

Reliability sensitivity analysis with FORM

UQSay, 1 July 2021

Iason Papaioannou

Engineering Risk Analysis Group, TU München

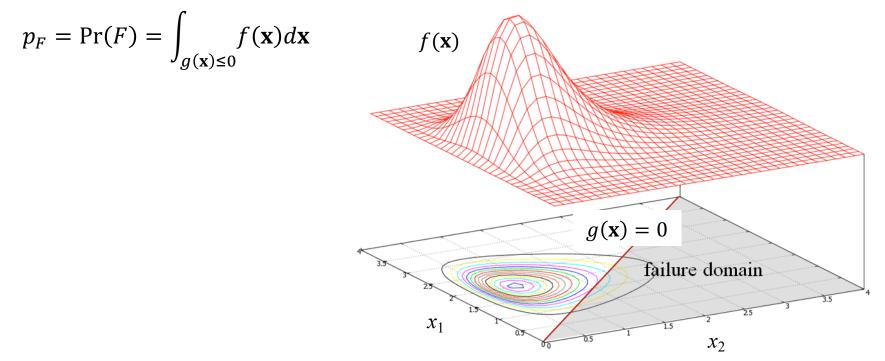
E-mail: iason.papaioannou@tum.de

Joint work with Daniel Straub

The reliability problem

ПП

Input random variables: $\mathbf{X} = [X_1; X_2; ...; X_n]$ with joint PDF $f(\mathbf{x})$ Assume that the components of \mathbf{X} are independent, i.e., $f(\mathbf{x}) = \prod_{i=1}^n f_i(x_i)$ Limit-state function $g(\mathbf{x})$; Failure event $F = \{\mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \le 0\}$ Probability of failure: $p_F = \Pr(F)$



The reliability problem (II)

Probability of failure:

$$p_F = \Pr(F) = \int_{g(\mathbf{x}) \le 0} f(\mathbf{x}) d\mathbf{x} = \int_{\mathbb{R}^n} I(g(\mathbf{x}) \le 0) f(\mathbf{x}) d\mathbf{x} = \mathbb{E}[I(g(\mathbf{X}) \le 0)]$$

where:

$$I(g(\mathbf{x}) \le 0) = \begin{cases} 1, & \text{if } g(\mathbf{x}) \le 0\\ 0, & \text{otherwise} \end{cases}$$

Reliability sensitivity analysis

- Gradient-based sensitivity analysis: How does a change in the (deterministic) input parameters influences p_F ?
 - Gradient-based measures
 - Distribution parameter sensitivities: $\frac{\partial p_F}{\partial \mu}$, $\frac{\partial p_F}{\partial \sigma}$ [Wu 1994]
 - Sensitivities with respect to a limit-state parameter θ : $\frac{\partial p_F}{\partial \theta}$ [Jensen et al. 2009; Papaioannou et al. 2013, 2018]

Reliability sensitivity analysis (II)

- Variance-based/global sensitivity analysis: How does the variability of the input random variables influences p_F ?
 - Based on the variance decomposition of a related function of the input uncertainties **X**, $Q = h(\mathbf{X})$
 - $Q = I(g(\mathbf{X}) \le 0)$ [Li et al. 2012; Wei et al. 2012]
 - $Q = E_{\mathbf{X}_A}[I(g(\mathbf{X}_A, \mathbf{X}_B) \le 0) | \mathbf{X}_B]$ [Wang et al. 2013; Ehre et al. 2018]

Reliability sensitivity analysis (III)

- Decision-theoretic sensitivity analysis: How does the reduction of uncertainty of the input random variables influence the optimality of an engineering decision?
 - Based on decision theory the concept of Value of Information (VoI) [Felli & Hazen 1998; Straub 2014]
 - Decision theoretic reliability sensitivities apply the Vol concept to decisions related to safety and reliability-based design [Straub et al. 2021]

Variance-based reliability sensitivity analysis

How does the variability of the input random variables influences p_F ?

