Parameter Estimation in Gaussian Process Regression for Deterministic Functions

Toni Karvonen

Department of Mathematics and Statistics University of Helsinki, Finland

UQSay #37 Paris-Saclay University

18 November 2021

Introduction

Maximum likelihood estimation for deterministic \boldsymbol{f}

What if f is a sample from a GP?

Two future results

Modelling Deterministic Functions

- Let $\Omega \subset \mathbb{R}^d$.
- Let $f: \Omega \to \mathbb{R}$ be a deterministic function.
- Suppose that f generates the noiseless data

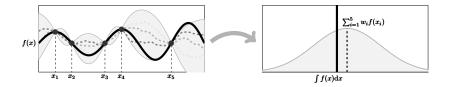
$$\mathcal{D}_N = \left\{ (x_1, f(x_1)), \dots, (x_N, f(x_N)) \right\} \text{ at some } x_i \in \Omega.$$

In this talk we model f using a Gaussian process f_{GP} .

- f need not be a sample from (or in any way related to) f_{GP} .
- The assumption that there is no noise is crucial.

Motivation

- *Probabilistic numerics*. Provide quantification of epistemic uncertainty arising from discretisation in numerical approximation.
- *Modelling of computer experiments*. Predict the output of a complex and computationally expensive piece of code.
- *Bayesian optimisation*. Construct surrogates to an objective function.



(K2020) Karvonen, Wynne, Tronarp, Oates & Särkkä (2020). Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions. SIAM/ASA Journal on Uncertainty Quantification, 8(3):926–958.

(K2021a) Karvonen (2021). Small sample spaces for Gaussian processes. arXiv:2103.03169.

- (K2021b) **Karvonen (2021**). Estimation of the scale parameter for a misspecified Gaussian process model. *arXiv*:2110.02810.
 - + Two papers in preparation.

Gaussian process interpolation I

- Let $K: \Omega \times \Omega \to \mathbb{R}$ be a positive-definite covariance kernel.
- Model f as a Gaussian process $f_{GP} \sim GP(0, K)$.
- Condition f_{GP} on the data $\mathcal{D}_N = \{(x_i, f(x_i))\}_{i=1}^N$.

The resulting conditional GP, $f_{GP} \mid \mathcal{D}_N$, has the mean

$$s_{f,N}(x) \coloneqq \mathbb{E}\left[f_{GP}(x) \mid \mathcal{D}_N\right] = f_N^\mathsf{T} K_N^{-1} k_N(x) \tag{1}$$

and variance

$$P_N(x)^2 \coloneqq \operatorname{Var}\left[f_{GP}(x) \mid \mathcal{D}_N\right] = K(x, x) - k_N(x)^{\mathsf{T}} K_N^{-1} k_N(x), \quad (2)$$

where

$$(f_N)_i = f(x_i), \quad (k_N(x))_i = K(x, x_i) \text{ and } (K_N)_{ij} = K(x_i, x_j).$$

Gaussian Process Interpolation II

• The conditional mean interpolates the data:

$$s_{f,N}(x_i) = f(x_i)$$
 for every $i = 1, \dots, N$.

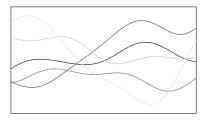
• The conditional variance vanishes at the data locations:

$$P_N(x_i)^2 = 0$$
 for every $i = 1, ..., N$.

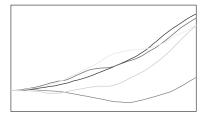
- The conditional variance does not depend on the data values $f(x_i)$.
- Properties of the kernel *K* define the properties of f_{GP} .

Gaussian process priors

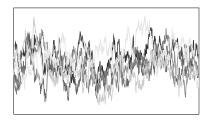
Gaussian: $K(x, y) = e^{-(x-y)^2/2}$



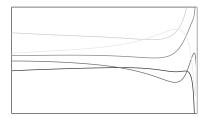
BM:
$$K(x, y) = \frac{\min\{x, y\}^3}{3} + \frac{|x-y|\min\{x, y\}^2}{2}$$



