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faster supercomputers + improved numerical methods to solve the wave equation

properly account for

wave propagation through complex 3-D Earth models
finite-frequency sensitivity

nonlinear dependence of observations on Earth model parameters [velocities, attenuation, …]

✗

✓

reduced ability to

properly quantify uncertainties [machinery for linear inverse problems fails]

find alternative models that explain data equally well
interpret tomographic Earth models with high confidence
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✗
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Goals of this Talk

Efficient method to produce alternative Earth models that 
explain the data equally well.

New Monte Carlo method for comprehensive uncertainty 
quantification in large nonlinear inverse problems.

Automatic tuning of Monte Carlo sampling on the fly using 
quasi-Newton methods.
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PART I
Nonlinear Nullspace Shuttles



1.1. Preparations and Problem Statement
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The effective nullspace:

§ misfit functional:
§ acceptable model:
§ effective nullspace = all models such that

Problem:

Why is this relevant?

§ How do we find models in the effective nullspace?

§ Uncertainty analysis. Finding alternative models.
§ A posteriori modification of models.
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The effective nullspace:

§ misfit functional:
§ acceptable model:
§ effective nullspace = all models such that

Problem:

Why is this relevant?

§ How do we find models in the effective nullspace?

§ Uncertainty analysis. Are there alternative models that are very different?
§ Construction of alternative models that contain some new feature.
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1.2. Take-off
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The trick – Part I:

§ interpret any model as the position of a space shuttle in high dimension

§ assign an artificial potential energy:

§ assign an artificial kinetic energy:

§ choose the initial momentum such that:

§ total energy (Hamiltonian): H = K + U
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The trick – Part II:

§ let the shuttle fly along a trajectory determined by Hamilton’s equations

§ H is constant along a trajectory:

Ø It follows that 

Ø All models along the trajectory are indeed in the effective nullspace!
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The trick – Part II:

§ let the shuttle fly along a trajectory determined by Hamilton’s equations

§ H is constant along a trajectory:

Ø It follows that

Ø All models along the trajectory are indeed in the effective nullspace!
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The trick – Part II:

§ let the shuttle fly along a trajectory determined by Hamilton’s equations

§ H is constant along a trajectory:

Ø It follows that

Ø All models along the trajectory are indeed in the effective nullspace!

U(t) K(t)>0total energy 
after time t

initial total 
energy U(0) tolerance 𝜀
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1.3. Navigating the Nullspace
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Depending on various choices the shuttle probes different parts of the nullspace

§ Zero-tolerance case:
Ø Nullspace shuttle = gradient descent
Ø Type of descent method depends on choice of the mass matrix

§ Prescribed take-off direction
Ø Adding specific features to the model a posteriori

§ Rough and smooth parts of nullspace
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Example: Nonlinear traveltime tomography
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Example: Nonlinear traveltime tomography
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Example: Nonlinear traveltime tomography
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Example: Nonlinear traveltime tomography
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Example: Nonlinear traveltime tomography (random perturbations)

Seismology & 
Wave Physics



PART II
Hamiltonian Monte Carlo

Tomography



2.1. Motivation
Sampling model space efficiently
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Hamiltonian Monte Carlo
introduced as hybrid Monte Carlo in quantum mechanics [Duane et al. 1987]

§ Random walk method to sample posterior probability distribution of an inverse problem. 

§ Motivated by well-known deficiency of Metropolis-Hastings algorithm: 
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Hamiltonian Monte Carlo
introduced as hybrid Monte Carlo in quantum mechanics [Duane et al. 1987]

§ Random walk method to sample posterior probability distribution of an inverse problem. 

§ Motivated by well-known deficiency of Metropolis-Hastings algorithm: 

§ Hamiltonian Monte Carlo
§ taking advantage of derivative information
§ long-distance moves + high acceptance rate
Ø solve high-dimensional problems
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2.2. Conceptual Introduction
Hamiltonian Monte Carlo in pictures
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1. Initial model m, chosen randomly.

2. Misfit U(m) defines potential energy.
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p

1. Initial model m, chosen randomly.

2. Misfit U(m) defines potential energy.

3. Random momentum p [auxiliary quantity].

4. Defines kinetic energy K(p).
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p

1. Initial model m, chosen randomly.

2. Misfit U(m) defines potential energy.

3. Random momentum p [auxiliary quantity].

4. Defines kinetic energy K(p).

5. Solve Hamilton’s equations with Hamiltonian

H(m,p) = U(m) + K(p) .

6. Move towards a new test model, mtest.mtest
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1. Initial model m, chosen randomly.

2. Misfit U(m) defines potential energy.
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4. Defines kinetic energy K(p).

5. Solve Hamilton’s equations with Hamiltonian

H(m,p) = U(m) + K(p) .

