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Outline of the presentation

Introduction & motivation

Decomposition-based Uncertainty Quantification

One node - A particular weighting scheme based on a Wasserstein

distance criterion

Whole graph - Analysis of the general algorithm
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Introduction & motivation



Motivation: simulation of complex industrial systems

Complex industrial systems: car, aircraft, rocket ship,...

• From hundreds to ten of thousands engineers working together

• Huge number of requirements to validate, from various

sources (safety regulation, environmental regulation,...)

• Uncertainty during the whole design process.

Need to validate requirements by simulating large parts of systems
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Uncertainty Quantification

Step (A):

Model the system

Yv = fv (Xv )

Step (B):

Model the

input uncertainties

Random variables

random vectors

Xv

Step (C):

Propagate the

uncertainty.

QI = E[φ(Yv )]

(Probability of failure

expectation, variance...)

Sensitivity indices

Step (C’):

Sensitivity analysis

Model

• Yv = fv (Xv ) with Xv and Yv random variables.

• ABCC’ approach

• Probabilistic model of uncertainty

de Rocquigny, Etienne, Nicolas Devictor, and Stefano Tarantola, eds. Uncertainty in industrial practice: a guide to

quantitative uncertainty management. John Wiley & Sons, 2008.
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Uncertainty Quantification in complex sytems
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Graph of computer codes.
G = (V, E)

Multidisciplinary system

Each discipline v has

• inputs Xv

• outputs Yv

• a simulation code fv s.t

Yv = fv (Xv )

Inputs

Xv composed by

• external variables Xu,v , for u

parents

• internal variables Θv 5



Disciplinary autonomy
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Graph of computer codes.
G = (V, E)

Goal

Given G = (V, E) and

(Θv , fv )v∈V , compute:

E [φ(Yv1 , . . . ,YvK )]

Industrial constraints

Computations incompatible

with graph order.

Ex: v7 does its computations

before v5

Classic Monte Carlo forbidden,

need for

Disciplinary autonomy
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Decomposition-based Uncertainty Quantification

Yv3
mv3Θv3

Yv2
mv2Θv2

Yv1
mv1Θv1

Yv5
mv5

Θv5

Yv4
mv4

Θv4

Yv7
mv7

Θv7

Yv6
mv6

Θv6

Yv3

Yv2

Yv1

Yv5

Yv4

Yv7

Yv6

Architect

Amaral, Sergio, Douglas Allaire, and Karen Willcox. ”A
decomposition-based approach to uncertainty analysis of
feed-forward multicomponent systems.” International
Journal for Numerical Methods in Engineering 100.13
(2014): 982-1005.

Disciplinary autonomy

Two phases

• Offline Computation of fv ,

no samples exchange

• Online Gathering samples,

no more fv

Question: how to “glue it back”

together in the online phase?

Solutions

• Reconstruct each fv with

metamodels or

• Sample reweighting
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Decomposition-based Uncertainty Quantification

v

(Θv ,j)1≤j≤m

(X ′v ,j)1≤j≤m (Y ′v ,j = fv (X ′v ,j ,Θv ,j))1≤j≤m

v
(X ′v ,j)1≤j≤m

(Xv ,i )1≤j≤n

(Y ′v ,j ,wj)1≤j≤m

Sample reweighting

Idea, at a given node v :

• Offline External input

sampled according to a

proposal pX ′ , compute

(X ′j ,Y
′
j )1≤j≤m.

• Online When a true sample

(Xi )1≤i≤n is available,

reweight Y ′j to approximate

the law f (X )
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Sample reweighting
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Goal

Given two i.i.d samples of

law µX and µX ′

X n = (Xi )1≤i≤n

X
′
m =

(
X
′
j

)
1≤j≤m

find weights (w1, . . . ,wm)

such that(
X
′
j ,wj

)
law' X n

ie E[ψ(X )] '
1/m

∑m
j=1 wjψ(X

′
j )
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One node - A particular weighting

scheme based on a Wasserstein

distance criterion



Sample reweighting, first idea: importance weighting∫
f (x)µX (dx) =

∫
f (x)

µX
µX ′

(x)µX ′ (dx) '
m∑
j=1

wj f (X
′
j )

with wj = µX
µ
X
′
(X
′
j ).