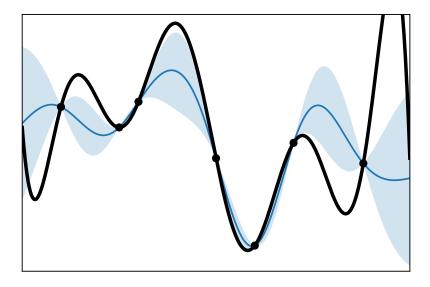
Matérn: $K(x, y) = e^{-|x-y|}$



Hardy: $K(x, y) = \frac{1}{1-xy}$



Gaussian Process Conditional



Objective

- Suppose that the prior covariance is parametric: $f_{GP} \sim GP(0, K_{\theta})$.
- The conditional process is

$$f_{\rm GP} \mid \mathcal{D}_N \sim {\rm GP}(s_{\theta,f,N}, P_{\theta,N}^2).$$

• For any
$$a \in (0, 1)$$
,

$$\mathbb{P}\Big[|f_{GP}(x) - s_{\theta, f, N}(x)| \le c(a)P_{\theta, N}(x, x) \mid \mathcal{D}_N\Big] = 1 - a.$$

• Compute hyperparameter estimates $\theta(f, N)$ of θ .

Objective: Understand the behaviour of (i) $\theta(f, N)$ and (ii) the standard score

$$\frac{|f(x) - s_{\theta(f,N),f,N}(x)|}{P_{\theta(f,N),N}(x,x)} \quad \text{as} \quad N \to \infty$$
(3)

for different f and hyperparameter estimation methods.

Introduction

Maximum likelihood estimation for deterministic \boldsymbol{f}

What if f is a sample from a GP?

Two future results

Reproducing kernel Hilbert spaces

Reproducing kernel Hilbert space

Every covariance kernel $K: \Omega \times \Omega \to \mathbb{R}$ induces a unique *reproducing kernel Hilbert space* (RKHS) $\mathcal{H}(K)$ with inner product $\langle \cdot, \cdot \rangle_K$. The RKHS consists of functions $g: \Omega \to \mathbb{R}$ and the kernel has the *reproducing property*

 $\langle g, K(\cdot, x) \rangle_{K} = g(x)$ for any $g \in \mathcal{H}(K)$ and $x \in \Omega$.

The GP conditional moments are related to optimal interpolation in $\mathcal{H}(K)$.

$s_{f,N}$ = minimum-norm interpolant

 $s_{f,N} = \underset{s \in \mathcal{H}(K)}{\operatorname{arg\,min}} \{ \|s\|_{K} : s(x_{i}) = f(x_{i}) \text{ for every } i = 1, \dots, N \}$

 $P_N(x, x) =$ worst-case error

$$P_N(x,x) = \sup_{\|g\|_K \le 1} |g(x) - s_{g,N}(x)|$$

Sobolev spaces

The Sobolev space $H^{\alpha}(\mathbb{R}^d)$ consists of functions $g \in L^2(\mathbb{R}^d)$ such that

$$\|g\|_{\alpha}^{2} \coloneqq \int_{\mathbb{R}^{d}} \left(1 + \|\xi\|^{2}\right)^{\alpha} \left|\widehat{g}(\xi)\right|^{2} \mathrm{d}\xi < \infty.$$

- For $\Omega \subset \mathbb{R}^d$ the space $H^{\alpha}(\Omega)$ is defined via restrictions.
- If $\alpha > n + d/2$ for $n \in \mathbb{N}$, then $H^{\alpha}(\mathbb{R}^d) \subset C^n(\mathbb{R}^d)$.

Sobolev kernel

Let $\alpha > d/2$ and $\Omega \subset \mathbb{R}^d$. A kernel $K \colon \Omega \times \Omega \to \mathbb{R}$ is a *Sobolev kernel* of order α if its RKHS $\mathcal{H}(K)$ is norm-equivalent (\simeq) to $H^{\alpha}(\Omega)$.

A Matérn kernel

$$K(x, y) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|x - y\|}{\lambda}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu} \|x - y\|}{\lambda}\right)$$

of smoothness $\nu > 0$ is a Sobolev kernel of order $\nu + d/2$.

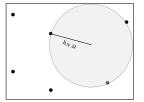
Sobolev rates

Suppose that

- $\Omega \subset \mathbb{R}^d$ is bounded and sufficiently regular (e.g., $\Omega = [0, 1]^d$).
- The points x_1, \ldots, x_N are quasi-uniform: the *fill-distance*

$$h_{N,\Omega} = \sup_{x \in \Omega} \min_{i=1,...,N} ||x - x_i||$$

is of order $N^{-1/d}$ as $N \to \infty$.