Variance-based sensitivity analysis

Consider an *n*-dimensional independent random vector **X** and a function $Q = h(\mathbf{X})$. ANOVA representation:

$$h(\mathbf{X}) = h_0 + \sum_{i=1}^n h_i(X_i) + \sum_{i< j}^n h_{ij}(X_i, X_j) + \dots + h_{1\dots n}(X_1, \dots, X_n)$$

with $h_0 = \mathbb{E}[Q]$ and $\mathbb{E}[h_v(\mathbf{X}_v)|\mathbf{X}_{v\setminus i}] = 0$ for any subset $\mathbf{X}_v \subseteq \mathbf{X}$ and any $i \in \mathbf{v}$.

Variance decomposition:

$$Var(Q) = \sum_{i=1}^{n} V_i + \sum_{i< j}^{n} V_{ij} + \dots + V_{1\dots n}$$

where

$$V_i = \operatorname{Var}(\operatorname{E}[Q|X_i])$$
$$V_{ij} = \operatorname{Var}(\operatorname{E}[Q|X_i, X_j]) - V_i - V_j$$

and so on

Variance-based sensitivity indices

First-order (Sobol') indices:

$$S_i = \frac{V_i}{\operatorname{Var}(Q)}$$

Second-order indices:

$$S_{ij} = \frac{V_{ij}}{\operatorname{Var}(Q)}$$

and so on

It is:

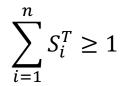
$$\sum_{i=1}^{n} S_i + \sum_{i < j}^{n} S_{ij} + \dots + S_{1\dots n} = 1$$

Variance-based sensitivity indices (II)

Total effect indices

$$S_i^T = \frac{\mathrm{E}[\mathrm{Var}(Q|\mathbf{X}_{\sim i})]}{\mathrm{Var}(Q)} = 1 - \frac{\mathrm{Var}(\mathrm{E}[Q|\mathbf{X}_{\sim i}])}{\mathrm{Var}(Q)}$$

It is:



ΠП

Variance-based reliability sensitivities

Failure event $F = \{ \mathbf{x} \in \mathbb{R}^n : g(\mathbf{x}) \le 0 \}$ Quantity of interest: $Z = I(g(\mathbf{X}) \le 0)$

It is $E[Z] = p_F$, $Var[Z] = p_F(1 - p_F)$

First-order indices:

$$S_{F,i} = \frac{\operatorname{Var}(\operatorname{E}[Z|X_i])}{\operatorname{Var}(Z)} = \frac{\operatorname{Var}(\operatorname{Pr}[F|X_i])}{p_F(1-p_F)}$$

Note: The F-O index is equivalent to the moment-independent importance measure [Li et al. 2012]

$$\delta_i^p = \mathbb{E}[(\Pr[F] - \Pr[F|X_i])^2] = \operatorname{Var}(\mathbb{E}[Z|X_i])$$

Evaluation of $S_{F,i}$ can be performed by a variety of sampling or approximation methods [Wei et al. 2012, Li et al. 2012, Perrin & Defaux 2019, Li et al. 2019]

Variance-based reliability sensitivities (II)

Total-effect indices:

$$S_{F,i}^{T} = 1 - \frac{\operatorname{Var}(\operatorname{E}[Z|\mathbf{X}_{\sim i}])}{\operatorname{Var}(Z)} = 1 - \frac{\operatorname{Var}(\operatorname{Pr}[F|\mathbf{X}_{\sim i}])}{p_{F}(1 - p_{F})}$$

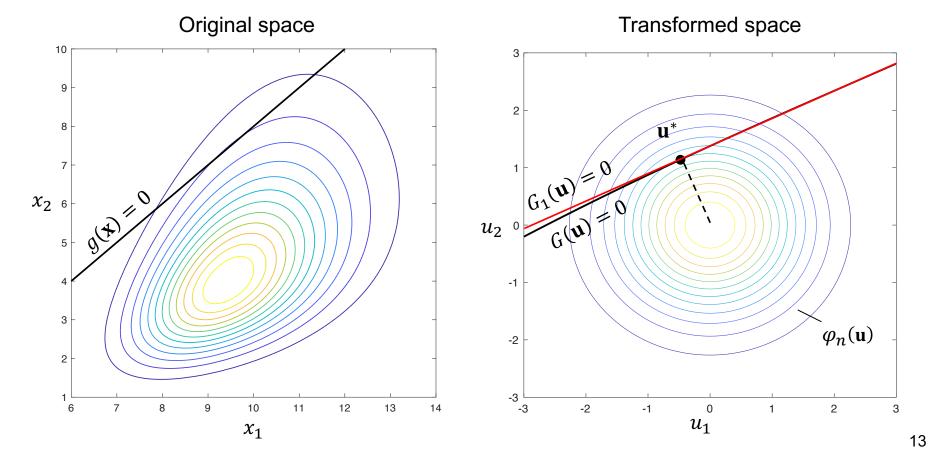
Evaluation of $S_{F,i}^T$ can be performed by sampling-based methods [Wei et al. 2012]

