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Online damage detection and model updating via proper 

orthogonal decomposition and recursive Bayesian filters

An approach based on the synergistic use of proper orthogonal decomposition (POD) and

Kalman filtering is proposed for the online health monitoring of damaged structures. The

reduced-order model of the structure is obtained during the initial training stage of monitoring;

afterward, effective estimations of structural damage are provided online by tracking the

evolution in time of stiffness parameters and projection bases handled in the model order

reduction procedure. Such tracking is accomplished via two Kalman filters: a first one to deal

with the time evolution of a joint state vector, gathering the reduced-order state and the

stiffness terms degraded by damage; a second one to deal with the update of the reduced-

order model in case of damage evolution. Both filters exploit the information conveyed by

measurements of the structural response to the external excitations. Focusing on multi-story

shear building, the capability and performance of the proposed approach are assessed in

terms of tracked variation of the stiffness terms, identified damage location and speed-up of

the whole health monitoring procedure.



Singapore: reduce risk related to damage 
assessment after natural events

Göta Bridge (Sweden): safely extend the 
lifetime of the ageing bridge

Halifax Metro Center (Canada): Making use of 
existing structural reserves to allow increased 
snow and equipment loads on the roof

I35W Bridge (USA): reassure public on the safety of 
the new bridge, support the rapid construction 
schedule, provide data to local researchers

STRUCTURAL HEALTH MONITORING
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DAMAGE IDENTIFICATION / MODEL UPDATE 

STRUCTURAL HEALTH MONITORING (SHM)

• Gather observations of the 
system through periodically 
spaced measurements

• Selection of a certain number 
of features and indices to 
identify a possible damage

[delamination]

• Estimation of the damage 
indices using an inverse 
identification method and 
relying upon the observations

Balageas et al. 2006
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Aim of SHM

Requirements

• Reduced computational cost

• On-line tracking

• Coupling with FE commercial codes 

Model order reduction

Hybrid Kalman filters

Damage identification and localization

Observations Damage indices

Dual estimation

Use of reference substructures
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DAMAGE (DELAMINATION) IN COMPOSITE STRUCTURES

Syntactic foam/glass fibre composite 
sandwich

delamination
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after Kousourakis et al., Composites (2008)

EFFECTS OF EMBEDDED MONITORING SYSTEMS

inner (embedded) piezo

surface mounted piezo

after Tang et al., JIM (2011)

effects of embedded fiber sensors

SHM modifies the stress-carrying 
capacity of the structural component
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INTRO:

ISSUES REGARDING THE USE OF

(EXTENDED) KALMAN FILTER

IN STRUCTURAL DYNAMICS



1) low sensitivity of measured displacement ur

2) “fast” interface failure

Issues:

WHY STABILITY & ACCURACY ANALYSIS of KALMAN FILTER
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estimated state

estimated parameter value

lack of convergence

WHY STABILITY & ACCURACY ANALYSIS of KALMAN FILTER
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estimated parameter value

accuracy problems

(biased estimates)

In joint model and parameter 

calibration analyses we encounter:

numerical instability problems

(divergence of the estimates)



• Introduction: structural dynamics and structural health monitoring

• Bayesian filtering for nonlinear systems

0_ Kalman Filter (KF)

1_ Extended Kalman Filter (EKF)

2_ Sigma-Point Kalman Filter (S-PKF)

3_ Particle Filter (PF)

4_ Extended Kalman Particle Filter (EK-PF)

• Reduced order modelling of structural dynamics

1_ Proper Orthogonal Decomposition (POD)

2_ POD for reduced order modelling of Pirelli tower

3_ Robustness of POD to changes in parameters of the structure

• Reduced order modelling and dual estimation of damaging structures

1_ Synergy of EKF, POD and KF

2_ Synergy of EK-PF, POD and KF

OUTLINE of the PRESENTATION
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STRUCTURAL DYNAMICS AND 

STRUCTURAL HEALTH MONITORING



Structural Health Monitoring (SHM)
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• Detection damage online and in real-time

• Locating damage

• Quantifying intensity of damage

(degradation in story stiffness)

• SHM based on dynamic response

• Recursive approach

• Stochastic approach

• (Input-)output method

Structural Dynamics 𝑴 ሷ𝒖(𝑡) + 𝑫 ሶ𝒖(𝑡) + 𝑲𝒖(𝑡) = 𝑭(𝑡)

inputoutput



Structural System Identification [Ljung, 1999]
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Gray box identification: a dual estimation approach
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Let the discrete-time system dynamics at time ti be described by:

system state vector

model 

parameters

measured system output

system evolution equation

observation equation

parameter stationary condition

𝒛𝑘 = 𝒇𝑘−1
𝒛 𝒛𝑘−1, 𝝑𝑘−1 + 𝒗𝑘−1

𝒛

𝝑𝑘 = 𝝑𝑘−1 + 𝒗𝑘−1
𝝑

𝒚𝑘 = 𝑯
𝒛𝒛𝑘−1 +𝒘𝑘

Parameter stationary condition: separation of time scales principle



Gray box identification: a dual estimation approach
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Let the discrete-time system dynamics at time ti be described by:

state mapping (non-linear)

state-output mapping (linear)
measurement noise

state process noise

parameter process noise

𝒛𝑘 = 𝒇𝑘−1
𝒛 𝒛𝑘−1, 𝝑𝑘−1 + 𝒗𝑘−1

𝒛

𝝑𝑘 = 𝝑𝑘−1 + 𝒗𝑘−1
𝝑

𝒚𝑘 = 𝑯
𝒛𝒛𝑘−1 +𝒘𝑘



Gray box identification: a dual estimation approach
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Let the discrete-time system dynamics at time ti be described by:

we introduce (joint representation):