Theorem (from approximation theory)

Let $d/2 < \beta \leq \alpha$. Suppose that $\mathcal{H}(K) \simeq H^{\alpha}(\Omega)$ and $f \in H^{\beta}(\Omega)$. Then

$$\sup_{x \in \Omega} |f(x) - s_{f,N}(x)| \le C_1 ||f||_{\beta} N^{-\beta/d+1/2}$$
(4)

and

$$C_2 N^{-\alpha/d+1/2} \le P_N(x) \le C_3 N^{-\alpha/d+1/2} \text{ for } x \notin \{x_i\}_{i=1}^{\infty}.$$
 (5)

Why parameter estimation is necessary

If *K* is a Sobolev kernel of order α and $f \in H^{\beta}(\Omega)$ for $\beta \leq \alpha$, then

$$\frac{|f(x) - s_{f,N}(x)|}{P_N(x,x)} \le \frac{C_1 \, \|f\|_{\beta} \, N^{-\beta/d+1/2}}{C_2 N^{-\alpha/d+1/2}} = C_4 N^{(\alpha-\beta)/d}$$

⇒ If $f \notin \mathcal{H}(K) \simeq H^{\alpha}(\Omega)$, it may be necessary estimate kernel parameters in order to prevent overconfidence:

$$\frac{\alpha-\beta}{d}>0.$$

Maximum likelihood estimation

The log-likelihood function is

$$\ell(\theta) = -\frac{1}{2} \left[f_N^\mathsf{T} K_{\theta,N}^{-1} f + \log \det K_{\theta,N} + N \log(2\pi) \right],$$

where $(f_N)_i = f(x_i)$ and $(K_{\theta,N})_{ij} = K_{\theta}(x_i, x_j)$.

Fix *K* and use the simple parametrisation $K_{\sigma} = \sigma^2 K$ for $\sigma \ge 0$. Then

$$s_{\sigma,f,N}(x) = s_{f,N}(x)$$
 and $P_{\sigma,N}(x,y) = \sigma P_N(x,y)$

$$\sigma_{\mathrm{ML}}(f,N) = \operatorname*{arg\,max}_{\sigma \ge 0} \ell(\sigma) = \sqrt{\frac{f_N^{\mathsf{T}} K_N^{-1} f_N}{N}} = \frac{\|s_{f,N}\|_K}{\sqrt{N}} \quad (6)$$

and
$$\operatorname{standard\,score} = \frac{|f(x) - s_{f,N}(x)|}{\sigma_{\mathrm{ML}}(f,N) P_N(x,x)} \quad (7)$$

First results — $f \in \mathcal{H}(K)$

Proposition (Proposition 3.1 in K2020)

If $f \in \mathcal{H}(K)$ and $f(x_i) \neq 0$ for some x_i , then there is c > 0 such that

$$c N^{-1/2} \le \sigma_{\rm ML}(f, N) \le ||f||_K N^{-1/2}.$$
 (8)

Theorem (Theorem 3.2 in K2020)

If $f \in \mathcal{H}(K)$ and $f(x_i) \neq 0$ for some x_i , then there is C > 0 such that

$$\frac{|f(x) - s_{f,N}(x)|}{\sigma_{\mathrm{ML}}(f, N)P_N(x, x)} \le C\sqrt{N}.$$
(9)

At most "slow" (i.e., \sqrt{N}) overconfidence if $f \in \mathcal{H}(K)$.

Second result — $f \in H^{\beta}(\Omega)$ and $\mathcal{H}(K) \simeq H^{\alpha}(\Omega)$

Let $\beta \in (d/2, \alpha]$. Suppose that Ω is regular and $\{x_i\}_{i=1}^{\infty}$ are quasi-uniform.

Proposition (Proposition 4.5 in K2020)

If $\mathcal{H}(K) \simeq H^{\alpha}(\Omega)$ and $f \in H^{\beta}(\Omega)$, then

$$\sigma_{\rm ML}(f,N) \le C_1 N^{(\alpha-\beta)/d-1/2} \, \|f\|_{H^{\beta}(\Omega)} \,. \tag{10}$$

 \implies the behaviour of $\sigma_{ML}(f, N)$ tells how "far" from $\mathcal{H}(K)$ the function f is.

Theorem (Theorem 4.10 in K2020) If $\mathcal{H}(K) \simeq H^{\alpha}(\Omega)$ and *f* has "exact smoothness" β for $\lfloor \beta \rfloor > d/2$, then

$$\frac{|f(x) - s_{f,N}(x)|}{\sigma_{\rm ML}(f,N)P_N(x,x)} \le C_2(f)(\log N)^{\alpha/(2\beta)}\sqrt{N}.$$
(11)

At most "slow" (i.e., $\approx \sqrt{N}$) overconfidence if f is rougher than $\mathcal{H}(K)$.

