Uncertainty Quantification in graphs of functions through sample reweighting

Julien Reygner¹, Adrien Touboul^{1,2} (speaker) June 3, 2021 CERMICS¹, IRT System X^2

Outline of the presentation

Introduction & motivation

Decomposition-based Uncertainty Quantification

One node - A particular weighting scheme based on a Wasserstein distance criterion

Whole graph - Analysis of the general algorithm

Introduction & motivation

Motivation: simulation of complex industrial systems

Complex industrial systems: car, aircraft, rocket ship,...

- From hundreds to ten of thousands engineers working together
- Huge number of requirements to validate, from various sources (safety regulation, environmental regulation,...)
- Uncertainty during the whole design process.

Motivation: simulation of complex industrial systems

Complex industrial systems: car, aircraft, rocket ship,...

- From hundreds to ten of thousands engineers working together
- Huge number of requirements to validate, from various sources (safety regulation, environmental regulation,...)
- Uncertainty during the whole design process.

Need to validate requirements by simulating large parts of systems

Uncertainty Quantification

Model

- $Y_v = f_v(X_v)$ with X_v and Y_v random variables.
- ABCC' approach
- Probabilistic model of uncertainty

de Rocquigny, Etienne, Nicolas Devictor, and Stefano Tarantola, eds. Uncertainty in industrial practice: a guide to

Uncertainty Quantification in complex sytems

Graph of computer codes. $G = (V, \mathcal{E})$

Multidisciplinary system

Each discipline v has

- inputs X_v
- outputs Y_v
- a simulation code f_v s.t

$$Y_{\nu} = f_{\nu}(X_{\nu})$$

Inputs

 X_{ν} composed by

- external variables $X_{u,v}$, for u parents
- internal variables Θ_V

Graph of computer codes. $G = (V, \mathcal{E})$

Goal

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and $(\Theta_{\mathcal{V}}, f_{\mathcal{V}})_{\mathcal{V} \in \mathcal{V}}$, compute:

$$\mathbb{E}\left[\phi(Y_{\nu_1},\ldots,Y_{\nu_K})\right]$$

Industrial constraints

Computations incompatible with graph order.

Graph of computer codes. $G = (V, \mathcal{E})$

Goal

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and $(\Theta_{\mathcal{V}}, f_{\mathcal{V}})_{\mathcal{V} \in \mathcal{V}}$, compute:

$$\mathbb{E}\left[\phi(Y_{v_1},\ldots,Y_{v_K})\right]$$

Industrial constraints

Computations incompatible with graph order.

Ex: v_7 does its computations before v_5

Graph of computer codes. $G = (V, \mathcal{E})$

Goal

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and $(\Theta_{\mathcal{V}}, f_{\mathcal{V}})_{\mathcal{V} \in \mathcal{V}}$, compute:

$$\mathbb{E}\left[\phi(Y_{\nu_1},\ldots,Y_{\nu_K})\right]$$

Industrial constraints

Computations incompatible with graph order.

Ex: v_7 does its computations before v_5

Graph of computer codes. $G = (V, \mathcal{E})$

Goal

Given $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and $(\Theta_{\nu}, f_{\nu})_{\nu \in \mathcal{V}}$, compute:

$$\mathbb{E}\left[\phi(Y_{\nu_1},\ldots,Y_{\nu_K})\right]$$

Industrial constraints

Computations incompatible with graph order.

Ex: v_7 does its computations before v_5

Classic Monte Carlo forbidden, need for

Disciplinary autonomy

Decomposition-based Uncertainty

Quantification

Disciplinary autonomy

Two phases

Disciplinary autonomy

Two phases

 Offline Computation of f_v, no samples exchange

Disciplinary autonomy

Two phases

- Offline Computation of f_v, no samples exchange
- Online Gathering samples, no more f_v

Disciplinary autonomy

Two phases

- Offline Computation of f_v, no samples exchange
- Online Gathering samples, no more f_v

Question: how to "glue it back" together in the online phase?

Solutions

 Reconstruct each f_V with metamodels or

Amaral, Sergio, Douglas Allaire, and Karen Willcox. "A decomposition-based approach to uncertainty analysis of feed-forward multicomponent systems." International Journal for Numerical Methods in Engineering 100.13 (2014): 982-1005.

