

AN INFORMATION GEOMETRY APPROACH OF ROBUSTNESS ANALYSIS IN UNCERTAINTY QUANTIFICATION OF COMPUTER CODES

Clément GAUCHY Joint work with: Jerôme STENGER, Roman SUEUR & Bertrand IOOSS

EDF R&D PRISME

Introduction

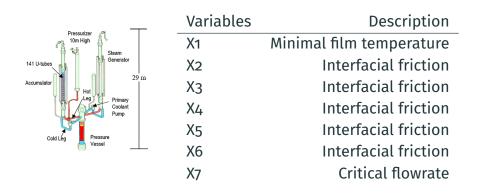
State of the art of density perturbations for robustness analysis in UQ

Information geometry: definition and interpretation

Applications in sensitivity analysis: PLI indices

INTRODUCTION

CATHARE



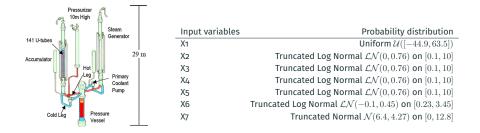
CATHARE code simulates a thermohydraulic transient during a specific accident.

Parameters values are tainted with uncertainties.

Parameters values are tainted with uncertainties. Input parameters are then modeled as random variables.

Parameters values are tainted with uncertainties. Input parameters are then modeled as random variables.

Hypothesis: Suppose X_i mutually independent.



Experimental data and expert judgement help choosing probability distributions.

• Input parameters probability distribution is a strong prior in risk assessment studies.

- Input parameters probability distribution is a strong prior in risk assessment studies.
- The impact on the quantity of interest Y (here, the peak cladding temperature) by a **probability density perturbation** has to be assessed

- Input parameters probability distribution is a strong prior in risk assessment studies.
- The impact on the quantity of interest Y (here, the peak cladding temperature) by a **probability density perturbation** has to be assessed
- The initial density f_i of variable X_i is **perturbed** into $f_{i\delta}$

- Input parameters probability distribution is a strong prior in risk assessment studies.
- The impact on the quantity of interest Y (here, the peak cladding temperature) by a **probability density perturbation** has to be assessed
- The initial density f_i of variable X_i is **perturbed** into $f_{i\delta}$
- <u>Main issue</u>: How to define such a perturbation ?

STATE OF THE ART OF DENSITY PERTURBATIONS FOR ROBUSTNESS ANALYSIS IN UQ

Recall the Kullback-Leibler divergence between two probability density functions p and q.

$$KL(p||q) = \int_{\mathbb{R}} p(x) \log \frac{p(x)}{q(x)} dx$$

- Pertubed density $f_{i\delta}$ is defined by minimizing the functional $q \to KL(q||f_i)$ with moments constraints. ¹
- Example: $\int x f_{i\delta}(x) dx = \delta_i, \ \int x^2 f_{i\delta}(x) dx = \delta_i$

¹Paul Lemaitre's PhD thesis, *Analyse de sensibilité en fiabilité des structures*, Université de Bordeaux, 2014

GRAPHICAL ILLUSTRATION - VARIATIONAL APPROACH

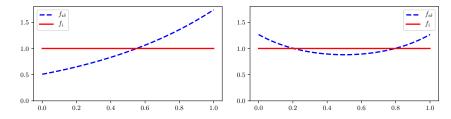


Figure 1: Mean (left figure) and variance (right figure) perturbation of $\mathcal{U}(0,1)$ density.

STANDARD SPACE TRANSFORMATION

- Idea: Applying variational perturbation approach only to the standard Gaussian density (easier in terms of computation.)
- Be X a random variable with cdf F. We define:

$$S = \Phi^{-1}(F(X)) ,$$

with Φ the cdf of the standard Gaussian density $\mathcal{N}(0,1)$.

• Perturb the so called standard space variable S and then go back to the physical space using F^{-1} :

$$F_{\delta} = F^{-1}(\Phi(S+\delta))$$

• For random vector: use the more general Rosenblatt transform.