Notes

- First-order indices can be used for factor prioritization, to determine which random variable if learned will increase the accuracy of p_F the most
- Total-effect indices can be used for factor fixing, to determine the random variables with $S_{F,i}^T \approx 0$, which if fixed will not impact the prediction of p_F

First order reliability method (FORM)

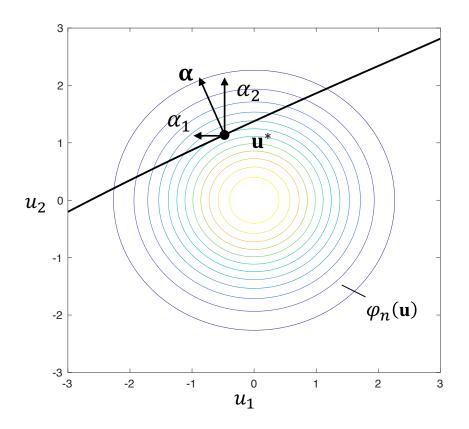
- Transform X to an equivalent space $U \sim N(0, I)$; Transformation operator: U = T(X)
- Transformed limit-state function: $G(\mathbf{u}) = g[\mathbf{T}^{-1}(\mathbf{u})]$
- Choose \mathbf{u}^* as the most likely (probable) point on the hypersurface $G(\mathbf{u}) = 0$



The FORM α -factors

Normalized negative gradient of the limit-state function at the design point \mathbf{u}^*

$$\boldsymbol{\alpha} = -\frac{\nabla G(\mathbf{u}^*)}{\|\nabla G(\mathbf{u}^*)\|} = \frac{\mathbf{u}^*}{\beta}$$



ПΠ

FORM approximation

Approximation of limit-state function in U-space

$$G(\mathbf{U}) \approx G_1(\mathbf{U}) = \nabla G(\mathbf{u}^*)(\mathbf{U} - \mathbf{u}^*) = \|\nabla G(\mathbf{u}^*)\|(\beta - \alpha \mathbf{U})\|$$

where $\beta = \alpha \mathbf{u}^*$ is the FORM reliability index

FORM approximation of the failure domain:

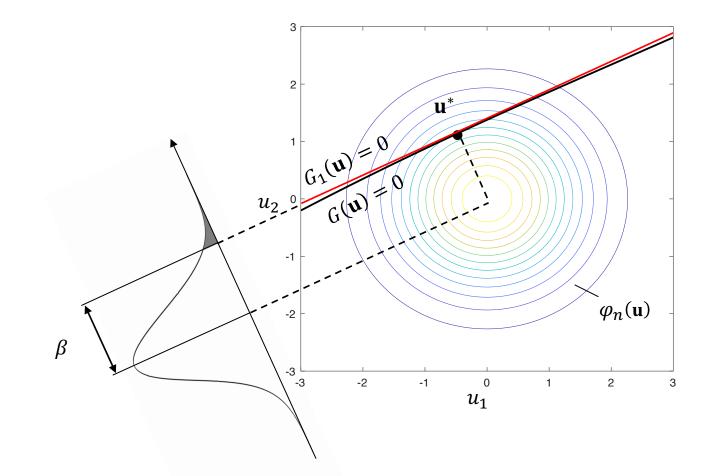
$$F \approx F_1 = \{\mathbf{u} \in \mathbb{R}^n : G_1(\mathbf{u}) \le 0\} = \{\mathbf{u} \in \mathbb{R}^n : \alpha \mathbf{U} \ge \beta\}$$

