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The reliability problem

Input random variables: 𝐗 = 𝑋!; 𝑋"; … ; 𝑋# with joint PDF 𝑓(𝐱)
Assume that the components of 𝐗 are independent, i.e., 𝑓 𝐱 = ∏$%!

# 𝑓$ 𝑥$
Limit-state function 𝑔 𝐱 ; Failure event 𝐹 = 𝐱 ∈ ℝ#: 𝑔 𝐱 ≤ 0
Probability of failure: 𝑝& = Pr 𝐹

𝑝& = Pr 𝐹 = 6
' 𝐱 )*

𝑓 𝐱 𝑑𝐱

	
x1

x2

𝑔 𝐱 = 0

𝑓(𝐱)
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The reliability problem (II)
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Probability of failure:

𝑝& = Pr 𝐹 = 6
' 𝐱 )*

𝑓 𝐱 𝑑𝐱 = 6
ℝ!
𝐼 𝑔 𝐱 ≤ 0 𝑓 𝐱 𝑑𝐱 = E 𝐼 𝑔 𝐗 ≤ 0

where:

𝐼 𝑔 𝐱 ≤ 0 = :1, if 𝑔 𝐱 ≤ 0
0, otherwise



Reliability sensitivity analysis
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• Gradient-based sensitivity analysis: How does a change in the (deterministic) 
input parameters influences 𝑝&?
o Gradient-based measures

o Distribution parameter sensitivities: ,-"
,.

, ,-"
,/

[Wu 1994]

o Sensitivities with respect to a limit-state parameter 𝜃: ,-"
,0

[Jensen et al. 2009; Papaioannou et al. 2013, 2018]



Reliability sensitivity analysis (II)

• Variance-based/global sensitivity analysis: How does the variability of the input 
random variables influences 𝑝&?
o Based on the variance decomposition of a related function of the input 

uncertainties 𝐗, 𝑄 = ℎ(𝐗)
o 𝑄 = 𝐼 𝑔 𝐗 ≤ 0 [Li et al. 2012; Wei et al. 2012]

o 𝑄 = E𝐗#[𝐼 𝑔 𝐗2, 𝐗3 ≤ 0 |𝐗3] [Wang et al. 2013; Ehre et al. 2018]
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Reliability sensitivity analysis (III)
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• Decision-theoretic sensitivity analysis: How does the reduction of uncertainty of 
the input random variables influence the optimality of an engineering decision?
o Based on decision theory – the concept of Value of Information (VoI)

[Felli & Hazen 1998; Straub 2014]

o Decision theoretic reliability sensitivities apply the VoI concept to decisions 
related to safety and reliability-based design [Straub et al. 2021]
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Variance-based reliability sensitivity analysis 

How does the variability of the input random variables 
influences 𝑝K?



Variance-based sensitivity analysis

Consider an 𝑛-dimensional independent random vector 𝐗 and a function 𝑄 = ℎ(𝐗).
ANOVA representation:

ℎ 𝐗 = ℎ* +N
$%!

#

ℎ$ 𝑋$ +N
$45

#

ℎ$5 𝑋$ , 𝑋5 +⋯+ ℎ!…# 𝑋!, … , 𝑋#

with ℎ* = E[𝑄] and E ℎ𝐯 𝐗𝐯 |𝐗𝐯\$ = 0 for any subset 𝐗𝐯 ⊆ 𝐗 and any 𝑖 ∈ 𝐯.

Variance decomposition:

Var(𝑄) =N
$%!

#

𝑉$ +N
$45

#

𝑉$5 +⋯+ 𝑉!…#

where
𝑉$ = Var E 𝑄 𝑋$

𝑉$5 = Var E 𝑄 𝑋$ , 𝑋5 − 𝑉$ − 𝑉5
and so on
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Variance-based sensitivity indices

First-order (Sobol’) indices:

𝑆$ =
𝑉$

Var 𝑄
Second-order indices:

𝑆$5 =
𝑉$5

Var 𝑄
and so on

It is:

N
$%!

#

𝑆$ +N
$45

#

𝑆$5 +⋯+ 𝑆!…# = 1
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Variance-based sensitivity indices (II)

Total effect indices

𝑆$9 =
E Var 𝑄 𝐗~$

Var 𝑄 = 1 −
Var E 𝑄 𝐗~$

Var 𝑄

It is:

N
$%!

