Uncertainty Quantification in graphs of functions through sample reweighting

Julien Reygner ${ }^{1}$, Adrien Touboul ${ }^{1,2}$ (speaker)
June 3, 2021
CERMICS ${ }^{1}$, IRT SystemX ${ }^{2}$

Outline of the presentation

Introduction \& motivation

Decomposition-based Uncertainty Quantification

One node - A particular weighting scheme based on a Wasserstein distance criterion

Whole graph - Analysis of the general algorithm

Introduction \& motivation

Motivation: simulation of complex industrial systems

Complex industrial systems: car, aircraft, rocket ship,...

- From hundreds to ten of thousands engineers working together
- Huge number of requirements to validate, from various sources (safety regulation, environmental regulation,...)
- Uncertainty during the whole design process.

Motivation: simulation of complex industrial systems

Complex industrial systems: car, aircraft, rocket ship,...

- From hundreds to ten of thousands engineers working together
- Huge number of requirements to validate, from various sources (safety regulation, environmental regulation,...)
- Uncertainty during the whole design process.

Need to validate requirements by simulating large parts of systems

Uncertainty Quantification

Model

- $Y_{v}=f_{v}\left(X_{v}\right)$ with X_{v} and Y_{v} random variables.
- $A^{\prime} C^{\prime}$ approach
- Probabilistic model of uncertainty
de Rocquigny, Etienne, Nicolas Devictor, and Stefano Tarantola, eds. Uncertainty in industrial practice: a guide to quantitative uncertainty management. John Wiley \& Sons, 2008.

Uncertainty Quantification in complex sytems

Multidisciplinary system

Each discipline v has

- inputs X_{v}
- outputs Y_{v}
- a simulation code f_{v} s.t

$$
Y_{v}=f_{v}\left(X_{v}\right)
$$

Inputs

X_{v} composed by

- external variables $X_{u, v}$, for u parents
- internal variables Θ_{v}

Disciplinary autonomy

Goal

Given $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and $\left(\Theta_{v}, f_{v}\right)_{v \in \mathcal{V}}$, compute:
$\mathbb{E}\left[\phi\left(Y_{v_{1}}, \ldots, Y_{v_{K}}\right)\right]$

Industrial constraints

Computations incompatible with graph order.

Disciplinary autonomy

Goal

Given $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and $\left(\Theta_{v}, f_{v}\right)_{v \in \mathcal{V}}$, compute:
$\mathbb{E}\left[\phi\left(Y_{v_{1}}, \ldots, Y_{v_{K}}\right)\right]$

Industrial constraints

Computations incompatible with graph order.

Ex: v_{7} does its computations before v_{5}

Disciplinary autonomy

Goal

Given $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and $\left(\Theta_{v}, f_{v}\right)_{v \in \mathcal{V}}$, compute:
$\mathbb{E}\left[\phi\left(Y_{v_{1}}, \ldots, Y_{v_{K}}\right)\right]$

Industrial constraints

Computations incompatible with graph order.

Ex: v_{7} does its computations before v_{5}

Disciplinary autonomy

Goal

Given $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ and $\left(\Theta_{v}, f_{v}\right)_{v \in \mathcal{V}}$, compute:
$\mathbb{E}\left[\phi\left(Y_{v_{1}}, \ldots, Y_{v_{K}}\right)\right]$

Industrial constraints

Computations incompatible with graph order.

Ex: v_{7} does its computations before V_{5}

Classic Monte Carlo forbidden, need for

Disciplinary autonomy

Decomposition-based Uncertainty Quantification

Decomposition-based Uncertainty Quantification

Disciplinary autonomy
 Two phases

Decomposition-based Uncertainty Quantification

Disciplinary autonomy

Two phases

- Offline Computation of f_{v}, no samples exchange

Decomposition-based Uncertainty Quantification

Disciplinary autonomy

Two phases

- Offline Computation of f_{v}, no samples exchange
- Online Gathering samples, no more f_{v}

Decomposition-based Uncertainty Quantification

Disciplinary autonomy

Two phases

- Offline Computation of f_{v}, no samples exchange
- Online Gathering samples, no more f_{v}

Question: how to "glue it back" together in the online phase?