Some implications

- Overconfidence cannot be ruled out, but at least it cannot be overly severe: the standard score is approximately $O(N^{1/2})$.
- Simple maximum likelihood estimation of a scaling parameter provides strong protection against smoothness misspecification.
- MLE does not detect undersmoothing by the model:

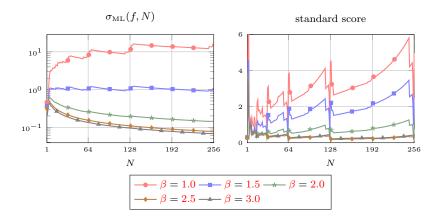
$$\sigma_{\rm ML}(f,N) \asymp N^{-1/2}$$
 for every non-zero $f \in \mathcal{H}(K)$.

• It can be shown (**Theorem 4.11 in K2020**) that underconfidence occurs if there is (roughly speaking) sufficient undersmoothing:

$$\mathcal{H}(K) \simeq H^{\alpha}(\Omega)$$
 and $f \in H^{2\alpha}(\Omega)$.

Numerical results: confidence intervals

$$\mathcal{H}(K) \simeq H^2([0,1]) \text{ and } f \in H^{\beta}([0,1]) \text{ for } \beta = \frac{2}{2}, \frac{3}{2}, \dots, \frac{6}{2}.$$



Introduction

Maximum likelihood estimation for deterministic \boldsymbol{f}

What if f is a sample from a GP?

Two future results

Sample path properties

Theorem (e.g., Steinwart 2019) Let $f_{GP} \sim GP(0, K)$ and suppose that *K* is a Sobolev kernel of order $\alpha > d/2$. Then

$$\mathbb{P}\left[f_{\rm GP} \in H^{\beta}(\Omega)\right] = 0 \quad \text{if} \quad \beta \ge \alpha - d/2$$

and

$$\mathbb{P}\left[f_{\rm GP} \in H^{\beta}(\Omega)\right] = 1 \quad \text{if} \quad \beta < \alpha - d/2.$$

The samples of the Gaussian process f_{GP} are therefore "d/2 less smooth" than the RKHS $\mathcal{H}(K)$.

 \implies Samples are *not* in the RKHS $\mathcal{H}(K) \simeq H^{\alpha}(\Omega)!$

 \implies Samples have "exact smoothness" $\alpha - d/2$ if $\mathcal{H}(K) \simeq H^{\alpha}(\Omega)$.

Matérn kernels

Let *K* be a Matérn kernel of smoothness v > 0 and $\Omega \subset \mathbb{R}^d$ sufficiently regular. Then

- $\mathcal{H}(K)$ is norm-equivalent to the Sobolev space $H^{\nu+d/2}(\Omega)$.
- $\mathbb{P}[f_{GP} \in H^{\nu-\varepsilon}(\Omega)] = 1$ if and only if $\varepsilon > 0$.

more smoothness (i.e., larger v) & smaller space

The samples of $f_{\rm GP}$ can be thought of as elements of the "Sobolev slice"

 $\mathcal{S}(K) \subset H^{\nu-\varepsilon}(\Omega) \setminus H^{\nu}(\Omega)$ for every $\varepsilon > 0$.

Expected scale MLE for samples

Suppose that the data-generating function is a Gaussian process

$$f = f_{\rm GP}^* \sim {\rm GP}(0, R)$$

but the model is $f_{GP} \sim GP(0, K)$. Then

$$\mathbb{E}_{f_{\rm GP}^*}\left[\sigma_{\rm ML}(f_{\rm GP}^*,N)^2\right] = \mathbb{E}_{f_{\rm GP}^*}\left[\frac{(f_{\rm GP,N}^*)^{\sf T}K_N^{-1}f_{\rm GP,N}^*}{N}\right] = \frac{\operatorname{trace}(R_NK_N^{-1})}{N}.$$

Theorem (Theorem 4.2 in K2021b)

Suppose that $\mathcal{H}(K) \simeq H^{\alpha}([0,1]^d)$ and $\mathcal{H}(R) \simeq H^{\alpha_0}([0,1]^d)$ for $\alpha \ge \alpha_0 > d/2$. If the points $\{x_i\}_{i=1}^{\infty}$ are quasi-uniform, then

$$C_1 N^{2(\alpha - \alpha_0)/d} \leq \mathbb{E}_{f_{\mathrm{GP}}^*} \left[\sigma_{\mathrm{ML}}(f_{\mathrm{GP}}^*, N)^2 \right] \leq C_2 N^{2(\alpha - \alpha_0)/d}$$

Comparison to the deterministic case

Suppose that $\mathcal{H}(K) \simeq H^{\alpha}([0,1]^d)$ and that $\{x_i\}_{i=1}^{\infty}$ are quasi-uniform.