#

𝑆$9 ≥ 1
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Variance-based reliability sensitivities

Failure event 𝐹 = 𝐱 ∈ ℝ#: 𝑔 𝐱 ≤ 0
Quantity of interest: 𝑍 = 𝐼 𝑔 𝐗 ≤ 0

It is E 𝑍 = 𝑝&,Var 𝑍 = 𝑝&(1 − 𝑝&)

First-order indices:

𝑆&,$ =
Var E 𝑍 𝑋$
Var 𝑍 =

Var Pr 𝐹 𝑋$
𝑝&(1 − 𝑝&)

Note: The F-O index is equivalent to the moment-independent importance measure 
[Li et al. 2012]

𝛿$
- = E Pr 𝐹 − Pr 𝐹 𝑋$ " = Var E 𝑍 𝑋$

Evaluation of 𝑆&,$ can be performed by a variety of sampling or approximation 
methods [Wei et al. 2012, Li et al. 2012, Perrin & Defaux 2019, Li et al. 2019]
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Variance-based reliability sensitivities (II)

Total-effect indices:

𝑆&,$9 = 1 −
Var E 𝑍 𝐗~$

Var 𝑍 = 1 −
Var Pr 𝐹 𝐗~$
𝑝&(1 − 𝑝&)

Evaluation of 𝑆&,$9 can be performed by sampling-based methods [Wei et al. 2012]

Notes
• First-order indices can be used for factor prioritization, to determine which 

random variable if learned will increase the accuracy of 𝑝& the most
• Total-effect indices can be used for factor fixing, to determine the random 

variables with 𝑆&,$9 ≈ 0, which if fixed will not impact the prediction of 𝑝&
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First order reliability method (FORM)

• Transform 𝐗 to an equivalent space 𝐔~𝑁(𝟎, 𝐈); Transformation operator: 𝐔 = 𝐓 𝐗

• Transformed limit-state function: 𝐺 𝐮 = 𝑔 𝐓<𝟏 𝐮
• Choose 𝐮∗ as the most likely (probable) point on the hypersurface 𝐺 𝐮 = 0
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The FORM 𝛼-factors

Normalized negative gradient of the limit-state function at the design point 𝐮∗

𝜶 = −
𝛻𝐺 𝐮∗

𝛻𝐺 𝐮∗ =
𝐮∗

𝛽
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FORM approximation

Approximation of limit-state function in 𝐔-space

𝐺 𝐔 ≈ 𝐺! 𝐔 = 𝛻𝐺 𝐮∗ 𝐔 − 𝐮∗ = 𝛻𝐺 𝐮∗ 𝛽 − 𝜶𝐔

where 𝛽 = 𝜶𝐮∗ is the FORM reliability index

FORM approximation of the failure domain:

𝐹 ≈ 𝐹! = 𝐮 ∈ ℝ#: 𝐺! 𝐮 ≤ 0 = 𝐮 ∈ ℝ#: 𝜶𝐔 ≥ 𝛽

FORM approximation of the probability of failure:

𝑝& ≈ 𝑝&$ = Pr 𝜶𝐔 ≥ 𝛽 = Φ(−𝛽)
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FORM approximation

Probability approximation: 𝑝& ≈ 𝑝&$ = Pr 𝜶𝐔 ≥ 𝛽 = Φ(−𝛽)

𝛽
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FORM 𝛼-factors as variance-based sensitivities

Variance decomposition of FORM approximation of the linearized limit-state function 
𝐺! 𝐔 = 𝛻𝐺 𝐮∗ 𝛽 − 𝜶𝐔 :

Var 𝐺! = 𝛻𝐺 𝐮∗ "N
$%!

#

𝛼$" = 𝛻𝐺 𝐮∗ "

First-order indices of 𝐺!

𝑆?$,$ =
Var E 𝐺! 𝑈$
Var 𝐺!