Disciplinary autonomy

Two phases

- Offline Computation of f_v, no samples exchange
- Online Gathering samples, no more f_v

Question: how to "glue it back" together in the online phase?

Solutions

- Reconstruct each f_v with metamodels or
- Sample reweighting

Sample reweighting

Idea, at a given node v:

$$(\Theta_{v,j})_{1 \leq j \leq m}$$

$$(X'_{v,j})_{1 \leq j \leq m}$$

$$(Y'_{v,j} = f_v(X'_{v,j}, \Theta_{v,j}))_{1 \leq j \leq m}$$

Sample reweighting

Idea, at a given node v:

• Offline External input sampled according to a proposal $p_{X'}$, compute $(X'_j, Y'_j)_{1 \le j \le m}$.

Sample reweighting

Idea, at a given node v:

- Offline External input sampled according to a proposal $p_{X'}$, compute $(X'_j, Y'_j)_{1 \le j \le m}$.
- Online When a true sample $(X_i)_{1 \le i \le n}$ is available, reweight Y'_j to approximate the law f(X)

Goal

Given two i.i.d samples of law μ_X and $\mu_{X'}$

$$\mathbf{X}_{n} = (X_{i})_{1 \leq i \leq n}$$

 $\mathbf{X}'_{m} = (X'_{j})_{1 \leq j \leq m}$

Goal

Given two i.i.d samples of law μ_X and $\mu_{X'}$

$$\mathbf{X}_{n} = (X_{i})_{1 \leq i \leq n}$$
$$\mathbf{X}'_{m} = (X'_{j})_{1 \leq j \leq m}$$

find weights (w_1, \ldots, w_m)

Goal

Given two i.i.d samples of law μ_X and $\mu_{X'}$

$$\mathbf{X}_{n} = (X_{i})_{1 \leq i \leq n}$$
$$\mathbf{X}'_{m} = (X'_{j})_{1 \leq j \leq m}$$

find weights (w_1, \ldots, w_m) such that

$$\left(X_{j}^{'},w_{j}\right)\overset{\mathrm{law}}{\simeq}\boldsymbol{X}_{n}$$

ie
$$\mathbb{E}[\psi(X)] \simeq 1/m \sum_{j=1}^{m} w_j \psi(X_j^{'})$$

Goal

Given two i.i.d samples of law μ_{X} and $\mu_{X'}$

$$\boldsymbol{X}_n = (X_i)_{1 \le i \le n}$$

$$\boldsymbol{X}'_{m} = \left(X'_{j}\right)_{1 \leq j \leq m}$$

find weights (w_1, \ldots, w_m) such that

$$\left(X_{j}^{'},w_{j}\right)\overset{\mathrm{law}}{\simeq}\boldsymbol{X}_{n}$$

ie
$$\mathbb{E}[\psi(X)] \simeq 1/m \sum_{j=1}^{m} w_j \psi(X_j^{'})$$

One node - A particular weighting

scheme based on a Wasserstein

distance criterion

Sample reweighting, first idea: importance weighting

$$\int f(x)\mu_X(dx) = \int f(x)\frac{\mu_X}{\mu_{X'}}(x)\mu_{X'}(dx) \simeq \sum_{j=1}^m w_j f(X_j')$$

with $w_j = \frac{\mu_X}{\mu_{X'}}(X_j')$.

Two limits:

Sample reweighting, first idea: importance weighting

$$\int f(x)\mu_{X}(dx) = \int f(x)\frac{\mu_{X}}{\mu_{X'}}(x)\mu_{X'}(dx) \simeq \sum_{j=1}^{m} w_{j}f(X_{j}')$$

with $w_j = \frac{\mu_X}{\mu_{X'}}(X'_j)$.

Two limits:

- Computing μ_X and $\mu_{X'}$ required.
 - Only $(X_i)_{i \in [1,n]}$ $(X_i')_{i \in [1,m]}$, not μ_X and $\mu_{X'}$.
 - ⇒ Density ratio estimation [1], various methods developed.

Sample reweighting, first idea: importance weighting

$$\int f(x)\mu_{X}(dx) = \int f(x)\frac{\mu_{X}}{\mu_{X'}}(x)\mu_{X'}(dx) \simeq \sum_{j=1}^{m} w_{j}f(X_{j}')$$

with $w_j = \frac{\mu_X}{\mu_{X'}}(X'_j)$.

