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Introduction



CATHARE

Variables Description
X1 Minimal film temperature
X2 Interfacial friction
X3 Interfacial friction
X4 Interfacial friction
X5 Interfacial friction
X6 Interfacial friction
X7 Critical flowrate

CATHARE code simulates a thermohydraulic transient during a
specific accident.
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Risk assessment

Parameters values are tainted with uncertainties.

Input parameters
are then modeled as random variables.

Hypothesis: Suppose Xi mutually independent.
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CATHARE

Input variables Probability distribution
X1 Uniform U([−44.9, 63.5])

X2 Truncated Log Normal LN (0, 0.76) on [0.1, 10]

X3 Truncated Log Normal LN (0, 0.76) on [0.1, 10]

X4 Truncated Log Normal LN (0, 0.76) on [0.1, 10]

X5 Truncated Log Normal LN (0, 0.76) on [0.1, 10]

X6 Truncated Log Normal LN (−0.1, 0.45) on [0.23, 3.45]

X7 Truncated Normal N (6.4, 4.27) on [0, 12.8]

Experimental data and expert judgement help choosing probability
distributions.
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Internship objectives

• Input parameters probability distribution is a strong prior in
risk assessment studies.

• The impact on the quantity of interest Y (here, the peak
cladding temperature) by a probability density perturbation
has to be assessed

• The initial density fi of variable Xi is perturbed into fiδ

• Main issue: How to define such a perturbation ?
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State of the art of density perturbations for
robustness analysis in UQ



Variational approach

Recall the Kullback-Leibler divergence between two probability
density functions p and q.

KL(p||q) =
∫
R p(x) log p(x)

q(x)dx
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Variational approach

• Pertubed density fiδ is defined by minimizing the functional
q → KL(q||fi) with moments constraints. 1

• Example:
∫
xfiδ(x)dx = δi,

∫
x2fiδ(x)dx = δi

1Paul Lemaitre’s PhD thesis, Analyse de sensibilité en fiabilité des structures,
Université de Bordeaux, 2014
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Graphical illustration - variational approach
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Figure 1: Mean (left figure) and variance (right figure) perturbation of U(0, 1)
density.
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Standard space transformation

• Idea: Applying variational perturbation approach only to the
standard Gaussian density (easier in terms of computation.)

• Be X a random variable with cdf F . We define:

S = Φ−1(F (X)) ,

with Φ the cdf of the standard Gaussian density N (0, 1).

• Perturb the so called standard space variable S and then go
back to the physical space using F−1:

Fδ = F−1(Φ(S + δ))

• For random vector: use the more general Rosenblatt transform.
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Graphical illustration - standard space approach
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Figure 2: Standard space transformation of the U(−1, 1) and T (−1, 0, 1)
probability densities with a mean shift of δ = 0.5.
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Standard space
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Figure 3: KL divergence between initial density T (−1, 0, 1) and U(−1, 1) and
their associated perturbed density
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Standard space - drawbacks

• Unpredictable behaviour in the physical space

• Impossible to compare perturbations for the same δ values
with di�erent initial densities fi.
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Parametric framework

• Only parametric models are considered S = {fθ, θ ∈ Θ ⊂ Rd}

• Example: Gaussian distributions {N (µ, σ2), (µ, σ) ∈ R× R+∗}
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Information geometry: definition and
interpretation



A new geometrical approach

• Fisher information endows statistical models with a remarkable
geometric structure.
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Information geometry

• Let S = {fθ, θ ∈ Θ ⊂ Rd} a parametric statistical model

• A Riemannian manifold is defined on S
• To each point θ is associated a tangent space TθS ' Rd

• The latter scalar product is defined in TθS :

∀u, v ∈ TθS, 〈u, v〉θ = uT I(θ)v ,

where I(θ) is the Fisher information matrix evaluated in θ.

I(θ) = E
[
(∇θ log fθ(X))(∇θ log fθ(X))T

]
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Information geometry

Fisher information is a key feature in asymptotic statistics.