FORM approximation of the probability of failure:

$$p_F \approx p_{F_1} = \Pr(\boldsymbol{\alpha}\mathbf{U} \geq \boldsymbol{\beta}) = \Phi(-\boldsymbol{\beta})$$

FORM approximation

Probability approximation: $p_F \approx p_{F_1} = \Pr(\alpha \mathbf{U} \ge \beta) = \Phi(-\beta)$



FORM α -factors as variance-based sensitivities

Variance decomposition of FORM approximation of the linearized limit-state function $G_1(\mathbf{U}) = \|\nabla G(\mathbf{u}^*)\|(\beta - \alpha \mathbf{U})$:

$$\operatorname{Var}(G_1) = \|\nabla G(\mathbf{u}^*)\|^2 \sum_{i=1}^n \alpha_i^2 = \|\nabla G(\mathbf{u}^*)\|^2$$

First-order indices of G_1

$$S_{G_1,i} = \frac{\text{Var}(\mathbb{E}[G_1|U_i])}{\text{Var}(G_1)} = \frac{\|\nabla G(\mathbf{u}^*)\|^2 \alpha_i^2}{\|\nabla G(\mathbf{u}^*)\|^2} = \alpha_i^2$$

Quantity of interest: $Z_1 = I(G_1(\mathbf{U}) \le 0)$

It is $E[Z_1] = p_{F_1}$, $Var[Z_1] = p_{F_1}(1 - p_{F_1})$

First-order indices:

$$S_{F_1,i} = \frac{\text{Var}(\text{E}[Z_1|U_i])}{\text{Var}(Z_1)} = \frac{\text{Var}(\text{Pr}[F_1|U_i])}{p_{F_1}(1-p_{F_1})}$$

It is

$$\Pr[F_1|U_i = u_i] = \Pr\left[\sum_{j=1, j \neq i}^n \alpha_j U_i \ge \beta - \alpha_i u_i\right] = \Phi\left(\frac{\alpha_i u_i - \beta}{\sqrt{\sum_{j=1, j \neq i}^n \alpha_j^2}}\right) = \Phi\left(\frac{\alpha_i u_i - \beta}{\sqrt{1 - \alpha_i^2}}\right)$$

and

$$\operatorname{Var}(\Pr[F_1|U_i]) = \operatorname{Var}\left(\Phi\left(\frac{\alpha_i U_i - \beta}{\sqrt{1 - \alpha_i^2}}\right)\right) = \dots = \int_0^{\alpha_i^2} \varphi_2(-\beta, -\beta, r) dr$$

with

$$\varphi_2(-\beta, -\beta, r) = \frac{1}{2\pi\sqrt{1-r^2}} \exp\left(-\frac{\beta^2}{1+r}\right)$$

ПΠ

Second-order index:

$$S_{F_1,ij} = \frac{V_{F_1,ij}}{p_{F_1}(1-p_{F_1})}$$

with

$$V_{F_1,ij} = \text{Var}(\Pr[F_1|U_i, U_j]) - V_{F_1,i} - V_{F_1,j}$$

It is

$$\operatorname{Var}(\Pr[F_1|U_i, U_j]) = \int_0^{\alpha_i^2 + \alpha_j^2} \varphi_2(-\beta, -\beta, r) dr$$

ЛЛ

Total effect index

$$S_{F_1,i}^T = 1 - \frac{\operatorname{Var}(\Pr[F_1|\mathbf{U}_{\sim i}])}{p_{F_1}(1-p_{F_1})}$$

It is

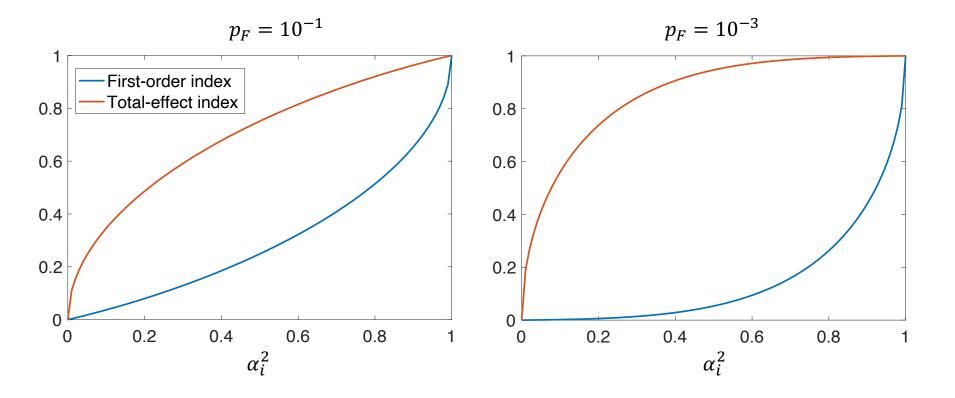
$$\operatorname{Var}(\Pr[F_1|\mathbf{U}_{\sim i}]) = \int_0^{1-\alpha_i^2} \varphi_2(-\beta, -\beta, r) dr$$