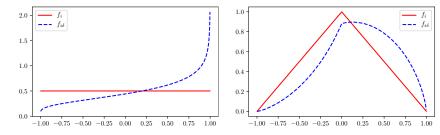


Figure 2: Standard space transformation of the U(-1, 1) and T(-1, 0, 1) probability densities with a mean shift of $\delta = 0.5$.

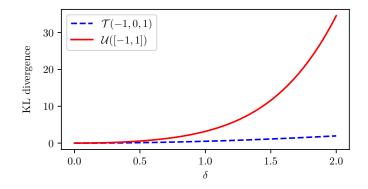
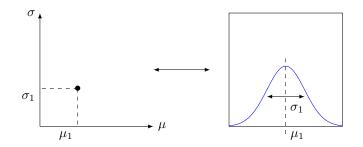


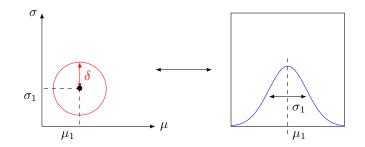
Figure 3: KL divergence between initial density T(-1, 0, 1) and U(-1, 1) and their associated perturbed density

- Unpredictable behaviour in the physical space
- Impossible to compare perturbations for the same δ values with different initial densities f_i .

- Only parametric models are considered $\mathcal{S} = \{f_{\theta}, \theta \in \Theta \subset \mathbb{R}^d\}$
- Example: Gaussian distributions $\{\mathcal{N}(\mu, \sigma^2), (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^{+*}\}$



- Only parametric models are considered $\mathcal{S} = \{f_{\theta}, \theta \in \Theta \subset \mathbb{R}^d\}$
- Example: Gaussian distributions $\{\mathcal{N}(\mu, \sigma^2), (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^{+*}\}$



INFORMATION GEOMETRY: DEFINITION AND INTERPRETATION

• Fisher information endows statistical models with a remarkable geometric structure.

• Let $\mathcal{S} = \{f_{\theta}, \theta \in \Theta \subset \mathbb{R}^d\}$ a parametric statistical model

- Let $\mathcal{S}=\{f_{\theta}, \theta\in\Theta\subset\mathbb{R}^d\}$ a parametric statistical model
- A Riemannian manifold is defined on $\ensuremath{\mathcal{S}}$

- Let $\mathcal{S} = \{f_{\theta}, \theta \in \Theta \subset \mathbb{R}^d\}$ a parametric statistical model
- A Riemannian manifold is defined on $\ensuremath{\mathcal{S}}$
- To each point θ is associated a tangent space $T_{\theta}\mathcal{S} \simeq \mathbb{R}^d$

- Let $\mathcal{S} = \{f_{\theta}, \theta \in \Theta \subset \mathbb{R}^d\}$ a parametric statistical model
- A Riemannian manifold is defined on $\ensuremath{\mathcal{S}}$
- To each point θ is associated a tangent space $T_{\theta}\mathcal{S} \simeq \mathbb{R}^d$
- The latter scalar product is defined in $T_{\theta}S$:

$$\forall u, v \in T_{\theta} S, \ \langle u, v \rangle_{\theta} = u^T I(\theta) v ,$$

where $I(\theta)$ is the Fisher information matrix evaluated in θ .

$$I(\theta) = \mathbb{E}\Big[(\nabla_{\theta} \log f_{\theta}(X)) (\nabla_{\theta} \log f_{\theta}(X))^T \Big]$$

Fisher information is a key feature in asymptotic statistics.

 $\begin{array}{l} \underline{Cramer\ Rao\ lower\ bound}:\\ \text{Let}\ \hat{\theta}\ \text{be an unbiaised estimator of }\theta\text{, then}\\ &V(\hat{\theta})\geq I(\theta)^{-1}\ , \end{array} \tag{1}$ where $V(\hat{\theta})\ \text{is the covariance matrix of the estimator.} \end{array}$

- The scalar product $\langle .,.\rangle_{\theta}$ could define an implicit distance

- The scalar product $\langle.,.\rangle_{\theta}$ could define an implicit distance
- This distance is called **Fisher distance**.

