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Context

What is uncertainty in machine/deep learning

We make observations using the sensors in the world (e.g. camera)
Based on the observations, we intend to learn a model that makes
decisions
Given the same observations, the decision should be the same

However,
The world changes, observations change, our sensors change, the
output should not change!
We would like to know how confident we can be about the decisions
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Context

Why Uncertainty is important?

Figure: Confidence histograms (top) and reliability diagrams(bottom) for a
5-layer LeNet (left) and a 110-layer ResNet (right)on CIFAR-100. [1]
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Context

Why Uncertainty is important?

Imagine an autonomous car with a perception system based on Deep
learning without Uncertainty:
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Context

Why Uncertainty is important?

Imagine a medical diagnostics based on Deep learning without
Uncertainty:
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Context

Why Uncertainty is important?

We build models for predictions, can
we trust them? Are they certain?
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Uncertainty backgrounds

Aleatoric uncertainty

Aleatoric uncertainty can further be categorized into homoscedastic and
heteroscedastic uncertainties:

Homoscedastic uncertainty relates to the uncertainty that a
particular task might cause. It stays constant for different inputs.
Heteroscedastic uncertainty depends on the inputs to the model,
with some inputs potentially having more noisy outputs than others.
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Uncertainty backgrounds

Types of Uncertainty: Case 11

Let us consider a neural network model trained with several pictures of
dogs. We ask the model to decide on a dog using a photo of a cat. What
would you want the model to do?

1Credits: Gille Louppe
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Uncertainty backgrounds

Types of Uncertainty: Case 22

We have three different types of images to classify, cat, dog, and cow,
some of which may be noisy due to the limitations of the acquisition
instrument.

2Credits: Gille Louppe
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Bayesian Deep Neural Network and ensembling

Deep Learning

Deep learning systems are neural network (or convolutional neural
network) models similar to those popular in the ’80s and ’90s, with
algorithmic inovations, software inovations, and larger data sets.
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Bayesian Deep Neural Network and ensembling

Deep Learning notations

Training/Testing sets are denoted respectively by Dl = (xi , yi )
nl
i=1,

Dτ = (xi , yi )
nτ
i=1. Without loss of generality we consider the observed

samples {xi}ni=1 and the corresponding labels {yi}ni=1 as vectors.
Data in Dl and Dτ are assumed to be i.i.d. distributed according to
their respective unknown joint distribution Pt and Pτ .
The Deep Neural Networks (DNN) are functions parameterized by a
vector containing the K trainable weights ω = {ωk}Kk=1.
During training, ω, is iteratively updated for each mini-batch, we
denote W (t) the random variable associated with the weights.
We view a neural network gω as a probabilistic model
gω(x) = P(y |x ,ω) .
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Bayesian Deep Neural Network and ensembling

Bayesian approach and DNN

The Goal of DNN is to find ω optimal for P(y |x ,ω), most of the
classical approach find ω that maximize the likelihood.

ω = argmax
ω

logP(Dl |ω)

ω = argmax
ω

nl∑
i=1

logP(yi |xi ,ω)

ω = argmax
ω

1/nl
nl∑
i=1

logP(yi |xi ,ω)

ω ≈ argmax
ω

E(X ,Y )∼Pt
logP(Y |X ,ω)

ω ≈ argmin
ω

H [Pt ,P(Y |X ,ω)]

With H the cross entropy.
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Bayesian Deep Neural Network and ensembling

Bayesian approach and DNN

The Goal of DNN is to find P(Y |X ,ω). In the classical Bayesian
approach we find ω such that we have the maximum a posteriori (MAP).

ω = argmax
ω

logP(ω|Dl)

ω = argmax
ω

logP(Dl |ω) + logP(ω)

This leads to l2 regularization.
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Bayesian Deep Neural Network and ensembling

Bayesian DNN

Bayesian DNN is based on marginalization instead of MAP optimization.