Therefore

$$S_{F_{1},i}^{T} = 1 - \frac{1}{p_{F_{1}}(1 - p_{F_{1}})} \int_{0}^{1 - \alpha_{i}^{2}} \varphi_{2}(-\beta, -\beta, r) dr = \frac{1}{p_{F_{1}}(1 - p_{F_{1}})} \int_{1 - \alpha_{i}^{2}}^{1} \varphi_{2}(-\beta, -\beta, r) dr$$

Illustration

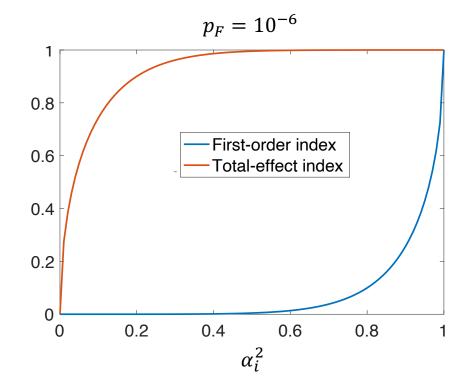
FORM-based first-order and total effect indices vs. α_i^2 for varying p_F values



.....

Illustration

FORM-based first-order and total effect indices vs. α_i^2 for varying p_F values



Observations

- The ranking of the FORM α -factors is consistent with the one of both the firstorder and total-effect indices of the indicator function of the FORM approximation
- The indices $S_{F_1,i}$ take much smaller values than the indices $S_{F_1,i}^T$
- The difference between $S_{F_1,i}$ and $S_{F_1,i}^T$ increases with decrease of p_{F_1}

Decision-theoretic reliability sensitivity analysis

How does the reduction of uncertainty of the input random variables influence the optimality of an engineering decision?

Value of information

Consider a set of decision alternatives \mathcal{A} related to an engineering system. Optimal decision:

 $a_{opt} = \arg\min_{a \in \mathcal{A}} \mathbb{E}[L(\mathbf{X}, a)]$

Assume that data d is available that can be used to update the distribution of X with Bayesian analysis.

The a-posteriori optimal decision given d is

$$a_{opt|\mathbf{d}} = \arg\min_{a \in \mathcal{A}} \mathbb{E}[L(\mathbf{X}, a)|\mathbf{d}]$$

Conditional value of information:

$$CVOI(\mathbf{d}) = E[L(\mathbf{X}, a_{opt})|\mathbf{d}] - E[L(\mathbf{X}, a_{opt}|\mathbf{d})]$$

(Expected) value of information:

 $EVOI = E_{\mathbf{d}}[CVOI(\mathbf{d})]$

Decision-theoretic sensitivity analysis

Assume that variable X_i is known to take value x_i . The optimal decision becomes: $a_{opt|x_i} = \arg\min_{a \in \mathcal{A}} \mathbb{E}[L(\mathbf{X}, a)|X_i = x_i]$

Conditional value of partial perfect information (CVPPI): $CVPPI_i(x_i) = E[L(\mathbf{X}, a_{opt})|X_i = x_i] - E[L(\mathbf{X}, a_{opt}|x_i)|X_i = x_i]$

Expected value of partial perfect information (EVPPI): $EVPPI_i = E[CVPPI_i(X_i)] = E[L(\mathbf{X}, a_{opt})] - E[L(\mathbf{X}, a_{opt|x_i})]$