Two limits:

- Computing μ_X and $\mu_{X'}$ required. Only $(X_i)_{i \in [\![1,n]\!]} (X_j')_{j \in [\![1,m]\!]}$, not μ_X and $\mu_{X'}$. \Rightarrow Density ratio estimation [1], various methods developed.
- μ_X needs a density w.r.t $\mu_{X'}$ (absolute continuity)

Assumption not verified in practice

Another approach: reinterpretation with empirical measures

Empirical measure on \boldsymbol{X}_n , weighted empirical measure on \boldsymbol{X}_m'

$$\widehat{\mu}_{X,n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}, \quad \widehat{\mu}_{X',m}^{\mathbf{w}} = \sum_{j=1}^{m} w_j \delta_{X'_j}$$

with $\sum_{j=1}^{m} w_j = m$.

$$\langle \widehat{\mu}_{X,n}, \phi \circ f \rangle \xrightarrow{n \to +\infty} \mathbb{E}[\phi(f(X))](L.L.N)$$

Minimization of the distance between empirical measures

$$\mathbf{w}^* = \underset{\sum w_i = 1, w_i \ge 0}{\operatorname{argmin}} \quad d\left(\widehat{\mu}_{X,n}, \widehat{\mu}_{X',m}^{\mathbf{w}}\right)$$

Choice of distance

Wasserstein distances of order q [2]

 μ and ν two probability measures on \mathbb{R}^d , with first q moments. Wasserstein distance

$$W_q(\mu,\nu) = \inf \left\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - x'|^q d\gamma(x,x') : \gamma \in \Pi(\mu,\nu) \right\}^{1/q},$$

 $\Pi(\mu,\nu)$: proba measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals μ and ν .

Optimal weights. (Reygner J., T.A 2020)

Let the optimal weights be $\mathbf{w}^* = \underset{\sum w_j = 1, w_j \geq 0}{\operatorname{argmin}} W_q\left(\widehat{\mu}_{X,n}, \widehat{\mu}_{X',m}^{\mathbf{w}}\right).$

Then

$$w_j^* = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_j' = \text{NN}(X_i)\}}.$$

Consistency of the weighting scheme

A1. Support condition

We have $\operatorname{Supp}(\mu_X) \subset \operatorname{Supp}(\mu_{X'})$.

A2. Min-integrability

There exists an integer $m_0 \ge 1$ such that

$$\mathbb{E}\left[\min_{j\in[\![1,m_0]\!]}|X_j'|\right]<+\infty.$$

Theorem Consistency (Reygner J., T. A., 2020)

Let (A1) and (A2) hold. For all $q \in [1, +\infty)$ s.t $\mathbb{E}[|X|^q] < +\infty$, then

$$\lim_{m\to+\infty}\mathbb{E}\left[W_q^q\left(\widehat{\mu}_{X,n},\widehat{\mu}_{X',m}^{w^*}\right)\right]=0,$$

uniformly in n.

A3: Strong support condition [3]

There exists an open set $U \subset \mathbb{R}^d$ which contains $\operatorname{Supp}(\mu_X)$ and such that:

- 1. the measure $\mu_{X'}(\cdot \cap U)$ has a density $p_{X'}$ with respect to the Lebesgue measure; $p_{X'}$ is continuous and positive on U;
- 2. there exist $\kappa \in (0,1]$ and $r_{\kappa}>0$ such that, for any $x \in U$, for any $r \in [0,r_{\kappa}]$,

$$\mathbb{P}\left(X'\in B(x,r)\right)\geq \kappa p_{X'}(x)v_dr^d.$$

A4: Moments

$$\mathbb{E}\left[\frac{1+|X|^q}{p_{X'}(X)^{q/d}}\right]<+\infty.$$

[3] Sébastien Gadat, Thierry Klein, Clément Marteau, et al. Classification in general finite dimensional spaceswith

Theorem Convergence rates (Reygner J., T. A., 2020)

Let Assumptions A2 and A3 hold, and let $q \in [1, +\infty)$ be such that Assumption A4 holds. Then we have

$$\lim_{m\to+\infty} m^{q/d} \mathbb{E}\left[W_q^q\left(\widehat{\mu}_{X,n},\widehat{\mu}_{X',m}^{\mathbf{w}^*}\right)\right] = c_{q,d} \mathbb{E}\left[\frac{1}{p_{X'}(X)^{q/d}}\right].$$