- The scalar product $\langle .,.\rangle_{\theta}$ could define an implicit distance
- This distance is called **Fisher distance**.
- Let $t \to q(t)$ be a \mathcal{C}^1 path in Θ , its length is defined by:

$$l(q) := \int_0^1 \sqrt{\langle \dot{q}(t), \dot{q}(t) \rangle_{q(t)}} dt \; ,$$

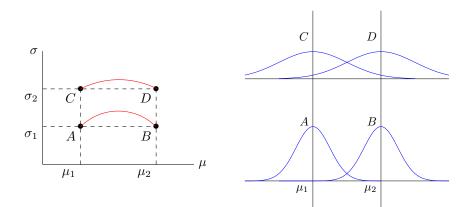
- the Fisher distance f_{θ_1} and f_{θ_2} is defined by:

$$d_F(f_{\theta_1}, f_{\theta_2}) = \inf_{q \in \mathcal{C}(\theta_1, \theta_2)} l(q) ,$$

where $C(\theta_1, \theta_2)$ is the set of C^1 path between θ_1 and θ_2 .

INTERPRETATION

Consider the space $\{\mathcal{N}(\mu, \sigma^2), (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^{+*}\}$



- Let $X_1, ..., X_n$ a n sized sample from the probability density f_{θ} .
- We denote by $\widehat{\theta}_n$ the maximum likelihood estimator

<u>Central limit theorem</u>:

$$\sqrt{n}(\widehat{\theta}_n - \theta) \xrightarrow{\mathcal{L}} \mathcal{N}(0, I(\theta)^{-1}) ,$$

• The probability density of $\hat{\theta}_n$ is:

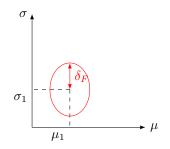
$$p(\hat{\theta}_n, \theta) \propto e^{-\frac{n}{2}\delta\theta^T I(\theta)\delta\theta}$$

(2)

• All distributions on the Fisher sphere are equivalent perturbed densities from f_{θ_0} .

- All distributions on the Fisher sphere are equivalent perturbed densities from f_{θ_0} .
- We need to compute all geodesics such that $q(0) = \theta_0$ and $d_F(q(0), q(1)) = \delta$ for $\delta \in \mathbb{R}^+$ fixed.

- All distributions on the Fisher sphere are equivalent perturbed densities from f_{θ_0} .
- We need to compute all geodesics such that $q(0) = \theta_0$ and $d_F(q(0), q(1)) = \delta$ for $\delta \in \mathbb{R}^+$ fixed.



Let $t \to q(t)$ a path, with $p = I(q)\dot{q}$, the hamiltonian is written: $H(p,q) = \frac{1}{2}p^T I^{-1}(q)p .$ If $t \to q(t)$ is a geodesic, then the function $t \to H(p(t),q(t))$ is constant.

A geodesic statisfies the following system of ordinary differential equations:

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$
(3)

- The conservation of hamiltonian gives us the initial condition in "speed" p(0) knowing that $d_F(q(0),q(1))=\delta$

- The conservation of hamiltonian gives us the initial condition in "speed" p(0) knowing that $d_F(q(0),q(1))=\delta$
- With (q(0), p(0)) defined, the ODE system (3) has an unique solution thanks to Cauchy's theorem

- The conservation of hamiltonian gives us the initial condition in "speed" p(0) knowing that $d_F(q(0),q(1))=\delta$
- With (q(0), p(0)) defined, the ODE system (3) has an unique solution thanks to Cauchy's theorem
- Geodesics are computed using numerical methods.