P(Y |X ) = Eω∼P(ω|Dl ) (P(Y |X ,ω))

P(Y |X ) =

∫
P(Y |X ,ω)P(ω|Dl)dω

In practice:

P(y |x) ≃ (1/Nmodel).

Nmodel∑
j=1

P(y |x ,ωj) with ωj ∼ P(ω|Dl)

Different techniques to estimate P(ω|Dl) .
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Bayesian Deep Neural Network and ensembling

Variational inference

Variational inference approximates the posterior P(ω|Dl) with a family of
distributions qλ(ω|Dl) The variational parameter λ indexes the family of
distributions. For example, if q were Gaussian, it would be the mean and
variance of the latent variables for each datapoint λxi = (µxi , σ

2
xi )).

Question : How can we know how well our variational posterior
qλ(w |Dl) approximates the true posterior P(ω|Dl)?

16 / 42



Encoding the latent posterior of Bayesian neural networks for Uncertainty Quantification
Bayesian Deep Neural Network and ensembling

Variational inference

Question : How can we know how well our variational posterior
qλ(ω/Dl) approximates the true posterior P(ω|Dl)?
We can use the Kullback-Leibler divergence, which measures the
information lost when using q to approximate P :

KL(qλ(ω|Dl) || P(ω|Dl)) =

∫
ω

(
qλ(ω|Dl) log(

qλ(ω|Dl)

P(ω|Dl)
)

)
dω

=

∫
ω

(
qλ(ω|Dl) log(

qλ(ω|Dl)

P(Dl)P(Dl ,ω)
)

)
dω

= Eq[log qλ(ω|Dl)]− Eq[logP(ω,Dl)] + logP(Dl)

Our goal is to find the variational parameters λ that minimize this
divergence. The optimal approximate posterior is thus
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Bayesian Deep Neural Network and ensembling

Variational inference

The optimal approximate posterior is thus

q∗λ(ω/Dl) = argminλKL(qλ(ω|Dl) || P(ω|Dl)).

This is impossible to compute directly due to P(Dl) that appears in the
divergence. So, we consider the following function:

ELBO(λ) = Eq[logP(ω,Dl)]− Eq[log qλ(ω|Dl)]

= −
∫
ω

(
qλ(ω|Dl) log(

qλ(ω|Dl)

P(ω)P(Dl |ω)
)

)
dω

= Eq[logP(Dl |ω)]−KL(qλ(ω|Dl) || P(ω))

Note that KL(qλ(ω|Dl) || P(ω|Dl)) = logP(Dl)− ELBO(λ).
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Bayesian Deep Neural Network and ensembling

Variational inference: Reparametrization trick

theorem: Let ϵ be a random variable having a probability density given
by q(ϵ) and let ω = t(λ, ϵ). Suppose that qλ(ω/Dl), is such that
q(ϵ)dϵ = qλ(ω/Dl)dω. Then for a function f with derivatives in ω:

∂

∂λ
Eqλ(ω/Dl )f (ω, λ) = Eq(ϵ)

[
∂f (ω, λ)

∂ω

∂ω

∂λ
+

∂f (ω, λ)

∂λ

]
.
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Bayesian Deep Neural Network and ensembling

Variational inference [4]
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Bayesian Deep Neural Network and ensembling

Weight Uncertainty in Neural Networks [4]

(Normal DNN ) (Bayesian DNN)
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Bayesian Deep Neural Network and ensembling

TRADI[9]

We sample new realizations of W (t∗) using the following formula:

ω̃(t∗) = µ(t∗) +Σ1/2(t∗)× m1 with Σ the covariance matrix. (1)

m1 is a realization of the multivariate Gaussian N (0K , IK ). Then we take
the expectation over this distribution :

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ω̃j(t∗), x∗) (2)

W(0) W(t) W(t*)
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MC dropout

Dropout3

Dropout is an empirical technique that was proposed to avoid overfitting
in CNN.
At each training step (i.e., for each sample within a mini-batch)

Remove each node in the network with a probability p

Update the weights of the remaining nodes with backpropagation.

3Image credit: G. Louppe
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MC dropout

MC dropout4

Why does dropout work?