=
𝛻𝐺 𝐮∗ "𝛼$"

𝛻𝐺 𝐮∗ " = 𝛼$"
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Variance-based SA with FORM

Quantity of interest: 𝑍! = 𝐼 𝐺! 𝐔 ≤ 0

It is E 𝑍! = 𝑝&$,Var 𝑍! = 𝑝&$(1 − 𝑝&$)

First-order indices:

𝑆&$,$ =
Var E 𝑍! 𝑈$
Var 𝑍!

=
Var Pr 𝐹! 𝑈$
𝑝&$ 1 − 𝑝&$

It is

Pr 𝐹! 𝑈$ = 𝑢$ = Pr N
5%!,5@$

#

𝛼5𝑈$ ≥ 𝛽 − 𝛼$𝑢$ = Φ
𝛼$𝑢$ − 𝛽

∑5%!,5@$# 𝛼5"
= Φ

𝛼$𝑢$ − 𝛽

1 − 𝛼$"
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Variance-based SA with FORM 

and 

Var Pr 𝐹! 𝑈$ = Var Φ
𝛼$𝑈$ − 𝛽

1 − 𝛼$"
= ⋯ = 6

*

A%
&

𝜑" −𝛽,−𝛽, 𝑟 𝑑𝑟

with

𝜑" −𝛽,−𝛽, 𝑟 =
1

2𝜋 1 − 𝑟"
exp −

𝛽"

1 + 𝑟
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Variance-based SA with FORM 

Second-order index:

𝑆&$,$5 =
𝑉&$,$5

𝑝&! 1 − 𝑝&$

with
𝑉&$,$5 = Var Pr 𝐹! 𝑈$ , 𝑈5 − 𝑉&$,$ − 𝑉&$,5

It is

Var Pr 𝐹! 𝑈$ , 𝑈5 = 6
*

A%
&BA'

&

𝜑" −𝛽,−𝛽, 𝑟 𝑑𝑟
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Variance-based SA with FORM 

Total effect index 

𝑆&$,$
9 = 1 −

Var Pr 𝐹! 𝐔~$
𝑝&$ 1 − 𝑝&$

It is

Var Pr 𝐹! 𝐔~$ = 6
*

!<A%
&

𝜑" −𝛽,−𝛽, 𝑟 𝑑𝑟

Therefore

𝑆&$,$
9 = 1 −

1
𝑝&$ 1 − 𝑝&$

6
*

!<A%
&

𝜑" −𝛽,−𝛽, 𝑟 𝑑𝑟 =
1

𝑝&$ 1 − 𝑝&$
6
!<A%

&

!
𝜑" −𝛽,−𝛽, 𝑟 𝑑𝑟
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Illustration 

FORM-based first-order and total effect indices vs. 𝛼$" for varying 𝑝& values  
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Illustration 

FORM-based first-order and total effect indices vs. 𝛼$" for varying 𝑝& values  
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Observations 

• The ranking of the FORM 𝛼-factors is consistent with the one of both the first-
order and total-effect indices of the indicator function of the FORM approximation

• The indices 𝑆&$,$ take much smaller values than the indices 𝑆&$,$
9

• The difference between 𝑆&$,$ and 𝑆&$,$
9 increases with decrease of 𝑝&$
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Decision-theoretic reliability sensitivity analysis 

How does the reduction of uncertainty of the input random 
variables influence the optimality of an engineering decision?



Value of information

Consider a set of decision alternatives 𝒜 related to an engineering system. 
Optimal decision:

𝑎C-D = argmin
E∈𝒜

E 𝐿 𝐗, 𝑎

Assume that data 𝐝 is available that can be used to update the distribution of 𝐗 with 
Bayesian analysis. 
The a-posteriori optimal decision given 𝐝 is

𝑎C-D|𝐝 = argmin
E∈𝒜

E 𝐿 𝐗, 𝑎 |𝐝

Conditional value of information:
𝐶𝑉𝑂𝐼 𝐝 = E 𝐿 𝐗, 𝑎C-D |𝐝 − E 𝐿 𝐗, 𝑎C-D|𝐝 |𝐝

(Expected) value of information:
𝐸𝑉𝑂𝐼 = E𝐝 𝐶𝑉𝑂𝐼 𝐝
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Decision-theoretic sensitivity analysis

Assume that variable 𝑋$ is known to take value 𝑥$. The optimal decision becomes:
𝑎C-D|J% = argmin

