectation, generalizations of Hurwicz, etc. )