Solutions

- Reconstruct each f_{v} with metamodels or

Decomposition-based Uncertainty Quantification

Amaral, Sergio, Douglas Allaire, and Karen Willcox. "A decomposition-based approach to uncertainty analysis of feed-forward multicomponent systems." International Journal for Numerical Methods in Engineering 100.13 (2014): 982-1005.

Disciplinary autonomy

Two phases

- Offline Computation of f_{v}, no samples exchange
- Online Gathering samples, no more f_{v}

Question: how to "glue it back" together in the online phase?

Solutions

- Reconstruct each f_{v} with metamodels or
- Sample reweighting

Decomposition-based Uncertainty Quantification

Sample reweighting

Idea, at a given node v :

Decomposition-based Uncertainty Quantification

Sample reweighting

Idea, at a given node v :

- Offline External input sampled according to a proposal $p_{X^{\prime}}$, compute $\left(X_{j}^{\prime}, Y_{j}^{\prime}\right)_{1 \leq j \leq m}$.

Decomposition-based Uncertainty Quantification

Sample reweighting

Idea, at a given node v :

- Offline External input sampled according to a proposal $p_{X^{\prime}}$, compute $\left(X_{j}^{\prime}, Y_{j}^{\prime}\right)_{1 \leq j \leq m}$.
- Online When a true sample $\left(X_{i}\right)_{1 \leq i \leq n}$ is available, reweight Y_{j}^{\prime} to approximate the law $f(X)$

Sample reweighting

Goal

Given two i.i.d samples of law μ_{X} and $\mu_{X^{\prime}}$

$$
\begin{aligned}
\boldsymbol{X}_{n} & =\left(X_{i}\right)_{1 \leq i \leq n} \\
\boldsymbol{X}_{m}^{\prime} & =\left(X_{j}^{\prime}\right)_{1 \leq j \leq m}
\end{aligned}
$$

Sample reweighting

Goal

Given two i.i.d samples of law μ_{X} and $\mu_{X^{\prime}}$

$$
\begin{aligned}
& \boldsymbol{X}_{n}=\left(X_{i}\right)_{1 \leq i \leq n} \\
& \boldsymbol{X}_{m}^{\prime}=\left(X_{j}^{\prime}\right)_{1 \leq j \leq m}
\end{aligned}
$$

find weights $\left(w_{1}, \ldots, w_{m}\right)$

Sample reweighting

Goal

Given two i.i.d samples of law μ_{X} and $\mu_{X^{\prime}}$

$$
\begin{aligned}
\boldsymbol{X}_{n} & =\left(X_{i}\right)_{1 \leq i \leq n} \\
\boldsymbol{X}_{m}^{\prime} & =\left(X_{j}^{\prime}\right)_{1 \leq j \leq m}
\end{aligned}
$$

find weights $\left(w_{1}, \ldots, w_{m}\right)$ such that

$$
\left(X_{j}^{\prime}, w_{j}\right) \stackrel{\text { law }}{\simeq} \boldsymbol{X}_{n}
$$

ie $\mathbb{E}[\psi(X)] \simeq$
$1 / m \sum_{j=1}^{m} w_{j} \psi\left(X_{j}^{\prime}\right)$

Sample reweighting

Goal

Given two i.i.d samples of law μ_{X} and $\mu_{X^{\prime}}$

$$
\begin{aligned}
\boldsymbol{X}_{n} & =\left(X_{i}\right)_{1 \leq i \leq n} \\
\boldsymbol{X}_{m}^{\prime} & =\left(X_{j}^{\prime}\right)_{1 \leq j \leq m}
\end{aligned}
$$

find weights $\left(w_{1}, \ldots, w_{m}\right)$ such that

$$
\left(x_{j}^{\prime}, w_{j}\right) \stackrel{\text { law }}{\sim} \boldsymbol{X}_{n}
$$

ie $\mathbb{E}[\psi(X)] \simeq$
$1 / m \sum_{j=1}^{m} w_{j} \psi\left(X_{j}^{\prime}\right)$

One node - A particular weighting scheme based on a Wasserstein distance criterion

Sample reweighting, first idea: importance weighting

$$
\int f(x) \mu_{X}(d x)=\int f(x) \frac{\mu_{X}}{\mu_{X^{\prime}}}(x) \mu_{X^{\prime}}(d x) \simeq \sum_{j=1}^{m} w_{j} f\left(X_{j}^{\prime}\right)
$$

with $w_{j}=\frac{\mu_{X}}{\mu_{x^{\prime}}}\left(X_{j}^{\prime}\right)$.