- Curse of the dimensionality $m^{-q/d}$ (similar NNR)
- Can be reinterpreted in terms of NNR under covariate shift

$$\mathbb{E}[W_q^q(\widehat{\mu}_{X,n},\widehat{\mu}_{X',m}^{w^*})] = \mathbb{E}[|X - \mathrm{NN}_{X'_m}(X)|^q]$$

Reygner, Julien, and T.A. "Reweighting samples under covariate shift using a Wasserstein distance criterion." arXiv preprint arXiv:2010.09267 (2020).

Conclusion of the part

Results

For a given node, a weighting method has been analyzed

- Weights given by minimization of Wasserstein distance
- Weights expressed in terms of 1-Nearest Neighbor
- Expected rate of convergence (under appropriate assumptions)

$$\mathbb{E}[W_q^q(\mu_X, \widehat{\mu}_{X',m}^{w^*})] \le \mathbb{E}[W_q^q(\mu_X, \widehat{\mu}_{X,n})] + \mathbb{E}[W_q^q(\widehat{\mu}_{X,n}, \widehat{\mu}_{X',m}^{w^*})]$$

$$= O(n^{-q/d}) + O(m^{-q/d})$$

Application to estimation of a quantity of interest

[4] Fournier, Nicolas, and Arnaud Guillin. "On the rate of convergence in Wasserstein distance of the empirical measure." Probability Theory and Related Fields 162.3 (2015): 707-738.

Whole graph - Analysis of the

general algorithm

Weighted Linear Approximation Method

Question

What is a weighting method in general?

Weighted Linear Approximation Method (WLAM) (Reygner J., T. A. 2021)

$$\bullet \; \mathsf{S}_m = (X_j', Y_j')_{1 \leq j \leq m}$$

•
$$\mathbf{W}_m = (W_j)_{1 \le j \le m}$$
:
 $(\mathsf{E} \times \mathsf{F})^m \times \mathsf{E} \to [0, +\infty)^m$
s.t $\forall \mathbf{S}_m \in (\mathsf{E} \times \mathsf{F})^m, x \in \mathsf{E}$,

$$\sum_{j=1}^m W_j(\mathbf{S}_m, x) = 1.$$

Approximate image measure associated to W_m

$$\widehat{\ell}_m(x, \mathrm{d}y) = \sum_{j=1}^m W_j(\mathbf{S_m}, x) \delta_{Y'_j}(\mathrm{d}y)$$

approximates the law of Y' conditioned to X' = x (Markov kernel)

B-consistency (definition)

A WLAM is consistent i.i.f for all $\phi \in \mathfrak{B}$

$$\lim_{m \to +\infty} \sum_{j=1}^{m} W_j(\mathbf{S}_m, x) \phi(Y'_j) = \mathbb{E}[\phi(Y') | X' = x]$$
$$= \mathbb{E}[\phi(f(x, \Theta_v))],$$

in probability.

Examples of WLAMs

• k_m -Nearest-neighbor:

$$W_j(\mathbf{S}_m, x) = 1/k_m \sum_{i=1}^{k_m} \mathbb{1}_{\{X_j' = NN^{(k_m)}(x)\}}$$

 $\mathfrak{B}: \phi$ bounded for which $x \mapsto \mathbb{E}\left[\phi(f(x,\Theta))\right]$ is Lipschitz-continuous (previous section).

Nadayara-Watson:

$$W_j(\mathbf{S}_m, x) = K_{j,m}(x)/(\sum_{k=1}^m K_{k,m}(x))$$

 $\mathfrak{B}:\phi$ bounded for which $x\mapsto\mathbb{E}\left[\phi(f(x,\Theta))\right]$ is continuous.

• Regression tree: $W_j(\mathbf{S}_m, x) = 1/m(x)\mathbb{1}_{\left\{X_j' \in L(x)\right\}}$

 $W_j(\mathbf{S}_m, x)$ needs not to be linear in x.

Back to the whole graph

The graph is a Bayesian Network

 $(\mathcal{G}, (Y_v)_{v \in \mathcal{V}})$ verifies a Markov Property.

Each node is conditionally independent from its nondescendants, given its direct parents.