FISHER SPHERE - GAUSSIAN FAMILY

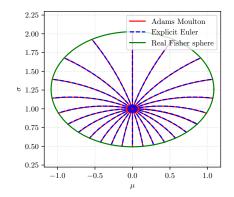


Figure 4: Fisher sphere $\delta = 1$ - Coordinate space

FISHER SPHERE - GAUSSIAN FAMILY

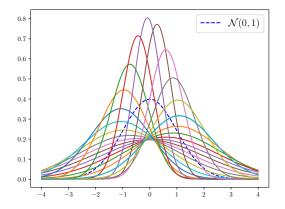


Figure 5: Fisher sphere $\delta = 1$ - densities space

Applications in sensitivity analysis: PLI INDICES

APPLICATION TO SENSITIVITY ANALYSIS

- We aim to measure the impact of density perturbation of input $X_i \mbox{ to } Y$

- We aim to measure the impact of density perturbation of input $X_i \mbox{ to } Y$
- We define the quantile-PLI (*Perturbated Law Index*) $S_{i\delta}$ by:

$$S_{i\delta} = \frac{q_{i\delta}^{\alpha} - q^{\alpha}}{q^{\alpha}}$$

• q^{α} and $q_{i\delta}^{\alpha}$ are respectively the quantiles of level α of Y with X_i distributed respectively according to f_i and $f_{i\delta}$

- We aim to measure the impact of density perturbation of input $X_i \mbox{ to } Y$
- We define the quantile-PLI (*Perturbated Law Index*) $S_{i\delta}$ by:

$$S_{i\delta} = \frac{q_{i\delta}^{\alpha} - q^{\alpha}}{q^{\alpha}}$$

- q^{α} and $q_{i\delta}^{\alpha}$ are respectively the quantiles of level α of Y with X_i distributed respectively according to f_i and $f_{i\delta}$
- We obtain the **minimum** and the **maximum** of $S_{i\delta}$ for $f_{i\delta}$ in the Fisher sphere of radius δ centered in f_i .

- We aim to measure the impact of density perturbation of input $X_i \mbox{ to } Y$
- We define the quantile-PLI (*Perturbated Law Index*) $S_{i\delta}$ by:

$$S_{i\delta} = \frac{q_{i\delta}^{\alpha} - q^{\alpha}}{q^{\alpha}}$$

- q^{α} and $q_{i\delta}^{\alpha}$ are respectively the quantiles of level α of Y with X_i distributed respectively according to f_i and $f_{i\delta}$
- We obtain the **minimum** and the **maximum** of $S_{i\delta}$ for $f_{i\delta}$ in the Fisher sphere of radius δ centered in f_i .
- This new methodology is called OF-PLI (*Optimal Fisher based PLI*).

• Industrial simulation code are often time-expensive.

PLI ESTIMATION

- Industrial simulation code are often time-expensive.
- We want to estimate the PLI without resampling X_i from the perturbed density.

PLI ESTIMATION

- Industrial simulation code are often time-expensive.
- We want to estimate the PLI without resampling X_i from the perturbed density.
- We consider a sample $(\mathbf{X}^{(1)}, ..., \mathbf{X}^{(N)})$ with X_i sampled from f_i and a simulation code G:

$$\hat{F}_{i\delta}(t) = \frac{\sum_{n=1}^{N} \frac{f_{i\delta}(X_i^{(n)})}{f_i(X_i^{(n)})} \mathbb{1}_{(G(\mathbf{X}^{(n)}) < t)}}{\sum_{n=1}^{N} \frac{f_{i\delta}(X_i^{(n)})}{f_i(X_i^{(n)})}}$$

This is the reverse importance sampling (RIS) estimator of the cdf of $G(\mathbf{X})$

PLI ESTIMATION

- Industrial simulation code are often time-expensive.
- We want to estimate the PLI without resampling X_i from the perturbed density.
- We consider a sample $(\mathbf{X}^{(1)}, ..., \mathbf{X}^{(N)})$ with X_i sampled from f_i and a simulation code G:

$$\hat{F}_{i\delta}(t) = \frac{\sum_{n=1}^{N} \frac{f_{i\delta}(X_i^{(n)})}{f_i(X_i^{(n)})} \mathbb{1}_{(G(\mathbf{X}^{(n)}) < t)}}{\sum_{n=1}^{N} \frac{f_{i\delta}(X_i^{(n)})}{f_i(X_i^{(n)})}}$$