4Image credit: G. Louppe
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MC dropout

MC dropout [2]

They [2] propose to average the predictions of several DNN where they
apply the dropout:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ω(t∗)⊙ bj , x∗) (3)

with bj a vector of the same size of ω(t∗) which is a realization of a
binomial distribution.
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Deep ensembles

Deep Ensembles[3]

They [3] propose to average the predictions of several DNN with different
initial seeds:

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj(t∗), x∗) (4)
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Deep ensembles

Deep Ensembles[5]

Figure: t-SNE plot of predictions from checkpoints corresponding to 3 different
randomly initialized trajectorie
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Deep ensembles

Deep Ensembles[5]

Figure: Diversity versus accuracy plots for 3 models trained on CIFAR-10

28 / 42



Encoding the latent posterior of Bayesian neural networks for Uncertainty Quantification
Deep ensembles

BatchEnsemble[7]

They [7] propose to approximate the average of the predictions of several
DNN with different initial seeds by using a DNN with two kinds of
weights. For simplicity ω has two sets of weights ωslow , ωfast.
For simplicity let us consider a DNN with just one fully connected layer
and let us write ω = {ωj}Nmodel

j=1 = {Wj}Nmodel
j=1 and ωslow = Wshare and

ωfast = {Fj}Nmodel
j=1 . We have Wj = Wshare · Fj = Wshare · (rjstj )

Figure: An illustration on how to generate the ensemble weights for two
ensemble members
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BatchEnsemble

BatchEnsemble[7]

We have a set of weight Wj = Wshare · Fj = Wshare · (rjstj ) with Wshare
that sees all images and (rjs

t
j ) that does not see all the same images. If

we denote ϕ an activation function then when we apply the
BatchEnsemble on an image we perform:

y = ϕ
(
W t

j x
)
= ϕ

(
(Wt

share · (rjstj ))tx
)
= ϕ

(
(Wt

share(x · rj) · sj)
)

Similarly to Deep Ensembles, to perform inference we just perform
ensembling :

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|ωj , x∗) (5)

Figure: An illustration on how to generate the ensemble weights for two
ensemble members 30 / 42
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LP-BNN

LP-BNN [8]

In classical BNN al
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LP-BNN

LP-BNN [8]

We proposed similarly to BatchEnsemble to use
Wj = Wshare · Fj = Wshare · (r̂jstj ) with Wshare that sees all images and
(r̂js

t
j ) that does not see all the same images. If we denote ϕ an activation

function then when we apply the LPBNN on an image we perform:

y = ϕ
(
W t

j x
)
= ϕ

(
(Wt

share · (r̂jstj ))tx
)
= ϕ

(
(Wt

share(x · r̂j) · sj)
)

BUT we use r̂j and not rj , where r̂j is the output of a VAE.
Hence, r̂j = gdec

ψ (zj) and with zj ∼ Qϕ(z | r) = N (z ;µj , σ
2
j I) where

(µj , σj) = g enc
ϕ (rj) .
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LP-BNN

LP-BNN [8]

Similarly to Deep Ensembles, to perform inference we just perform
ensembling :

P(y∗|x∗) = 1
Nmodel

Nmodel∑
j=1

P(y∗|θslow, sj , r̂j , x
∗) (6)

with θslow = {Wshare}
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Experiments

Metrics[1]

First we group predictions into M bins, each of size 1/M. Let Bm be the
set of indices of samples whose prediction confidence falls into the
interval Im =]m − 1/M,m/M].
The accuracy of a set Bm is defined as:

acc(Bm) = 1/|Bm|
∑
i∈Bm

δyi (ŷi ) (7)

The average confidence in Bm is defined as:

conf(Bm) = 1/|Bm|
∑
i∈Bm

p̂i (8)

where p̂i is the confidence for sample i .
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Experiments

Metrics [1]

Expected Calibration Error (ECE) measures the difference in expected
accuracy and expected confidence. It is defined as:

ECE =
M∑
m

|acc(Bm)− conf(Bm)|
|Bm|

(9)
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Experiments

Metrics[6]

The dataset is divided in two:
Out of distribution
in distribution

The confidence score p̂i for sample i p̂i is used to detect OOD data. To
eveluate the quality we can use :

Area Under the ROC Curve → AUC
Area Under the Average Precision Curve → AUPR
FPR at 95% TPR can be interpreted as the probability that a
negative (out-of-distribution)example is misclassified as positive
(in-distribution) when the true positive rate (TPR) is as high as
95%. True positive rate can be computed by TPR = TP /
(TP+FN) and , the false positive rate (FPR) can be computed by
FPR =FP / (FP+TN).
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Experiments

Classification

CIFAR-10 CIFAR-100
Method Acc ↑ AUC ↑ AUPR ↑ FPR-95-TPR ↓ ECE ↓ cA ↑ cE ↓ Acc ↑ ECE ↓ cA ↑ cE ↓

MCP + cutout 96.33 0.9600 0.9767 0.115 0.0207 32.98 0.6167 80.19 0.1228 19.33 0.7844

MC dropout 95.95 0.9126 0.9511 0.282 0.0172 32.32 0.6673 75.40 0.0694 19.33 0.5830

MC dropout +cutout 96.50 0.9273 0.9603 0.242 0.0117 32.35 0.6403 77.92 0.0672 27.66 0.5909

DUQ† 87.48 0.7083 0.8114 0.698 0.3983 64.89 0.2542 - - - -

DUQ Resnet18‡ 93.36 0.8994 0.9213 0.1964 0.0131 69.01 0.5059 - - - -

EDL† 85.73 0.9002 0.9198 0.247 0.0904 59.54 0.3412 - - - -

MIMO 94.96 0.9387 0.9648 0.175 0.0300 69.99 0.1846 0.7869 0.1018 0.4735 0.2832

Deep Ensembles + cutout 96.74 0.9803 0.9896 0.071 0.0093 68.75 0.1414 83.01 0.0673 47.35 0.2023

BatchEnsembles + cutou 96.48 0.9540 0.9731 0.132 0.0167 71.67 0.1928 81.27 0.0912 47.44 0.2909

LP-BNN (ours) + cutout 95.02 0.9691 0.9836 0.103 0.0094 69.51 0.1197 79.3 0.0702 48.40 0.2224

Table: Comparative results for image classification tasks. We evaluate on
CIFAR-10 and CIFAR-100 for the tasks: in-domain classification,
out-of-distribution detection with SVHN (CIFAR-10 only), robustness to
distribution shift (CIFAR-10-C, CIFAR-100-C). We run all methods ourselves in
similar settings using publicly available code for related methods. Results are
averaged over three seeds. †: We did not manage to scale these methods to
WRN-28-10 on CIFAR-100.
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Out of distribution (Results on the BDD anomaly
experiments)

img MCP BE LPBNN

Figure: Visual assessment on two BDD-Anomaly test images containing a
motorcycle (OOD class). For each image: on the first row, input image and
confidence maps from Maximum Class Probability (MCP), BatchEnsemble
(BE), and latent posterior of Bayesian neural networks (LP-BNN); on the
second row, ground-truth segmentation and segmentation maps from MCP,
BE, and LP-BNN. LP-BNN is less confident on the OOD objects.
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Experiments

Out of distribution (Results on the BDD anomaly
experiments)

img MCP BE LPBNN

Figure: Visual assessment on two BDD-Anomaly test images containing a
motorcycle (OOD class). For each image: on the first row, input image and
confidence maps from Maximum Class Probability (MCP), BatchEnsemble
(BE), and latent posterior of Bayesian neural networks (LP-BNN); on the
second row, ground-truth segmentation and segmentation maps from MCP,
BE, and LP-BNN. LP-BNN is less confident on the OOD objects.
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Experiments

Conclusions

We proposed a technique that learns the posterior of the DNN that is
stable and improves the uncertainty quantification.
Thanks for your attention.
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