6. Move towards a new test model, mtest.

7. Evaluate Metropolis rule:
• If rejected: go back.
• If accepted: move on.
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Pros:
§ Trajectories orbit around plausible models. [Earth stays near the Sun.]

§ Long-distance moves still plausible.

§ Fast model space exploration.

Cons:
§ Requires derivatives of the forward problem.

Key features
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Pros:
§ Trajectories orbit around plausible models. [Earth stays near the Sun.]

§ Long-distance moves still plausible.

§ Fast model space exploration.

Cons:
§ Requires derivatives of the forward problem.

§ Easy thanks to adjoint techniques.

Key features
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2.3. Towards Applications
Probabilistic full-waveform inversion
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§ 2D elastic wave propagation [staggered-grid FD, fmax=50 Hz].

§ Model parameters: vp, vs, ρ.
§ Grid points: 10’800.
§ Model space dimension: 32’400
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§ 2D elastic wave propagation [staggered-grid FD, fmax=50 Hz].

§ Model parameters: vp, vs, ρ.
§ Grid points: 10’800.
§ Model space dimension: 32’400
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Parameter and uncertainty estimates.

Including estimates of density.

Free of subjective regularisation bias.



PART III
Autotuning



Drawing independent models
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Drawing independent models
important for
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Efficient model- or null-space exploration

Convergence error of Monte Carlo integrals ∝ 1/ Nindependent

The actual challenge:



Example 1: 1000-D Gaussian

Covariance matrix:  C1,1=0.100,  C2,2=0.101, ...,  C1000,1000=1.100

Mass matrix: M=I

auto-correlation of sample chain
measure of the independence of successive samples
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Example 1: 1000-D Gaussian

Covariance matrix:  C1,1=0.100,  C2,2=0.101, ...,  C1000,1000=1.100

m1
m1000

auto-correlation of sample chain
measure of the independence of successive samples

Mass matrix: M=I
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Example 1: 1000-D Gaussian

Hamiltonian trajectory [2-D projection]

m1000

m
1

Mass matrix: M=I

Mass matrix: M=C-1

Covariance matrix:  C1,1=0.100,  C2,2=0.101, ...,  C1000,1000=1.100
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Ideal: M=C-1=H [mass matrix = Hessian]

Problems: Hessian cannot be computed or stored explicitly

Autotuning: Approximate the Hessian on the fly
§ Use last couple of samples to approximate H·vector.

§ Closely related to L-BFGS method from nonlinear optimisation [Nocedal, 1980].

§ Use approximate H as M in computation of Hamiltonian trajectories.
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Ideal: M=C-1=H [mass matrix = Hessian]

Problem: Hessian cannot be computed or stored explicitly

Autotuning: Approximate the Hessian on the fly

auto-correlation of sample chain
auto-tuning off
[mass matrix: M=I]

Return to Example 1:

m1
m1000
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Ideal: M=C-1=H [mass matrix = Hessian]

Problem: Hessian cannot be computed or stored explicitly

Autotuning: Approximate the Hessian on the fly

parameter 1
parameter 1000

auto-correlation of sample chain
auto-tuning on: 
[mass matrix: M≈H]

Return to Example 1:

m1
m1000
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Example 2: 1000-D Styblinski-Tang function [4500 local minima]
m

1

m1000

2-D projection

Seismology & 
Wave Physics



Example 2: 1000-D Styblinski-Tang function [4500 local minima]

m1
m1000

auto-tuning off
highly correlated m1

m
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Example 2: 1000-D Styblinski-Tang function [4500 local minima]

m1
m1000

auto-tuning off
highly correlated m1

auto-tuning on
largely uncorrelated m1

m1
m1000

m
1

m1000

2-D projection



m1000 m1000

m
1

m
1

Example 2: 1000-D Styblinski-Tang function [10‘000 samples]

auto-tuning off
highly correlated m1

auto-tuning on
largely uncorrelated m1



Discussion & Conclusions
Hamiltonian Nullspace Shuttles

§ Efficient nullspace exploration of nonlinear inverse problems [without Monte Carlo sampling].
§ Enables quantitative hypothesis testing.
§ Targeted construction of alternative models.

Hamiltonian Monte Carlo for tomographic inversion
§ Nonlinear traveltime and full-waveform inversion in 2D.
§ O(10’000) model parameters without any supercomputing.
§ Fully probabilistic tomography in 3D is within reach!

More details:
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• Fichtner, Zunino, Gebraad. Hamiltonian Monte Carlo solution of tomographic inverse problems. GJI 2018. 
• Fichtner & Zunino. Hamiltonian nullspace shuttles. GRL 2018.
• Gebraad, Boehm, Fichtner. Bayesian Elastic Full-Waveform Inversion using Hamiltonian Monte Carlo. JGR 2020.
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Other resources
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Thank you for your attention!