This is the reverse importance sampling (RIS) estimator of the cdf of $G(\mathbf{X})$

- the perturbed quantile $q_{i\delta}^{\alpha}$ is estimated with the empirical quantile of $\hat{F}_{i\delta}.$

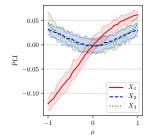
- Self normalized cdf estimator $\hat{F}_{i\delta}(t)$ is used because it is bounded. Moreover, it possess better asymptotic properties.
- The estimator $\hat{S}_{i\delta}=rac{\hat{q}_{i\delta}^lpha-\hat{q}^lpha}{\hat{q}^lpha}$ built verify a CLT.

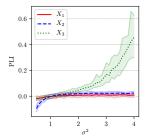
- Self normalized cdf estimator $\hat{F}_{i\delta}(t)$ is used because it is bounded. Moreover, it possess better asymptotic properties.
- The estimator $\hat{S}_{i\delta}=rac{\hat{g}^{lpha}_{i\delta}-\hat{q}^{lpha}}{\hat{q}^{lpha}}$ built verify a CLT.
- Main hypothesis for the CLT: $\mathbb{E}\Big[\Big(rac{f_{i\delta}(X)}{f_i(X)}\Big)^2\Big]<+\infty$

• Empirical criterion for choice of δ_{max} : Minimal number of $G(\mathbf{X}^{(i)})$'s values greater or lesser than the perturbed quantile.

- We take 3 independent random variables (X_1, X_2, X_3) with a standard Gaussian distribution $\mathcal{N}(0, 1)$.
- The output variable is the analytical function

$$G(x_1, x_2, x_3) = \sin(x_1) + 7\sin(x_2)^2 + 0.1x_3^4\sin(x_1) .$$
 (4)





ISHIGAMI: NUMERICAL RESULTS

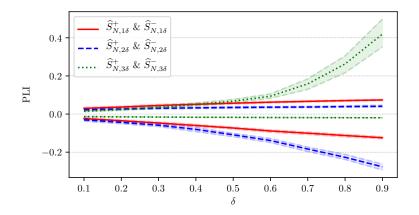


Figure 7: OF-PLI for the Ishigami function with a 100 points grid on the Fisher sphere.

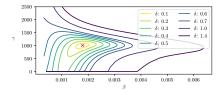
• OF-PLI computation for the flood model, quantifying the flooding risk of industrial facilities.

Variable n°	Name	Description	Probability distribution	Admissible values
1	Q	Maximal annual flowrate	Gumbel $\mathcal{G}(1013, 558)$	[500, 3000]
2	K_s	Strickler coefficient	Normal $\mathcal{N}(30, 7.5)$	$[15, +\infty]$
3	Z_v	Upstream level of the river	Triangular $\mathcal{T}(50)$	[49, 51]
4	Z_m	Downstream level of the river	Triangular $\mathcal{T}(55)$	[54, 56]

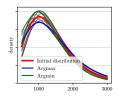
Input parameters of the flood model with their associated probability distribution

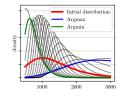
• We denote *H* the maximal annual water level.

$$H = \left(\frac{Q}{300K_s\sqrt{2.10^{-4}(Z_m - Z_v)}}\right)^{0.6} \ .$$



(a) Fisher sphere for an increasing δ .





(b) Densities on the Fisher sphere ($\delta = 0.1$).

(c) Densities on the Fisher sphere ($\delta = 1.4$).

Figure 8: Analysis of the density perturbation of the variable Q.