Two limits:

Sample reweighting, first idea: importance weighting

$$
\int f(x) \mu_{X}(d x)=\int f(x) \frac{\mu_{X}}{\mu_{X^{\prime}}}(x) \mu_{X^{\prime}}(d x) \simeq \sum_{j=1}^{m} w_{j} f\left(X_{j}^{\prime}\right)
$$

with $w_{j}=\frac{\mu_{X}}{\mu_{X^{\prime}}}\left(X_{j}^{\prime}\right)$.

Two limits:

- Computing μ_{X} and $\mu_{X^{\prime}}$ required. Only $\left(X_{i}\right)_{i \in \llbracket 1, n \rrbracket}\left(X_{j}^{\prime}\right)_{j \in \llbracket 1, m \rrbracket}$, not μ_{X} and $\mu_{X^{\prime}}$.
\Rightarrow Density ratio estimation [1], various methods developed.

Sample reweighting, first idea: importance weighting

$$
\int f(x) \mu_{X}(d x)=\int f(x) \frac{\mu_{X}}{\mu_{X^{\prime}}}(x) \mu_{X^{\prime}}(d x) \simeq \sum_{j=1}^{m} w_{j} f\left(X_{j}^{\prime}\right)
$$

with $w_{j}=\frac{\mu_{X}}{\mu_{X^{\prime}}}\left(X_{j}^{\prime}\right)$.

Two limits:

- Computing μ_{X} and $\mu_{X^{\prime}}$ required.

Only $\left(X_{i}\right)_{i \in \llbracket 1, n \rrbracket}\left(X_{j}^{\prime}\right)_{j \in \llbracket 1, m \rrbracket}$, not μ_{X} and $\mu_{X^{\prime}}$.
\Rightarrow Density ratio estimation [1], various methods developed.

- μ_{X} needs a density w.r.t $\mu_{X^{\prime}}$ (absolute continuity)

Assumption not verified in practice

Another approach: reinterpretation with empirical measures

Empirical measure on \boldsymbol{X}_{n}, weighted empirical measure on $\boldsymbol{X}_{m}^{\prime}$

$$
\widehat{\mu}_{X, n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}, \quad \widehat{\mu}_{X^{\prime}, m}^{w}=\sum_{j=1}^{m} w_{j} \delta_{X_{j}^{\prime}}
$$

with $\sum_{j=1}^{m} w_{j}=m$.

$$
\left\langle\widehat{\mu}_{X, n}, \phi \circ f\right\rangle \xrightarrow{n \rightarrow+\infty} \mathbb{E}[\phi(f(X))](L . L . N)
$$

Minimization of the distance between empirical measures

$$
\mathbf{w}^{*}=\underset{\sum w_{i}=1, w_{i} \geq 0}{\operatorname{argmin}} d\left(\widehat{\mu}_{X, n}, \widehat{\mu}_{X^{\prime}, m}^{w}\right)
$$

Choice of distance

Wasserstein distances of order q [2]

μ and ν two probability measures on \mathbb{R}^{d}, with first q moments.
Wasserstein distance

$$
W_{q}(\mu, \nu)=\inf \left\{\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\left|x-x^{\prime}\right|^{q} \mathrm{~d} \gamma\left(x, x^{\prime}\right): \gamma \in \Pi(\mu, \nu)\right\}^{1 / q}
$$

$\Pi(\mu, \nu)$: proba measures on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ with marginals μ and ν.
Optimal weights. (Reygner J., T.A 2020)
Let the optimal weights be $\boldsymbol{w}^{*}=\underset{\sum w_{j}=1, w_{j} \geq 0}{\operatorname{argmin}} W_{q}\left(\widehat{\mu}_{X, n}, \widehat{\mu}_{X^{\prime}, m}^{w}\right)$.
Then

$$
w_{j}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left\{X_{j}^{\prime}=\mathrm{NN}\left(X_{i}\right)\right\}}
$$

Consistency of the weighting scheme

A1. Support condition

We have $\operatorname{Supp}\left(\mu_{X}\right) \subset \operatorname{Supp}\left(\mu_{X^{\prime}}\right)$.