Relation of EVPPI to Sobol' indices

Consider the quadratic loss function:

$$L(\mathbf{X}, a) = (h(\mathbf{X}) - a)^2$$

Then

$$a_{opt} = \arg\min_{a \in \mathcal{A}} \mathbb{E}[L(\mathbf{X}, a)] = \mathbb{E}[h(\mathbf{X})]$$
$$a_{opt|x_i} = \arg\min_{a \in \mathcal{A}} \mathbb{E}[L(\mathbf{X}, a)|X_i = x_i] = \mathbb{E}[h(\mathbf{X})|X_i = x_i]$$

The EVPPI reads

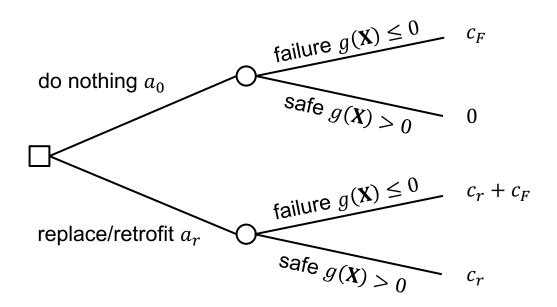
$$EVPPI_i = Var(h(\mathbf{X})) - E[Var(h(\mathbf{X})|X_i)] = Var(E[h(\mathbf{X})|X_i])$$

Dividing with $Var(h(\mathbf{X}))$, we get

$$\frac{EVPPI_i}{\operatorname{Var}(h(\mathbf{X}))} = S_i$$

Safety assessment – decision tree

Losses $L(\mathbf{X}, a)$



Assuming that $Pr(F|a_r) \ll Pr(F) = p_F$, we have:

$$\mathbf{E}[L(\mathbf{X},a)] = \begin{cases} c_F p_F, & a = a_0 \\ c_r, & a = a_r \end{cases}$$

ТШ

Safety assessment – decision analysis

A-priori optimal decision:

$$a_{opt} = \arg\min_{a \in \{a_0, a_r\}} \mathbb{E}[L(\mathbf{X}, a)] = \begin{cases} a_0, & p_F \leq \frac{c_r}{c_F} \\ a_r, & \text{else} \end{cases}$$

Assume that variable X_i is known to take value x_i . The optimal decision becomes:

$$a_{opt|x_i} = \arg\min_{a \in \{a_0, a_r\}} \mathbb{E}[L(\mathbf{X}, a) | X_i = x_i] = \begin{cases} a_0, & p_F(x_i) \le \frac{c_F}{c_F} \\ a_F, & \text{else} \end{cases}$$

where $p_F(x_i) = \Pr(F | X_i = x_i)$.

Safety assessment – EVPPI

Conditional value of partial perfect information (CVPPI): $CVPPI_i(x_i) = E[L(\mathbf{X}, a_{opt})|X_i = x_i] - E[L(\mathbf{X}, a_{opt}|x_i)|X_i = x_i]$

The CVPPI is nonzero only if the optimal decision is changed, i.e.,

$$CVPPI_{F,i}(x_i) = \begin{cases} |c_F p_F(x_i) - c_r|, & a_{opt|x_i} \neq a_{opt} \\ 0, & a_{opt|x_i} = a_{opt} \end{cases}$$

The EVPPI reads:

$$EVPPI_{F,i} = \mathbb{E}[CVPPI_{F,i}(X_i)] = \int_{\Omega_{X_i}} |c_F p_F(x_i) - c_r| f_i(x_i) dx_i$$

where $\Omega_{X_i} = \{x_i \in \mathbb{R} : a_{opt|x_i} \neq a_{opt}\}$

Evaluation of $p_F(x_i)$, and, hence, of $EVPPI_i$ can be performed by the sampling approach of [Li et al. 2019]

Decision-theoretic SA with FORM

FORM approximation: $p_F \approx p_{F_1} = \Pr(\alpha \mathbf{U} \ge \beta) = \Phi(-\beta)$ with $\mathbf{U} \sim N(\mathbf{0}, \mathbf{I})$ It is

$$p_{F_1}(u_i) = \Pr[F_1|U_i = u_i] = \Phi\left(\frac{\alpha_i u_i - \beta}{\sqrt{1 - \alpha_i^2}}\right)$$

FORM approximation of EVPPI for safety assessment:

$$EVPPI_{F,i} \approx EVPPI_{F_1,i} = \int_{\Omega_{U_i}} |c_F p_{F_1}(u_i) - c_r| \varphi(u_i) du_i$$

where $\Omega_{U_i} = \{u_i \in \mathbb{R} : a_{opt|u_i} \neq a_{opt}\}$, i.e., the collection of all u_i for which p_{F_1} and $p_{F_1}(u_i)$ are on the same side of $\frac{c_r}{c_F}$.

