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Modelling Deterministic Functions

• Let Ω ⊂ R3 .
• Let 5 : Ω→ R be a deterministic function.
• Suppose that 5 generates the noiseless data

D# =
{(G1, 5 (G1)), . . . , (G# , 5 (G# ))

}
at some G8 ∈ Ω.

In this talk we model 5 using a Gaussian process 5GP.
• 5 need not be a sample from (or in any way related to) 5GP.
• The assumption that there is no noise is crucial.
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Motivation

• Probabilistic numerics. Provide quantification of epistemic
uncertainty arising from discretisation in numerical
approximation.

• Modelling of computer experiments. Predict the output of a
complex and computationally expensive piece of code.

• Bayesian optimisation. Construct surrogates to an objective
function.

x1x1x1 x2x2x2 x3x3x3 x4x4x4 x5x5x5

f(x)f(x)f(x)

∫
f(x)dx

∫
f(x)dx

∫
f(x)dx

∑5
i=1 wif(xi)

∑5
i=1 wif(xi)

∑5
i=1 wif(xi)
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Gaussian process interpolation I

• Let  : Ω ×Ω→ R be a positive-definite covariance kernel.
• Model 5 as a Gaussian process 5GP ∼ GP(0,  ).
• Condition 5GP on the data D# = {(G8 , 5 (G8))}#8=1.

The resulting conditional GP, 5GP | D# , has the mean

B 5,# (G) B E
[
5GP(G) | D#

]
= 5 T

# 
−1
# :# (G) (1)

and variance

%# (G)2 B Var
[
5GP(G) | D#

]
=  (G, G) − :# (G)T −1

# :# (G), (2)

where

( 5# )8 = 5 (G8), (:# (G))8 =  (G, G8) and ( # )8 9 =  (G8 , G 9).

4 / 25



Gaussian Process Interpolation II

• The conditional mean interpolates the data:

B 5,# (G8) = 5 (G8) for every 8 = 1, . . . , #.

• The conditional variance vanishes at the data locations:

%# (G8)2 = 0 for every 8 = 1, . . . , #.

• The conditional variance does not depend on the data values 5 (G8).

• Properties of the kernel  define the properties of 5GP.
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Gaussian process priors

Gaussian:  (G, H) = e−(G−H)2/2 Matérn:  (G, H) = e−|G−H |

BM:  (G, H) = min{G,H }3
3 + |G−H |min{G,H }2

2
Hardy:  (G, H) = 1

1−GH
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Gaussian Process Conditional
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Objective

• Suppose that the prior covariance is parametric: 5GP ∼ GP(0,  \ ).
• The conditional process is

5GP | D# ∼ GP(B\, 5,# , %2
\,# ).

• For any 0 ∈ (0, 1),
P
[
| 5GP(G) − B\, 5,# (G) | ≤ 2(0)%\,# (G, G)

��� D# ]
= 1 − 0.

• Compute hyperparameter estimates \ ( 5 , #) of \.

Objective: Understand the behaviour of (i) \ ( 5 , #) and (ii) the
standard score

| 5 (G) − B\ ( 5 ,# ) , 5,# (G) |
%\ ( 5 ,# ) ,# (G, G)

as # →∞ (3)

for different 5 and hyperparameter estimation methods.
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Reproducing kernel Hilbert spaces

Reproducing kernel Hilbert space
Every covariance kernel  : Ω ×Ω→ R induces a unique reproducing kernel
Hilbert space (RKHS)H( ) with inner product 〈·, ·〉 . The RKHS consists
of functions 6 : Ω→ R and the kernel has the reproducing property〈

6,  (·, G)〉
 
= 6(G) for any 6 ∈ H ( ) and G ∈ Ω.

The GP conditional moments are related to optimal interpolation inH( ).
B 5 ,# = minimum-norm interpolant

B 5,# = arg min
B∈H( )

{‖B‖ : B(G8) = 5 (G8) for every 8 = 1, . . . , #
}

%# (G, G) = worst-case error

%# (G, G) = sup
‖6 ‖ ≤1

|6(G) − B6,# (G) |
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Sobolev spaces
The Sobolev space �U (R3) consists of functions 6 ∈ !2(R3) such that

‖6‖2U B
∫
R3

(
1 + ‖b‖2 )U |6̂(b) |2 db < ∞.

• For Ω ⊂ R3 the space �U (Ω) is defined via restrictions.
• If U > = + 3/2 for = ∈ N, then �U (R3) ⊂ �= (R3).