A2. Min-integrability

There exists an integer $m_{0} \geq 1$ such that

$$
\mathbb{E}\left[\min _{j \in \llbracket 1, m_{0} \rrbracket}\left|X_{j}^{\prime}\right|\right]<+\infty
$$

Theorem Consistency (Reygner J., T. A. , 2020)
Let (A1) and (A2) hold. For all $q \in[1,+\infty)$ s.t $\mathbb{E}\left[|X|^{q}\right]<+\infty$, then

$$
\lim _{m \rightarrow+\infty} \mathbb{E}\left[W_{q}^{q}\left(\widehat{\mu} X, n, \widehat{\mu}_{X^{\prime}, m}^{w^{*}}\right)\right]=0
$$

uniformly in n.

A3: Strong support condition [3]

There exists an open set $U \subset \mathbb{R}^{d}$ which contains $\operatorname{Supp}\left(\mu_{X}\right)$ and such that:

1. the measure $\mu_{X^{\prime}}(\cdot \cap U)$ has a density $p_{X^{\prime}}$ with respect to the Lebesgue measure; $p_{X^{\prime}}$ is continuous and positive on U;
2. there exist $\kappa \in(0,1]$ and $r_{\kappa}>0$ such that, for any $x \in U$, for any $r \in\left[0, r_{\kappa}\right]$,

$$
\mathbb{P}\left(X^{\prime} \in B(x, r)\right) \geq \kappa p_{X^{\prime}}(x) v_{d} r^{d} .
$$

A4: Moments

$$
\mathbb{E}\left[\frac{1+|X|^{q}}{p_{X^{\prime}}(X)^{q / d}}\right]<+\infty
$$

[3] Sébastien Gadat, Thierry Klein, Clément Marteau, et al. Classification in general finite dimensional spaceswith

Theorem Convergence rates (Reygner J., T. A. , 2020)

Let Assumptions A2 and A3 hold, and let $q \in[1,+\infty)$ be such that Assumption A4 holds. Then we have

$$
\lim _{m \rightarrow+\infty} m^{q / d} \mathbb{E}\left[W_{q}^{q}\left(\widehat{\mu}_{X, n}, \widehat{\mu}_{X^{\prime}, m}^{w^{*}}\right)\right]=c_{q, d} \mathbb{E}\left[\frac{1}{p_{X^{\prime}}(X)^{q / d}}\right] .
$$

- Curse of the dimensionality $m^{-q / d}$ (similar NNR)
- Can be reinterpreted in terms of NNR under covariate shift

$$
\mathbb{E}\left[W_{q}^{q}\left(\widehat{\mu}_{X, n}, \widehat{\mu}_{X^{\prime}, m}^{\boldsymbol{w}^{*}}\right)\right]=\mathbb{E}\left[\left|X-\mathrm{NN}_{\boldsymbol{X}_{m}^{\prime}}(X)\right|^{q}\right]
$$

Reygner, Julien, and T.A . "Reweighting samples under covariate shift using a Wasserstein distance criterion." arXiv preprint arXiv:2010.09267 (2020).

Conclusion of the part

Results

For a given node, a weighting method has been analyzed

- Weights given by minimization of Wasserstein distance
- Weights expressed in terms of 1-Nearest Neighbor
- Expected rate of convergence (under appropriate assumptions)

$$
\begin{aligned}
& \begin{aligned}
\mathbb{E}\left[W_{q}^{q}\left(\mu_{X}, \widehat{\mu}_{X^{\prime}, m}^{w^{\prime}}\right)\right] & \leq \mathbb{E}\left[W _ { q } ^ { q } \left(\mu_{X}, \widehat{\mu} X, n\right.\right. \\
& =O\left(\mathbb { E } \left[W_{q}^{q}(\widehat{\mu} X, n\right.\right. \\
& \left.\left.=\widehat{\mu}_{X^{\prime}, m}^{w^{*}}\right)\right]
\end{aligned} \\
& {[4] \text { + Reygner J., T. A.(2020) }}
\end{aligned}
$$

- Application to estimation of a quantity of interest

Whole graph - Analysis of the general algorithm

Weighted Linear Approximation Method

Question

What is a weighting method in general?