Two limits:

• Computing µX and µX ′ required.

Only (Xi )i∈J1,nK (X
′
j )j∈J1,mK, not µX and µX ′ .

⇒ Density ratio estimation [1], various methods developed.

• µX needs a density w.r.t µX ′ (absolute continuity)

Assumption not verified in

practice

[1] Sugiyama, M., Taiji S., and Takafumi K. Density ratio estimation in machine learning. Cambridge University

Press, 2012.

10



Sample reweighting, first idea: importance weighting∫
f (x)µX (dx) =

∫
f (x)

µX
µX ′

(x)µX ′ (dx) '
m∑
j=1

wj f (X
′
j )

with wj = µX
µ
X
′
(X
′
j ).

Two limits:

• Computing µX and µX ′ required.

Only (Xi )i∈J1,nK (X
′
j )j∈J1,mK, not µX and µX ′ .

⇒ Density ratio estimation [1], various methods developed.

• µX needs a density w.r.t µX ′ (absolute continuity)

Assumption not verified in

practice

[1] Sugiyama, M., Taiji S., and Takafumi K. Density ratio estimation in machine learning. Cambridge University

Press, 2012.
10



Sample reweighting, first idea: importance weighting∫
f (x)µX (dx) =

∫
f (x)

µX
µX ′

(x)µX ′ (dx) '
m∑
j=1

wj f (X
′
j )

with wj = µX
µ
X
′
(X
′
j ).

Two limits:

• Computing µX and µX ′ required.

Only (Xi )i∈J1,nK (X
′
j )j∈J1,mK, not µX and µX ′ .

⇒ Density ratio estimation [1], various methods developed.

• µX needs a density w.r.t µX ′ (absolute continuity)

Assumption not verified in

practice

[1] Sugiyama, M., Taiji S., and Takafumi K. Density ratio estimation in machine learning. Cambridge University

Press, 2012.
10



Another approach: reinterpretation with empirical measures

Empirical measure on X n, weighted empirical measure on X
′
m

µ̂X ,n =
1

n

n∑
i=1

δXi
, µ̂w

X ′ ,m
=

m∑
j=1

wjδX ′j

with
∑m

j=1 wj = m.

〈µ̂X ,n, φ ◦ f 〉
n→+∞−−−−→ E[φ(f (X ))](L.L.N)

Minimization of the distance between empirical measures

w∗ = argmin∑
wi=1,wi≥0

d
(
µ̂X ,n, µ̂

w
X ′ ,m

)

11



Choice of distance

Wasserstein distances of order q [2]

µ and ν two probability measures on Rd , with first q moments.

Wasserstein distance

Wq(µ, ν) = inf

{∫
Rd×Rd

|x − x ′|qdγ(x , x ′) : γ ∈ Π(µ, ν)

}1/q

,

Π(µ, ν): proba measures on Rd × Rd with marginals µ and ν.

Optimal weights. (Reygner J., T.A 2020)

Let the optimal weights be w∗ = argmin∑
wj=1,wj≥0

Wq

(
µ̂X ,n, µ̂

w
X ′ ,m

)
.

Then

w∗j =
1

n

n∑
i=1

1{X ′j =NN(Xi )}.

[2] Villani, Cédric. Optimal transport: old and new. Vol. 338. Springer Science & Business Media, 2008. 12



Consistency of the weighting scheme

A1. Support condition

We have Supp(µX ) ⊂ Supp(µX ′).

A2. Min-integrability

There exists an integer m0 ≥ 1 such that

E
[

min
j∈J1,m0K

|X ′j |
]
< +∞.