Cramer Rao lower bound:
Let θ̂ be an unbiaised estimator of θ, then

V (θ̂) ≥ I(θ)−1 , (1)

where V (θ̂) is the covariance matrix of the estimator.
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Information geometry

• The scalar product 〈., .〉θ could define an implicit distance

• This distance is called Fisher distance.
• Let t→ q(t) be a C1 path in Θ, its length is defined by:

l(q) :=

1∫

0

√
〈q̇(t), q̇(t)〉q(t)dt ,

• the Fisher distance fθ1 and fθ2 is defined by:

dF (fθ1 , fθ2) = inf
q∈C(θ1,θ2)

l(q) ,

where C(θ1, θ2) is the set of C1 path between θ1 and θ2.
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Interpretation

Consider the space {N (µ, σ2), (µ, σ) ∈ R× R+∗}
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Interpretation

• Let X1, ..., Xn a n sized sample from the probability density fθ.
• We denote by θ̂n the maximum likelihood estimator

Central limit theorem:
√
n(θ̂n − θ) L−→ N (0, I(θ)−1) , (2)

• The probability density of θ̂n is:

p(θ̂n, θ) ∝ e−
n
2 δθ

T I(θ)δθ
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Geodesics computation

• All distributions on the Fisher sphere are equivalent perturbed
densities from fθ0 .

• We need to compute all geodesics such that q(0) = θ0 and
dF (q(0), q(1)) = δ for δ ∈ R+ fixed.

µ
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µ1

δF
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Geodesics computation

Let t→ q(t) a path, with p = I(q)q̇, the hamiltonian is written:

H(p, q) =
1

2
pT I−1(q)p .

If t→ q(t) is a geodesic, then the function t→ H(p(t), q(t)) is
constant.

A geodesic statisfies the following system of ordinary di�erential
equations: {

q̇= ∂H
∂p

ṗ=−∂H∂q
(3)
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Geodesics computation

• The conservation of hamiltonian gives us the initial condition in
“speed” p(0) knowing that dF (q(0), q(1)) = δ

• With (q(0), p(0)) defined, the ODE system (3) has an unique
solution thanks to Cauchy’s theorem

• Geodesics are computed using numerical methods.
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Fisher sphere - Gaussian family
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Figure 4: Fisher sphere δ = 1 - Coordinate space
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Fisher sphere - Gaussian family
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Figure 5: Fisher sphere δ = 1 - densities space
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Applications in sensitivity analysis: PLI
indices



Application to sensitivity analysis

• We aim to measure the impact of density perturbation of input
Xi to Y

• We define the quantile-PLI (Perturbated Law Index) Siδ by:

Siδ =
qαiδ−qα
qα

• qα and qαiδ are respectively the quantiles of level α of Y with Xi

distributed respectively according to fi and fiδ
• We obtain the minimum and the maximum of Siδ for fiδ in the

Fisher sphere of radius δ centered in fi.
• This new methodology is called OF-PLI (Optimal Fisher based

PLI).
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PLI estimation

• Industrial simulation code are often time-expensive.

• We want to estimate the PLI without resampling Xi from the
perturbed density.

• We consider a sample (X(1), ...,X(N)) with Xi sampled from fi
and a simulation code G:

F̂iδ(t) =

N∑
n=1

fiδ(X
(n)
i )

fi(X
(n)
i )

1(G(X(n))<t)

N∑
n=1

fiδ(X
(n)
i )

fi(X
(n)
i )

This is the reverse importance sampling (RIS) estimator of the
cdf of G(X)

• the perturbed quantile qαiδ is estimated with the empirical
quantile of F̂iδ .
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Theoretical results - PLI estimation

• Self normalized cdf estimator F̂iδ(t) is used because it is
bounded. Moreover, it possess better asymptotic properties.

• The estimator Ŝiδ =
q̂αiδ−q̂α
q̂α built verify a CLT.

• Main hypothesis for the CLT: E
[(

fiδ(X)
fi(X)

)2]
< +∞
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Practical implementation of the OF-PLI

• Empirical criterion for choice of δmax: Minimal number of
G(X(i))’s values greater or lesser than the perturbed quantile.
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A toy case: Ishigami function

• We take 3 independent random variables (X1, X2, X3) with a
standard Gaussian distribution N (0, 1).