Recall that the samples "have smoothness $\alpha - d/2$ ".

Deterministic

Let $f \in H^{\alpha-d/2}([0,1]^d)$ so that f does not have less smoothness than the samples of $f_{GP} \sim GP(0, K)$. For $\beta = \alpha - d/2$ we get

$$\sigma_{\rm ML}(f,N)^2 \le C_1 N^{2(\alpha-\beta)/d-1} \|f\|_{H^{\beta}(\Omega)}^2 = C_1 \|f\|_{H^{\alpha-d/2}(\Omega)}^2.$$
(12)

Stochastic

Let $f = f_{GP}^* \sim GP(0, R)$ for R such that $\mathcal{H}(R) \simeq H^{\alpha}([0, 1]^d)$. Then $f_{GP} \sim GP(0, K)$ and f_{GP}^* have similar paths. For $\alpha_0 = \alpha$ we get

$$\mathbb{E}_{f_{\rm GP}^*}\left[\sigma_{\rm ML}(f_{\rm GP}^*, N)^2\right] \times N^{(\alpha - \alpha_0)/d} = 1.$$
(13)

Introduction

Maximum likelihood estimation for deterministic \boldsymbol{f}

What if f is a sample from a GP?

Two future results

Is cross-validation better than MLE?

The leave-one-out cross-validated estimate of σ is

$$\sigma_{\rm CV}(f,N) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{f(x_i) - s_{f,N \setminus i}(x_i)}{P_{N \setminus i}(x_i,x_i)} \right)^2,$$

where $s_{f,N\setminus i}$ and $P_{N\setminus i}$ are the GP conditional mean and std based on the data set $\mathcal{D}_N \setminus \{(x_i, f(x_i))\}$.

• Recall that for any non-zero $f \in \mathcal{H}(K)$ we have

 $\sigma_{\rm ML}(f,N) \asymp N^{-1/2}$ for any non-zero $f \in \mathcal{H}(K)$.

• At least in some cases it can be proved¹ that the rate of decay of

 $\sigma_{\rm CV}(f,N)$ depends on $f \in \mathcal{H}(K)$.

 \implies Cross-validation is more sensitive to the smoothness of f than MLE.

¹Work in progress with M. Naslidnyk, M. Mahsereci and M. Kanagawa.

Estimating the lengthscale parameter

The kernel *K* is stationary if it can be written as

$$K(x, y) = \Phi\left(\frac{x-y}{\lambda}\right)$$
 for some $\Phi \colon \mathbb{R}^d \to \mathbb{R}$,

where $\lambda > 0$ is the lengthscale parameter.

Theorem (to appear in a paper with C. Oates)

Let $N \ge 2$ and suppose that $\mathcal{H}(K) \simeq H^{\alpha}(\mathbb{R}^d)$ for some $\alpha > d/2$. If the data vector is constant,

$$f_N = (c, \ldots, c) \in \mathbb{R}^N$$
 for some $c \in \mathbb{R}$,

then

$$\lambda_{\rm ML} = \infty$$
.

Conclusion

- Simple MLE of the scaling parameter σ in $K_{\sigma}(x, y) = \sigma^2 K(x, y)$ provides protection against misspecification.
- Overconfidence is possible but at least it cannot be too severe.
- Samples from a GP are elements of a "small" set of functions. This is manifested in the sample results being "nicer".
- Cross-validation may be more sensitive to the smoothness of *f* than MLE.

Additional references

- Lukić & Beder (2001). Stochastic processes with sample paths in reproducing kernel Hilbert spaces. *Transactions of the American Mathematical Society*, 353(10):3945–3969.
- Narcowich, Ward & Wendland (2006). Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. *Constructive Approximation*, 24(2):175–186.
- **Bachoc (2013)**. Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model misspecification. *Computational Statistics & Data Analysis*, 66:55–69.
- Xu & Stein (2017). Maximum likelihood estimation for a smooth Gaussian random field model. *SIAM/ASA Journal on Uncertainty Quantification*, 5(1):138-175.
- Steinwart (2019). Convergence types and rates in generic Karhunen-Loève expansions with applications to sample path properties. *Potential Analysis*, 51(3):361–395.
- Hadji & Szábo (2019). Can we trust Bayesian uncertainty quantification from Gaussian process priors with squared exponential covariance kernel? *arXiv*:2002.01381.
- **Teckentrup (2020)**. Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian inverse problems. *SIAM/ASA Journal on Uncertainty Quantification*, 8(4):1310–1337.
- Wang (2020). On the inference of applying Gaussian process modeling to a deterministic function. *arXiv:2002.01381*.

Thank you for your attention!