Weighted Linear Approximation Method (WLAM) (Reygner J., T. A. 2021)

- $\mathbf{S}_{m}=\left(X_{j}^{\prime}, Y_{j}^{\prime}\right)_{1 \leq j \leq m}$
- $\mathbf{W}_{m}=\left(W_{j}\right)_{1 \leq j \leq m}$:
$(\mathrm{E} \times \mathrm{F})^{m} \times \mathrm{E} \rightarrow[0,+\infty)^{m}$ s.t $\forall \mathbf{S}_{m} \in(\mathrm{E} \times \mathrm{F})^{m}, x \in \mathrm{E}$,

$$
\sum_{j=1}^{m} W_{j}\left(\mathbf{S}_{m}, x\right)=1
$$

Approximate image measure associated to \mathbf{W}_{m}

$$
\widehat{\ell}_{m}(x, \mathrm{~d} y)=\sum_{j=1}^{m} W_{j}\left(\mathbf{S}_{\mathbf{m}}, x\right) \delta_{Y_{j}^{\prime}}(\mathrm{d} y)
$$

approximates the law of Y^{\prime} conditioned to $X^{\prime}=x$ (Markov kernel)

\mathfrak{B}-consistency (definition)

A WLAM is consistent i.i.f for all $\phi \in \mathfrak{B}$

$$
\begin{aligned}
\lim _{m \rightarrow+\infty} \sum_{j=1}^{m} W_{j}\left(\mathbf{S}_{m}, x\right) \phi\left(Y_{j}^{\prime}\right) & =\mathbb{E}\left[\phi\left(Y^{\prime}\right) \mid X^{\prime}=x\right] \\
& =\mathbb{E}\left[\phi\left(f\left(x, \Theta_{v}\right)\right)\right]
\end{aligned}
$$

in probability.

Examples of WLAMs

- k_{m}-Nearest-neighbor:

$$
W_{j}\left(\mathbf{S}_{m}, x\right)=1 / k_{m} \sum_{=1}^{k_{m}} \mathbb{1}_{\left\{X_{j}^{\prime}=\mathrm{NN}^{\left(k_{m}\right)}(x)\right\}}
$$

$\mathfrak{B}: \phi$ bounded for which $x \mapsto \mathbb{E}[\phi(f(x, \Theta))]$ is
Lipschitz-continuous (previous section).

- Nadayara-Watson:

$$
W_{j}\left(\mathbf{S}_{m}, x\right)=K_{j, m}(x) /\left(\sum_{k=1}^{m} K_{k, m}(x)\right)
$$

$\mathfrak{B}: \phi$ bounded for which $x \mapsto \mathbb{E}[\phi(f(x, \Theta))]$ is continuous.

- Regression tree: $W_{j}\left(\mathbf{S}_{m}, x\right)=1 / m(x) \mathbb{1}_{\left\{X_{j}^{\prime} \in L(x)\right\}}$
$W_{j}\left(\mathbf{S}_{m}, x\right)$ needs not to be linear in x.

Back to the whole graph

The graph is a Bayesian

Network

$\left(\mathcal{G},\left(Y_{v}\right)_{v \in \mathcal{V}}\right)$ verifies a Markov Property.

Each node is conditionally independent from its nondescendants, given its direct parents.

Proof:

$$
Y_{v}=f_{v}\left(\left(X_{u, v}\right)_{u \in \operatorname{Par}(v)}, \Theta_{v}\right)
$$

Factorization property of a B.N

$$
\mu_{\mathcal{V}}\left(\left(\mathrm{d} y_{v}\right)_{v \in \mathcal{V}}\right)=\prod_{v \in \mathcal{V}} \ell_{v}\left(y_{v},\left(\mathrm{~d} y_{u}\right)_{u \in \operatorname{Par}(v)}\right)
$$

Final algorithm (Reygner J. T.A, 2021)

Propagation

Final algorithm (Reygner J.