NUMERICAL RESULTS FOR THE FLOOD MODEL

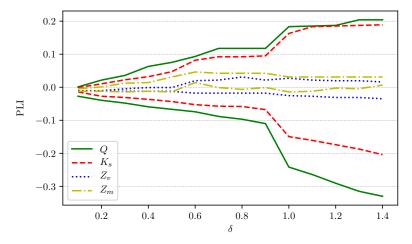


Figure 9: OF-PLI for the flood model on 100 points on the Fisher sphere.

CODE CATHARE RESULTS

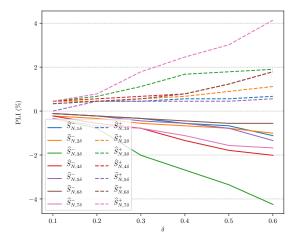


Figure 10: OF-PLI for CATHARE code

• Definition of a new framework of density perturbation, development of a numerical solver in Python (OpenTurns inside).

- Definition of a new framework of density perturbation, development of a numerical solver in Python (OpenTurns inside).
- Theoretical results.

- Definition of a new framework of density perturbation, development of a numerical solver in Python (OpenTurns inside).
- Theoretical results.
- Accepted paper in Technometrics (link on the UQsay website.)
- <u>Perspectives</u>: simultaneous pertubation of several density of input parameters, dependent input parameters.

REFERENCES

QUESTIONS?

Appendice - Normalité asymptotique du PLI i

Supposons que F_i soit différentiable en q^{α} avec $F'_i(q^{\alpha}) > 0$ et $F_{i\delta}$ soit différentiable en $q^{\alpha}_{i\delta}$ avec $F'_{i\delta}(q^{\alpha}_{i\delta}) > 0$. On note $\Sigma = \begin{pmatrix} \sigma^2_i & \tilde{\theta}_i \\ \tilde{\theta}_i & \tilde{\sigma}^2_{i\delta} \end{pmatrix}$ tel que:

$$\sigma_i^2 = \frac{\alpha(1-\alpha)}{f_i(q^\alpha)^2} \; .$$

$$\tilde{\sigma}_{i\delta}^2 = \frac{\mathbb{E}\left[\left(\frac{f_{i\delta}(X_i)}{f_i(X_i)}\right)^2 (\mathbbm{1}_{(G(\mathbf{X}) \le q_{i\delta}^{\alpha})} - \alpha)^2\right]}{f_{i\delta}(q_{i\delta}^{\alpha})^2} \ .$$

$$\tilde{\theta}_i = \frac{\mathbb{E}\left[\frac{f_{i\delta}(X_i)}{f_i(X_i)}\mathbbm{1}_{(G(\mathbf{X}) \leq q^{\alpha})}\mathbbm{1}_{(G(\mathbf{X}) \leq q^{\alpha}_{i\delta})}\right] - \alpha \mathbb{E}[\mathbbm{1}_{(G(\mathbf{X}) \leq q^{\alpha}_{i\delta})}]}{f_i(q^{\alpha})f_{i\delta}(q^{\alpha}_{i\delta})}$$

Alors en supposant Σ inversible et $\mathbb{E}\left[\left(\frac{f_{i\delta}(X_i)}{f_i(X_i)}\right)^2\right] < +\infty$. On obtient: $\sqrt{N}\left(\hat{\theta}_N - \begin{pmatrix} q^{\alpha} \\ q^{\alpha}_{i\delta} \end{pmatrix}\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \Sigma) .$

La densité perturbée f_{δ} est défini par:

$$f_{\delta} = \underset{\pi \in \mathcal{P}, \ s.t \ \mathbb{E}_{\pi}[X] = \mathbb{E}_{f}[X] + \delta}{\operatorname{arg\,min}} KL(\pi || f) ,$$

où KL(.||.) est la divergence de Kullback-Leibler.

Soit $X \sim f$ la transformation de Rosenblatt est défini par:

$$U = \Phi^{-1}(F(X)) ,$$

où Φ est la fonction de répartition de la loi $\mathcal{N}(0,1)$ et F la fonction de répartition de X. Ainsi, $U \sim \mathcal{N}(0,1)$