Theorem Consistency (Reygner J., T. A. , 2020)

Let (A1) and (A2) hold. For all q ∈ [1,+∞) s.t E[|X |q] < +∞,

then

lim
m→+∞

E
[
W q

q

(
µ̂X ,n, µ̂

w∗

X ′ ,m

)]
= 0,

uniformly in n.

13



A3: Strong support condition [3]

There exists an open set U ⊂ Rd which contains Supp(µX ) and

such that:

1. the measure µX ′(· ∩ U) has a density pX ′ with respect to the

Lebesgue measure; pX ′ is continuous and positive on U;

2. there exist κ ∈ (0, 1] and rκ > 0 such that, for any x ∈ U, for

any r ∈ [0, rκ],

P
(
X ′ ∈ B(x , r)

)
≥ κpX ′(x)vd r

d .

A4: Moments

E
[

1 + |X |q

pX ′(X )q/d

]
< +∞.

[3] Sébastien Gadat, Thierry Klein, Clément Marteau, et al. Classification in general finite dimensional spaceswith

the k-nearest neighbor rule.The Annals of Statistics, 44(3):982–1009, 2016. 14



Theorem Convergence rates (Reygner J., T. A. , 2020)

Let Assumptions A2 and A3 hold, and let q ∈ [1,+∞) be such

that Assumption A4 holds. Then we have

lim
m→+∞

mq/dE
[
W q

q

(
µ̂X ,n, µ̂

w∗
X ′ ,m

)]
= cq,dE

[
1

pX ′(X )q/d

]
.

• Curse of the dimensionality m−q/d (similar NNR)

• Can be reinterpreted in terms of NNR under covariate shift

E[W q
q (µ̂X ,n, µ̂

w∗
X ′ ,m

)] = E[|X −NNX ′m
(X )|q]

Reygner, Julien, and T.A . ”Reweighting samples under covariate shift using a Wasserstein distance criterion.”

arXiv preprint arXiv:2010.09267 (2020).

15



Conclusion of the part

Results

For a given node, a weighting method has been analyzed

• Weights given by minimization of Wasserstein distance

• Weights expressed in terms of 1-Nearest Neighbor

• Expected rate of convergence (under appropriate assumptions)

E[W q
q (µX , µ̂

w∗
X ′ ,m

)] ≤ E[W q
q (µX , µ̂X ,n)] + E[W q

q (µ̂X ,n, µ̂
w∗
X ′ ,m

)]

= O(n−q/d) + O(m−q/d)

[4] + Reygner J., T. A.(2020)

• Application to estimation of a quantity of interest

[4] Fournier, Nicolas, and Arnaud Guillin. ”On the rate of convergence in Wasserstein distance of the empirical

measure.” Probability Theory and Related Fields 162.3 (2015): 707-738. 16



Whole graph - Analysis of the

general algorithm



Weighted Linear Approximation Method
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to Y ′

j

Question

What is a weighting method in

general?

Weighted Linear Approxi-

mation Method (WLAM)

(Reygner J., T. A. 2021)

• Sm = (X ′j ,Y
′
j )1≤j≤m

• Wm = (Wj)1≤j≤m :

(E× F)m × E→ [0,+∞)m

s.t ∀Sm ∈ (E× F)m, x ∈ E,

m∑
j=1

Wj(Sm, x) = 1.
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Approximate image measure associated to Wm

̂̀
m(x , dy) =

m∑
j=1

Wj(Sm, x)δY ′j (dy)

approximates the law of Y ′ conditioned to X ′ = x (Markov

kernel)

B-consistency (definition)

A WLAM is consistent i.i.f for all φ ∈ B

lim
m→+∞

m∑
j=1

Wj(Sm, x)φ(Y ′j ) = E[φ(Y ′)|X ′ = x ]

= E[φ(f (x ,Θv ))],

in probability.
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Examples of WLAMs

• km-Nearest-neighbor:

Wj(Sm, x) = 1/km
∑km

=1 1{X ′j =NN(km)(x)}
B : φ bounded for which x 7→ E [φ(f (x ,Θ))] is

Lipschitz-continuous (previous section).