E∈𝒜
E 𝐿 𝐗, 𝑎 |𝑋$ = 𝑥$

Conditional value of partial perfect information (CVPPI):
𝐶𝑉𝑃𝑃𝐼$ 𝑥$ = E 𝐿 𝐗, 𝑎C-D |𝑋$ = 𝑥$ − E 𝐿 𝐗, 𝑎C-D|J% |𝑋$ = 𝑥$

Expected value of partial perfect information (EVPPI):
𝐸𝑉𝑃𝑃𝐼$ = E 𝐶𝑉𝑃𝑃𝐼$ 𝑋$ = E 𝐿 𝐗, 𝑎C-D − E 𝐿 𝐗, 𝑎C-D|J%
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Relation of EVPPI to Sobol’ indices

Consider the quadratic loss function:
𝐿 𝐗, 𝑎 = ℎ 𝐗 − 𝑎 "

Then
𝑎C-D = argmin

E∈𝒜
E 𝐿 𝐗, 𝑎 = E ℎ 𝐗

𝑎C-D|J% = argmin
E∈𝒜

E 𝐿 𝐗, 𝑎 |𝑋$ = 𝑥$ = E ℎ 𝐗 |𝑋$ = 𝑥$

The EVPPI reads
𝐸𝑉𝑃𝑃𝐼$ = Var ℎ 𝐗 − E Var ℎ 𝐗 |𝑋$ = Var E ℎ 𝐗 |𝑋$

Dividing with Var ℎ 𝐗 , we get
𝐸𝑉𝑃𝑃𝐼$
Var ℎ 𝐗

= 𝑆$
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Safety assessment – decision tree
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Assuming that Pr 𝐹|𝑎K ≪ Pr 𝐹 = 𝑝&, we have:

E 𝐿 𝐗, 𝑎 = :
𝑐&𝑝& , 𝑎 = 𝑎*
𝑐K , 𝑎 = 𝑎K

do nothing 𝑎*

replace/retrofit 𝑎+

failure 𝑔 𝐗 ≤ 0

failure 𝑔 𝐗 ≤ 0

safe 𝑔 𝐗 > 0

safe 𝑔 𝐗 > 0

𝑐%

0

𝑐+ + 𝑐%

𝑐+

Losses 𝐿 𝐗, 𝑎



Safety assessment – decision analysis
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A-priori optimal decision:

𝑎C-D = arg min
E∈ E(,E)

E 𝐿 𝐗, 𝑎 = �
𝑎*, 𝑝& ≤

𝑐K
𝑐&

𝑎K , else

Assume that variable 𝑋$ is known to take value 𝑥$. The optimal decision becomes:

𝑎C-D|J% = arg min
E∈ E(,E)

E 𝐿 𝐗, 𝑎 |𝑋$ = 𝑥$ = �
𝑎*, 𝑝& 𝑥$ ≤

𝑐K
𝑐&

𝑎K , else
where 𝑝& 𝑥$ = Pr(𝐹| 𝑋$ = 𝑥$).



Safety assessment – EVPPI 
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Conditional value of partial perfect information (CVPPI):
𝐶𝑉𝑃𝑃𝐼$ 𝑥$ = E 𝐿 𝐗, 𝑎C-D |𝑋$ = 𝑥$ − E 𝐿 𝐗, 𝑎C-D|J% |𝑋$ = 𝑥$

The CVPPI is nonzero only if the optimal decision is changed, i.e.,

𝐶𝑉𝑃𝑃𝐼&,$ 𝑥$ = �
𝑐&𝑝& 𝑥$ − 𝑐K , 𝑎C-D|J% ≠ 𝑎C-D
0, 𝑎C-D|J% = 𝑎C-D

The EVPPI reads:

𝐸𝑉𝑃𝑃𝐼&,$ = E 𝐶𝑉𝑃𝑃𝐼&,$ 𝑋$ = 6
L*%

𝑐&𝑝& 𝑥$ − 𝑐K 𝑓$ 𝑥$ 𝑑𝑥$

where ΩM% = 𝑥$ ∈ ℝ ∶ 𝑎C-D|J% ≠ 𝑎C-D

Evaluation of 𝑝& 𝑥$ , and, hence, of 𝐸𝑉𝑃𝑃𝐼$ can be performed by the sampling 
approach of [Li et al. 2019]