Sobolev kernel
Let U > 3/2 and Ω ⊂ R3 . A kernel  : Ω ×Ω→ R is a Sobolev kernel
of order U if its RKHSH( ) is norm-equivalent (') to �U (Ω).
A Matérn kernel

 (G, H) = f2 21−a

Γ(a)

(√
2a ‖G − H‖

_

)a
Ka

(√
2a ‖G − H‖

_

)
of smoothness a > 0 is a Sobolev kernel of order a + 3/2.
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Sobolev rates
Suppose that

• Ω ⊂ R3 is bounded and sufficiently regular (e.g., Ω = [0, 1]3).
• The points G1, . . . , G# are quasi-uniform: the fill-distance

ℎ#,Ω = sup
G∈Ω

min
8=1,...,#

‖G − G8 ‖

is of order #−1/3 as # →∞.
•

•

•
•

•

•

•ℎ# ,Ω

Theorem (from approximation theory)
Let 3/2 < V ≤ U. Suppose thatH( ) ' �U (Ω) and 5 ∈ �V (Ω). Then

sup
G∈Ω
| 5 (G) − B 5,# (G) | ≤ �1 ‖ 5 ‖V #−V/3+1/2 (4)

and
�2#

−U/3+1/2 ≤ %# (G) ≤ �3#
−U/3+1/2 for G ∉ {G8}∞8=1. (5)

11 / 25



Why parameter estimation is necessary

If  is a Sobolev kernel of order U and 5 ∈ �V (Ω) for V ≤ U, then

| 5 (G) − B 5,# (G) |
%# (G, G) ≤

�1 ‖ 5 ‖V #−V/3+1/2
�2#−U/3+1/2

= �4#
(U−V)/3 .

=⇒ If 5 ∉ H( ) ' �U (Ω), it may be necessary estimate kernel
parameters in order to prevent overconfidence:

U − V
3

> 0.
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Maximum likelihood estimation
The log-likelihood function is

ℓ(\) = −1
2

[
5 T
# 
−1
\,# 5 + log det \,# + # log(2c)

]
,

where ( 5# )8 = 5 (G8) and ( \,# )8 9 =  \ (G8 , G 9).

Fix  and use the simple parametrisation  f = f2 for f ≥ 0. Then

Bf, 5,# (G) = B 5,# (G) and %f,# (G, H) = f%# (G, H).

fML ( 5 , #) = arg max
f≥0

ℓ(f) =
√
5 T
# 
−1
# 5#

#
=
‖B 5,# ‖ √

#
(6)

and
standard score =

| 5 (G) − B 5,# (G) |
fML ( 5 , #)%# (G, G) (7)
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First results — 5 ∈ H ( )

Proposition (Proposition 3.1 in K2020)
If 5 ∈ H ( ) and 5 (G8) ≠ 0 for some G8 , then there is 2 > 0 such that

2 #−1/2 ≤ fML ( 5 , #) ≤ ‖ 5 ‖ #−1/2. (8)

Theorem (Theorem 3.2 in K2020)
If 5 ∈ H ( ) and 5 (G8) ≠ 0 for some G8 , then there is � > 0 such that

| 5 (G) − B 5,# (G) |
fML ( 5 , #)%# (G, G) ≤ �

√
#. (9)

At most “slow” (i.e.,
√
#) overconfidence if 5 ∈ H ( ).
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Second result — 5 ∈ �V (Ω) andH( ) ' �U (Ω)
Let V ∈ (3/2, U]. Suppose that Ω is regular and {G8}∞8=1 are quasi-uniform.

Proposition (Proposition 4.5 in K2020)
IfH( ) ' �U (Ω) and 5 ∈ �V (Ω), then

fML ( 5 , #) ≤ �1#
(U−V)/3−1/2 ‖ 5 ‖� V (Ω) . (10)

=⇒ the behaviour of fML ( 5 , #) tells how “far” fromH( ) the function 5 is.
Theorem (Theorem 4.10 in K2020)
IfH( ) ' �U (Ω) and 5 has “exact smoothness” V for bVc > 3/2, then

| 5 (G) − B 5,# (G) |
fML ( 5 , #)%# (G, G) ≤ �2 ( 5 ) (log #)U/(2V)

√
#. (11)

At most “slow” (i.e., ≈ √#) overconfidence if 5 is rougher thanH( ).
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Some implications

• Overconfidence cannot be ruled out, but at least it cannot be overly
severe: the standard score is approximately O(#1/2).

• Simple maximum likelihood estimation of a scaling parameter
provides strong protection against smoothness misspecification.

• MLE does not detect undersmoothing by the model:

fML( 5 , #) � #−1/2 for every non-zero 5 ∈ H ( ).

• It can be shown (Theorem 4.11 in K2020) that underconfidence
occurs if there is (roughly speaking) sufficient undersmoothing:

H( ) ' �U (Ω) and 5 ∈ �2U (Ω).

16 / 25



Numerical results: confidence intervals

H( ) ' �2( [0, 1]) and 5 ∈ �V ( [0, 1]) for V = 2
2 ,

3
2 , . . . ,

6
2 .