• Nadayara-Watson:

Wj(Sm, x) = Kj ,m(x)/(
∑m

k=1 Kk,m(x))

B : φ bounded for which x 7→ E [φ(f (x ,Θ))] is continuous.

• Regression tree: Wj(Sm, x) = 1/m(x)1{X ′j ∈L(x)}

Wj(Sm, x) needs not to be linear in x .
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Back to the whole graph

Yv3Θv3

Yv2Θv2

Yv1Θv1

Yv5

Θv5

Yv4

Θv4

Yv7

Θv7

Yv6

Θv6

Xv2,v4

Xv1,v4

Xv3,v5

Xv2,v5

Xv5,v7

Xv5,v6

Xv4,v7

Xv4,v6

The graph is a Bayesian

Network

(G, (Yv )v∈V) verifies a Markov

Property.

Each node is conditionally

independent from its

nondescendants, given its direct

parents.

Proof:

Yv = fv ((Xu,v )u∈Par(v),Θv )

Factorization property of a B.N

µV((dyv )v∈V) =
∏
v∈V

`v (yv , (dyu)u∈Par(v))
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Propagation

Y ′v3
mv3Θv3

Y ′v2
mv2Θv2

Y ′v1
mv1Θv1

Y ′v5
mv5

Θv5

Y ′v4
mv4

Θv4

Y ′v7
mv7

Θv7

Y ′v6
mv6

Θv6

Wv3
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Wv1

Wv5

Wv4

Wv7

Yv6

Ŷv3

Ŷv2

Ŷv1

Ŷv5

Ŷv4

Ŷv7

Ŷv6

[5] Koller, D., & Friedman, N. (2009). Probabilistic

graphical models: principles and techniques. MIT press.

Final algorithm (Reygner J.

T.A, 2021)

1. Offline Computation of

(X ′v , fv (X ′v ,Θv ))

2. Online 1 Weighting and

choice of a WLAM at each

node.

3. Online 2 Propagation -

Replace each `v by ̂̀v ,mv .

µV((dyv )v∈V) ' µ̂((dyv )v∈V)

=
∏
v∈V

̂̀
v (yv , (dyu)u∈Par(v))

Discrete Bayesian Network.
Classic propagation methods[5].
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Convergence analysis

Consistency (Reygner J., T.A 2021)

Assume that φ((yv )v∈V) is bounded continuous and at each v ,

the WLAM is B-consistent, for a compatible family, then

lim
mv1→+∞

· · · lim
mvN
→+∞

〈φ, µ̂((dyv )v∈V)〉 = E [φ((Yv )v∈V)] ,

with the mv1 , . . . ,mvn chosen in an order compatible with the

graph.
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Conclusion

Three key points

1. A graph of composition of functions is a Bayesian Network

(G,L(Yv |(Xu,v )u∈Par(v))) .

Conditional Probability Tables (C.P.T) L(Yv |(Xu,v )u∈Par(v))

given by

Yv = f ((Xu,v )u∈Par(v),Θv )

2. Some weighting methods (NNR, Nadayara-Watson, regression

trees...) approximate naturally a C.P.T L̂(Yv |Xu,v )

3. The Bayesian network (G, L̂(Yv |(Xu,v )u∈Par(v))) is discrete

(computations available). Its law approximates

(G,L(Yv |(Xu,v )u∈Par(v))). The weights can be computed

numerically.
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Perspectives

• Rates of convergences in the graph + a posteriori error

estimates.

• Efficient computations in Bayesian inference (weights

propagation). Sparse propagation?

• Application to other problems than disciplinary autonomy?

• Numerical benchmark of various WLAMs methods, in terms

of law approximation.
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