Proof:

$$Y_v = f_v((X_{u,v})_{u \in \operatorname{Par}(v)}, \Theta_v)$$

Factorization property of a B.N

$$\mu_{\mathcal{V}}((\mathrm{d}y_v)_{v\in\mathcal{V}}) = \prod_{v\in\mathcal{V}} \ell_v(y_v, (\mathrm{d}y_u)_{u\in\mathrm{Par}(v)})$$

Final algorithm (Reygner J. T.A, 2021)

Final algorithm (Reygner J. T.A, 2021)

1. Offline Computation of $(X'_{v}, f_{v}(X'_{v}, \Theta_{v}))$

Final algorithm (Reygner J. T.A, 2021)

- 1. Offline Computation of $(X'_{v}, f_{v}(X'_{v}, \Theta_{v}))$
- 2. Online 1 Weighting and choice of a WLAM at each node.

[5] Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press.

Final algorithm (Reygner J. T.A, 2021)

- 1. Offline Computation of $(X'_{v}, f_{v}(X'_{v}, \Theta_{v}))$
- Online 1 Weighting and choice of a WLAM at each node.
- 3. Online 2 Propagation Replace each ℓ_{v} by $\widehat{\ell}_{v,m_{v}}$.

$$\mu_{\mathcal{V}}((\mathrm{d}y_{v})_{v\in\mathcal{V}}) \simeq \widehat{\mu}((\mathrm{d}y_{v})_{v\in\mathcal{V}})$$
$$= \prod_{v\in\mathcal{V}} \widehat{\ell}_{v}(y_{v}, (\mathrm{d}y_{u})_{u\in\mathrm{Par}(v)})$$

Discrete Bayesian Network. Classic propagation methods[5].

Convergence analysis

Consistency (Reygner J., T.A 2021)

Assume that $\phi((y_v)_{v \in \mathcal{V}})$ is bounded continuous and at each v, the WLAM is \mathfrak{B} -consistent, for a compatible family, then

$$\lim_{m_{\nu_1}\to +\infty}\cdots\lim_{m_{\nu_N}\to +\infty}\langle\phi,\widehat{\mu}((\mathrm{d}y_{\nu})_{\nu\in\mathcal{V}})\rangle=\mathbb{E}\left[\phi((Y_{\nu})_{\nu\in\mathcal{V}})\right],$$

with the $m_{\nu_1}, \ldots, m_{\nu_n}$ chosen in an order compatible with the graph.

Conclusion

Three key points

1. A graph of composition of functions is a Bayesian Network $(\mathcal{G}, \mathcal{L}(Y_v|(X_{u,v})_{u\in\operatorname{Par}(v)}))$. Conditional Probability Tables (C.P.T) $\mathcal{L}(Y_v|(X_{u,v})_{u\in\operatorname{Par}(v)})$ given by

$$Y_v = f((X_{u,v})_{u \in \operatorname{Par}(v)}, \Theta_v)$$

- 2. Some weighting methods (NNR, Nadayara-Watson, regression trees...) approximate naturally a C.P.T $\widehat{\mathcal{L}}(Y_{\nu}|X_{u,\nu})$
- 3. The Bayesian network $(\mathcal{G},\widehat{\mathcal{L}}(Y_{v}|(X_{u,v})_{u\in\operatorname{Par}(v)}))$ is discrete (computations available). Its law approximates $(\mathcal{G},\mathcal{L}(Y_{v}|(X_{u,v})_{u\in\operatorname{Par}(v)}))$. The weights can be computed numerically.

Perspectives

- Rates of convergences in the graph + a posteriori error estimates.
- Efficient computations in Bayesian inference (weights propagation). Sparse propagation?
- Application to other problems than disciplinary autonomy?
- Numerical benchmark of various WLAMs methods, in terms of law approximation.

Resources

- Reygner, Julien, and Touboul, Adrien. "Reweighting samples under covariate shift using a Wasserstein distance criterion." arXiv preprint arXiv:2010.09267 (2020).
- Reygner, Julien "Theoretical analysis and numerical methods for conservation laws, metastability and uncertainty propagation", HDR, (2021), to be defended.
- Touboul, Adrien "Model of margin, margin sensitivity analysis and uncertainty quantification in graphs of functions in complex industrial systems", PhD Thesis (2021), to be defended.