Decision-theoretic SA with FORM
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FORM approximation: 𝑝& ≈ 𝑝&$ = Pr 𝜶𝐔 ≥ 𝛽 = Φ −𝛽 with 𝐔~𝑁(𝟎, 𝐈)
It is

𝑝&$ 𝑢$ = Pr 𝐹! 𝑈$ = 𝑢$ = Φ
𝛼$𝑢$ − 𝛽

1 − 𝛼$"

FORM approximation of EVPPI for safety assessment:

𝐸𝑉𝑃𝑃𝐼&,$ ≈ 𝐸𝑉𝑃𝑃𝐼&$,$ = 6
L+%

𝑐&𝑝&$ 𝑢$ − 𝑐K 𝜑 𝑢$ 𝑑𝑢$

where ΩN% = 𝑢$ ∈ ℝ ∶ 𝑎C-D|O% ≠ 𝑎C-D , i.e., the collection of all 𝑢$ for which 𝑝&$ and 

𝑝&$ 𝑢$ are on the same side of P)
P"

.



Decision-theoretic SA with FORM (II)
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The FORM EVPPI integral can be expressed as:

𝐸𝑉𝑃𝑃𝐼&$,$ = 𝑐&Φ" −𝛽, �̅�$𝑢$,D , −𝑠$𝛼$ −Φ �̅�$𝑢$,D

where Φ" ⋅,⋅, 𝑟 is the bivariate standard normal CDF with correlation coefficient 𝑟,

𝑢$,D =
1
𝛼$

1 − 𝛼$"Φ<! 𝑐K
𝑐&

+ 𝛽

�̅�$ = sgn 𝑝&$ −
𝑐K
𝑐&

𝛼$



Illustration 

FORM-based EVPPI vs. 𝛼$ for varying 𝑝& values and P)
P"
= 10<Q

34
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Observations 

• The ranking of FORM 𝛼-factors is consistent with the one of the EVPPI of the 
FORM approximation

• The behavior of the EVPPI as a function of the FORM 𝛼-factors depends on the 
relation of 𝑝& to 𝑐K/𝑐&

• The absolute value of the EVPPI is highest when 𝑝& is close to 𝑐K/𝑐&
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Example: Short column

Parameter Distribution Mean CV

𝑀! [KNm] Normal 250 0.3

𝑀" [KNm] Normal 125 0.3

𝑃 [kN] Gumbel 2500 0.2

𝑌 [MPa] Weibull 40 0.1

36

Column subjected to biaxial bending and axial force.

Limit-state function:

𝑔 𝐱 = 1 −
𝑀-
𝑠-𝑌

−
𝑀.

𝑠.𝑌
−

𝑃
𝐴𝑌

#

Deterministic parameters:
𝑠- = 0.03m', 𝑠. = 0.015m', 𝐴 = 0.19m#

Reference probability of failure: 

𝑝% = 4.85×10&'

FORM estimate:

𝑝% = 3.37×10&'

𝑃

𝑥

𝑀!

𝑦

𝑀"



Example: Short column 

Variance-based reliability sensitivities
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Example: Short column 

Decision-theoretic reliability sensitivities 
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EVPPI for 𝑐+/𝑐% = 10&#

𝑀! 𝑀" 𝑃 𝑌

EVPPI for 𝑐+/𝑐% = 10&'
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Conclusion

• Approximations of variance-based and decision-theoretic reliability sensitivities 
based on FORM

• The approximations depend only on the FORM reliability index and the 𝛼-factors
• The approximations of the sensitivities give consistent rankings with the absolute 
𝛼-factors 

• The derived expressions can be used for reliability sensitivities of mildly nonlinear 
component problems with independent inputs
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Outlook

• Variance-based reliability analysis of dependent inputs and their relation the 
FORM reliability sensitivities of [Der Kiureghian 2005]

• The approximations can be extended to estimate reliability sensitivities of series-
and parallel-system problems

• Investigation of other efficient strategies for variance-based and decision-
theoretic reliability sensitivity analysis, e.g., based on surrogate modeling 
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