• The output variable is the analytical function

G(x1, x2, x3) = sin(x1) + 7 sin(x2)2 + 0.1x43 sin(x1) . (4)
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Numerical results: PLI with Kullback-Leibler minimization
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Ishigami: numerical results
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Figure 7: OF-PLI for the Ishigami function with a 100 points grid on the
Fisher sphere.
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Flood model

• OF-PLI computation for the flood model, quantifying the
flooding risk of industrial facilities.
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Flood model

Variable n◦ Name Description Probability distribution Admissible values
1 Q Maximal annual flowrate Gumbel G(1013, 558) [500, 3000]

2 Ks Strickler coe�cient Normal N (30, 7.5) [15,+∞]

3 Zv Upstream level of the river Triangular T (50) [49, 51]

4 Zm Downstream level of the river Triangular T (55) [54, 56]

Input parameters of the flood model with their associated probability
distribution

• We denote H the maximal annual water level.

H =

(
Q

300Ks

√
2.10−4(Zm − Zv)

)0.6

.

35/44



0.001 0.002 0.003 0.004 0.005 0.006

β

0

500

1000

1500

2000

2500

γ

δ: 0.1

δ: 0.2

δ: 0.3

δ: 0.4

δ: 0.5

δ: 0.6

δ: 0.7

δ: 1.0

δ: 1.4

(a) Fisher sphere for an increasing δ.

1000 2000 3000

d
en

si
ty

Initial distribution

Argmax

Argmin

(b) Densities on the Fisher sphere
(δ = 0.1).

1000 2000 3000

d
en

si
ty

Initial distribution

Argmax

Argmin

(c) Densities on the Fisher sphere
(δ = 1.4).

Figure 8: Analysis of the density perturbation of the variable Q.
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Numerical results for the flood model
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Figure 9: OF-PLI for the flood model on 100 points on the Fisher sphere.
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code CATHARE results
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Ŝ+
N,2δ

Ŝ+
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Figure 10: OF-PLI for CATHARE code
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Conclusion

• Definition of a new framework of density perturbation,
development of a numerical solver in Python (OpenTurns
inside).

• Theoretical results.
• Accepted paper in Technometrics (link on the UQsay website.)
• Perspectives: simultaneous pertubation of several density of

input parameters, dependent input parameters.
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Appendice - Normalité asymptotique du PLI i

Supposons que Fi soit di�érentiable en qα avec F ′i (qα) > 0 et Fiδ

soit di�érentiable en qαiδ avec F ′iδ(qαiδ) > 0. On note Σ =

(
σ2
i θ̃i
θ̃i σ̃2

iδ

)

tel que:

σ2
i =

α(1− α)

fi(qα)2
.

σ̃2
iδ =

E
[(

fiδ(Xi)
fi(Xi)

)2
(1(G(X)≤qαiδ) − α)2

]

fiδ(qαiδ)
2

.

θ̃i =
E
[
fiδ(Xi)
fi(Xi)

1(G(X)≤qα)1(G(X)≤qαiδ)
]
− αE[1(G(X)≤qαiδ)]

fi(qα)fiδ(qαiδ)
.
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Appendice - Normalité asymptotique du PLI ii

Alors en supposant Σ inversible et E
[(

fiδ(Xi)
fi(Xi)

)2]
< +∞. On obtient:

√
N

(
θ̂N −

(
qα

qαiδ

))
L−→ N (0,Σ) .
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Appendice - Méthodologie de l’état de l’art

La densité perturbée fδ est défini par:

fδ = arg min
π∈P, s.t Eπ [X]=Ef [X]+δ

KL(π||f) ,

où KL(.||.) est la divergence de Kullback-Leibler.
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Appendice - Méthodologie de l’état de l’art

Soit X ∼ f la transformation de Rosenblatt est défini par:

U = Φ−1(F (X)) ,

où Φ est la fonction de répartition de la loi N (0, 1) et F la fonction
de répartition de X . Ainsi, U ∼ N (0, 1)
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