T.A, 2021)

1. Offline Computation of $\left(X_{v}^{\prime}, f_{v}\left(X_{v}^{\prime}, \Theta_{v}\right)\right)$

Propagation

Final algorithm (Reygner J.
T.A, 2021)

1. Offline Computation of $\left(X_{v}^{\prime}, f_{v}\left(X_{v}^{\prime}, \Theta_{v}\right)\right)$
2. Online 1 Weighting and choice of a WLAM at each node.

Propagation

Final algorithm (Reygner J.

T.A, 2021)

1. Offline Computation of $\left(X_{v}^{\prime}, f_{v}\left(X_{v}^{\prime}, \Theta_{v}\right)\right)$
2. Online 1 Weighting and choice of a WLAM at each node.
3. Online 2 Propagation Replace each ℓ_{v} by $\widehat{\ell}_{v, m_{v}}$.

$$
\begin{array}{r}
\mu_{\mathcal{V}}\left(\left(\mathrm{d} y_{v}\right)_{v \in \mathcal{V}}\right) \simeq \widehat{\mu}\left(\left(\mathrm{d} y_{v}\right)_{v \in \mathcal{V}}\right) \\
=\prod_{v \in \mathcal{V}} \widehat{\ell}_{v}\left(y_{v},\left(\mathrm{~d} y_{u}\right)_{u \in \operatorname{Par}(v)}\right)
\end{array}
$$

Discrete Bayestian Network Classic propagation methods[5].

Convergence analysis

Consistency (Reygner J., T.A 2021)

Assume that $\phi\left(\left(y_{v}\right)_{v \in \mathcal{V}}\right)$ is bounded continuous and at each v, the WLAM is \mathfrak{B}-consistent, for a compatible family, then

$$
\lim _{m_{v_{1}} \rightarrow+\infty} \cdots \lim _{m_{v_{N}} \rightarrow+\infty}\left\langle\phi, \widehat{\mu}\left(\left(\mathrm{d} y_{v}\right)_{v \in \mathcal{V}}\right)\right\rangle=\mathbb{E}\left[\phi\left(\left(Y_{v}\right)_{v \in \mathcal{V}}\right)\right]
$$

with the $m_{v_{1}}, \ldots, m_{v_{n}}$ chosen in an order compatible with the graph.

Conclusion

Three key points

1. A graph of composition of functions is a Bayesian Network $\left(\mathcal{G}, \mathcal{L}\left(Y_{v} \mid\left(X_{u, v}\right)_{u \in \operatorname{Par}(v)}\right)\right)$.
Conditional Probability Tables (C.P.T) $\mathcal{L}\left(Y_{v} \mid\left(X_{u, v}\right)_{u \in \operatorname{Par}(v)}\right)$ given by

$$
Y_{v}=f\left(\left(X_{u, v}\right)_{u \in \operatorname{Par}(v)}, \Theta_{v}\right)
$$

2. Some weighting methods (NNR, Nadayara-Watson, regression trees...) approximate naturally a C.P.T $\widehat{\mathcal{L}}\left(Y_{v} \mid X_{u, v}\right)$
3. The Bayesian network $\left(\mathcal{G}, \widehat{\mathcal{L}}\left(Y_{v} \mid\left(X_{u, v}\right)_{u \in \operatorname{Par}(v)}\right)\right)$ is discrete (computations available). Its law approximates $\left(\mathcal{G}, \mathcal{L}\left(Y_{v} \mid\left(X_{u, v}\right)_{u \in \operatorname{Par}(v)}\right)\right)$. The weights can be computed numerically.

Perspectives

- Rates of convergences in the graph + a posteriori error estimates.
- Efficient computations in Bayesian inference (weights propagation). Sparse propagation?
- Application to other problems than disciplinary autonomy?
- Numerical benchmark of various WLAMs methods, in terms of law approximation.

Resources

- Reygner, Julien, and Touboul, Adrien. "Reweighting samples under covariate shift using a Wasserstein distance criterion." arXiv preprint arXiv:2010.09267 (2020).
- Reygner, Julien "Theoretical analysis and numerical methods for conservation laws, metastability and uncertainty propagation", HDR, (2021), to be defended.
- Touboul, Adrien "Model of margin, margin sensitivity analysis and uncertainty quantification in graphs of functions in complex industrial systems", PhD Thesis (2021), to be defended.