Decision-theoretic SA with FORM (II)

ТШ

The FORM EVPPI integral can be expressed as:

$$EVPPI_{F_1,i} = \left| c_F \Phi_2 \left(-\beta, \bar{s}_i u_{i,t}, -s_i \alpha_i \right) - \Phi \left(\bar{s}_i u_{i,t} \right) \right|$$

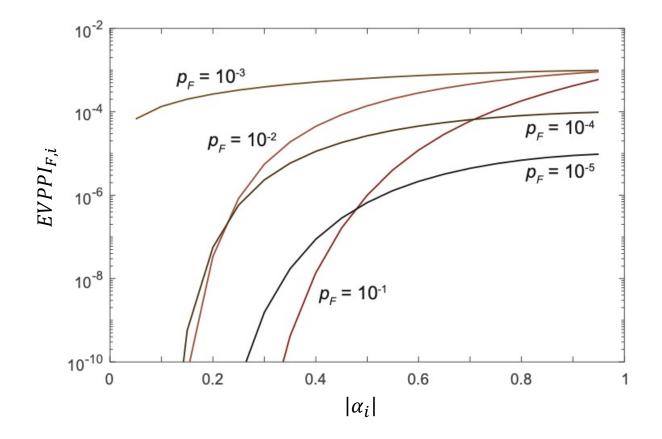
where $\Phi_2(\cdot, \cdot, r)$ is the bivariate standard normal CDF with correlation coefficient r,

$$u_{i,t} = \frac{1}{\alpha_i} \left[\sqrt{1 - \alpha_i^2} \Phi^{-1} \left(\frac{c_r}{c_F} \right) + \beta \right]$$

$$\bar{s}_i = \operatorname{sgn}\left[\left(p_{F_1} - \frac{c_r}{c_F}\right)\alpha_i\right]$$

Illustration

FORM-based EVPPI vs. $|\alpha_i|$ for varying p_F values and $\frac{c_T}{c_F} = 10^{-3}$



Observations

- The ranking of FORM α -factors is consistent with the one of the EVPPI of the FORM approximation
- The behavior of the EVPPI as a function of the FORM α -factors depends on the relation of p_F to c_r/c_F
- The absolute value of the EVPPI is highest when p_F is close to c_r/c_F

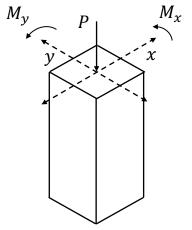
Example: Short column

ТШП

Column subjected to biaxial bending and axial force.

Limit-state function:

$$g(\mathbf{x}) = 1 - \frac{M_x}{s_x Y} - \frac{M_y}{s_y Y} - \left(\frac{P}{AY}\right)^2$$



Deterministic parameters:

 $s_x = 0.03 \text{m}^3$, $s_y = 0.015 \text{m}^3$, $A = 0.19 \text{m}^2$

Reference probability of failure:

 $p_F = 4.85 \times 10^{-3}$

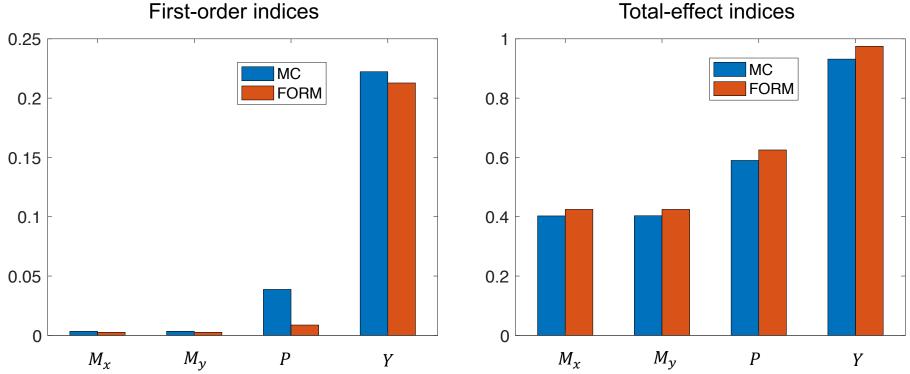
FORM estimate:

 $p_F = 3.37 \times 10^{-3}$

Parameter	Distribution	Mean	CV
M_x [KNm]	Normal	250	0.3
M_{y} [KNm]	Normal	125	0.3
<i>P</i> [kN]	Gumbel	2500	0.2
Y [MPa]	Weibull	40	0.1

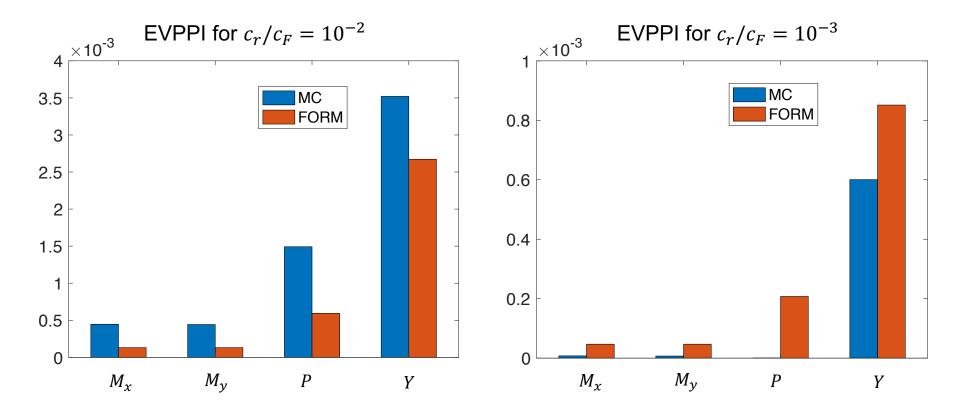
Example: Short column

Variance-based reliability sensitivities



Total-effect indices

Example: Short column



ПП

ПΠ

Conclusion

- Approximations of variance-based and decision-theoretic reliability sensitivities based on FORM
- The approximations depend only on the FORM reliability index and the α -factors
- The approximations of the sensitivities give consistent rankings with the absolute α-factors
- The derived expressions can be used for reliability sensitivities of mildly nonlinear component problems with independent inputs

Outlook

- Variance-based reliability analysis of dependent inputs and their relation the FORM reliability sensitivities of [Der Kiureghian 2005]
- The approximations can be extended to estimate reliability sensitivities of seriesand parallel-system problems
- Investigation of other efficient strategies for variance-based and decisiontheoretic reliability sensitivity analysis, e.g., based on surrogate modeling

References

ТШП

Variance-based reliability sensitivity analysis

- Li, L., Papaioannou, I., & Straub, D. (2019). Global reliability sensitivity estimation based on failure samples. *Structural Safety*, *81*, 101871.
- Ehre, M., Papaioannou, I., & Straub, D. (2020). A framework for global reliability sensitivity analysis in the presence of multi-uncertainty. *Reliability Engineering & System Safety*, 195, 106726.
- Papaioannou, I., & Straub, D. (2021). Variance-based reliability sensitivity analysis and the FORM αfactors. *Reliability Engineering & System Safety*, *210*, 107496.

Value-of-information-based reliability sensitivity analysis

- Straub, D., Ehre, M., & Papaioannou, I. (2021). Decision-theoretic reliability sensitivity. arXiv preprint arXiv:2104.00986.
- Papaioannou, I., & Straub, D. Reliability sensitivity analysis with FORM. To appear in *Proc. ICOSSAR* 2022.

Gradient-based reliability sensitivity analysis

- Papaioannou, I., Breitung, K., & Straub, D. (2013). Reliability sensitivity analysis with Monte Carlo methods. In *Proc. ICOSSAR 2013.*
- Papaioannou, I., Breitung, K., & Straub, D. (2018). Reliability sensitivity estimation with sequential importance sampling. *Structural Safety*, 75, 24-34.