1 64 128 192 256

10−1

100

101

N

σML(f,N)

1 64 128 192 256
0

2

4

6

N

standard score

β = 1.0 β = 1.5 β = 2.0

β = 2.5 β = 3.0
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Sample path properties

Theorem (e.g., Steinwart 2019)
Let 5GP ∼ GP(0,  ) and suppose that  is a Sobolev kernel of order
U > 3/2. Then

P
[
5GP ∈ �V (Ω)

]
= 0 if V ≥ U − 3/2

and
P
[
5GP ∈ �V (Ω)

]
= 1 if V < U − 3/2.

The samples of the Gaussian process 5GP are therefore “3/2 less
smooth” than the RKHSH( ).

=⇒ Samples are not in the RKHSH( ) ' �U (Ω)!

=⇒ Samples have “exact smoothness” U − 3/2 ifH( ) ' �U (Ω).
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Matérn kernels
Let  be a Matérn kernel of smoothness a > 0 and Ω ⊂ R3 sufficiently
regular. Then
• H( ) is norm-equivalent to the Sobolev space �a+3/2(Ω).
• P[ 5GP ∈ �a−Y (Ω)] = 1 if and only if Y > 0.

more smoothness (i.e., larger a) & smaller space

� a+3/2 (Ω) ' H( )⊃� a (Ω)⊃� a−Y (Ω)⊃� (Ω)

� a−Y (Ω) \ � a (Ω) ⊃ S( )

The samples of 5GP can be thought of as elements of the “Sobolev slice”

S( ) ⊂ �a−Y (Ω) \ �a (Ω) for every Y > 0.

19 / 25



Expected scale MLE for samples

Suppose that the data-generating function is a Gaussian process

5 = 5 ∗GP ∼ GP(0, ')

but the model is 5GP ∼ GP(0,  ). Then

E 5 ∗GP

[
fML( 5 ∗GP, #)2

]
= E 5 ∗GP

[ ( 5 ∗GP,# )T −1
# 5 ∗GP,#

#

]
=

trace('# −1
# )

#
.

Theorem (Theorem 4.2 in K2021b)
Suppose thatH( ) ' �U ( [0, 1]3) andH(') ' �U0 ( [0, 1]3) for
U ≥ U0 > 3/2. If the points {G8}∞8=1 are quasi-uniform, then

�1#
2(U−U0)/3 ≤ E 5 ∗GP

[
fML( 5 ∗GP, #)2

] ≤ �2#
2(U−U0)/3 .
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Comparison to the deterministic case

Suppose thatH( ) ' �U ( [0, 1]3) and that {G8}∞8=1 are quasi-uniform.

Recall that the samples “have smoothness U − 3/2”.
Deterministic
Let 5 ∈ �U−3/2( [0, 1]3) so that 5 does not have less smoothness than
the samples of 5GP ∼ GP(0,  ). For V = U − 3/2 we get

fML( 5 , #)2 ≤ �1#
2(U−V)/3−1 ‖ 5 ‖2

� V (Ω) = �1 ‖ 5 ‖2� U−3/2 (Ω) . (12)

Stochastic
Let 5 = 5 ∗GP ∼ GP(0, ') for ' such thatH(') ' �U ( [0, 1]3). Then
5GP ∼ GP(0,  ) and 5 ∗GP have similar paths. For U0 = U we get

E 5 ∗GP

[
fML( 5 ∗GP, #)2

] � # (U−U0)/3 = 1. (13)
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Is cross-validation better than MLE?

The leave-one-out cross-validated estimate of f is

fCV( 5 , #) = 1
#

#∑
8=1

(
5 (G8) − B 5,# \8 (G8)
%# \8 (G8 , G8)

)2
,

where B 5,# \8 and %# \8 are the GP conditional mean and std based on
the data set D# \ {(G8 , 5 (G8))}.
• Recall that for any non-zero 5 ∈ H ( ) we have

fML( 5 , #) � #−1/2 for any non-zero 5 ∈ H ( ).
• At least in some cases it can be proved1 that the rate of decay of

fCV( 5 , #) depends on 5 ∈ H ( ).

=⇒ Cross-validation is more sensitive to the smoothness of 5 than MLE.

1Work in progress with M. Naslidnyk, M. Mahsereci and M. Kanagawa.
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Estimating the lengthscale parameter

The kernel  is stationary if it can be written as

 (G, H) = Φ
(
G − H
_

)
for some Φ : R3 → R,

where _ > 0 is the lengthscale parameter.

Theorem (to appear in a paper with C. Oates)
Let # ≥ 2 and suppose thatH( ) ' �U (R3) for some U > 3/2. If
the data vector is constant,

5# = (2, . . . , 2) ∈ R# for some 2 ∈ R,

then
_ML = ∞.
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Conclusion

• Simple MLE of the scaling parameter f in  f (G, H) = f2 (G, H)
provides protection against misspecification.

• Overconfidence is possible but at least it cannot be too severe.

• Samples from a GP are elements of a “small” set of functions.
This is manifested in the sample results being “nicer”.

• Cross-validation may be more sensitive to the smoothness of 5
than MLE.
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Thank you for your attention!
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