𝒛𝑘 = 𝒇𝑘−1
𝒛 𝒛𝑘−1, 𝝑𝑘−1 + 𝒗𝑘−1

𝒛

𝝑𝑘 = 𝝑𝑘−1 + 𝒗𝑘−1
𝝑

𝒚𝑘 = 𝑯
𝒛𝒛𝑘−1 +𝒘𝑘

𝒚𝑘 = 𝑯
𝒙𝒙𝑘−1 +𝒘𝑘

𝒙𝑘 = 𝒇𝑘−1
𝒙 𝒙𝑘−1 + 𝒗𝑘−1

𝒙
𝒙𝑘 =

𝒛𝑘
𝝑𝑘
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BAYESIAN FILTERING FOR NONLINEAR 

SYSTEMS



Recursive Bayesian Inference
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Initialization: Objective:

Prediction stage (Chapman-Kolmogorov equation):

Update stage (Bayes formula):

 k 1 1:k 1p | x y

Estimate desired statistics (e.g. expected value):

   k k k 1:k kE p | d x x x y x



Kalman Filter [Kalman, 1960]
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- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡:

 Prediction stage:

• Prediction of mean and covariance of the state:

𝒙𝑘
− = 𝑭𝑘 𝒙𝑘−1

𝑷𝑘
− = 𝑭𝑘𝑷𝑘−1𝑭𝑘

𝑇 + 𝑽

 Update stage:

• Calculation of Kalman gain:

𝑮𝑘 = 𝑷𝑘
−𝑯𝑘
T 𝑯𝑘𝑷𝑘

−𝑯𝑘
T +𝑾

−1

• Improving predictions using latest observation:

ෝ𝒙𝑘 = 𝒙𝑘
− + 𝑮𝑘 𝒚𝑘 −𝑯𝑘𝒙𝑘

−

𝑷𝑘 = 𝑷𝑘
− − 𝑮𝑘𝑯𝑘𝑷𝑘

−



Extended Kalman Filter [Kalman, Bucy, 1961]
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- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡:

 Prediction stage:

• Computing process model Jacobian

𝑭𝑘 = 𝛻𝑥𝒇𝒌 𝒙 |𝒙 = 𝒙𝒌−𝟏
• Prediction of mean and covariance of the state:

𝒙𝑘
− = 𝑭𝑘 𝒙𝑘−1

𝑷𝑘
− = 𝑭𝑘𝑷𝑘−1𝑭𝑘

𝑇 + 𝑽

 Update stage:

• Calculation of Kalman gain:

𝑮𝑘 = 𝑷𝑘
−𝑯𝑘
T 𝑯𝑘𝑷𝑘

−𝑯𝑘
T +𝑾

−1

• Improve predictions using latest observation:

ෝ𝒙𝑘 = 𝒙𝑘
− + 𝑮𝑘 𝒚𝑘 −𝑯𝑘𝒙𝑘

−

𝑷𝑘 = 𝑷𝑘
− − 𝑮𝑘𝑯𝑘𝑷𝑘

−



Sigma-Point Kalman Filter [Julier et. al., 1995]
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- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡:

 Prediction stage:

• Deploying Sigma-Points:                         𝝌𝑘,𝑗
− =

ෝ𝒙𝑘−1 𝑗 = 2𝑛 + 1

ෝ𝒙𝑘−1 + 𝜓 𝑷𝑘−1,𝑗 1 ≤ 𝑗 ≤ 𝑛

ෝ𝒙𝑘−1 − 𝜓 𝑷𝑘−1,(𝑗−𝑛) 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛

• Evolution of the sigma points:

𝝌𝑘,𝑗 = 𝒇𝑘 𝝌𝑘,𝑗
−

• Prediction of mean and covariance of the state via the weighted sum:

𝒙𝑘
− = σ𝑗=1

2𝑛+1𝜔𝑗𝝌𝑘,𝑗,     𝑷𝑘
− = σ𝑗=1

2𝑛+1𝜔∗𝑗 𝝌𝑘,𝑗 − 𝒙𝑘
− 𝝌𝑘,𝑗 − 𝒙𝑘

− 𝑇

 Update stage:

• Calculation of Kalman gain:                         𝑮𝑘 = 𝑷𝑘
−𝑯𝑘
T 𝑯𝑘𝑷𝑘

−𝑯𝑘
T +𝑾

−1

• Improve predictions using latest observation:           
ෝ𝒙𝑘 = 𝒙𝑘

− + 𝑮𝑘 𝒚𝑘 −𝑯𝑘𝒙𝑘
−

𝑷𝑘 = 𝑷𝑘
− − 𝑮𝑘𝑯𝑘𝑷𝑘

−



Particle Filter [Gordon et. al., 1993]
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- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡:

 Prediction stage:

• Draw particles

𝒙𝑘
(𝑖)
∼ 𝑝 𝒙𝑘|𝒙𝑘−1

(𝑖)
𝑖 = 1,… ,𝑁P

 Update stage:

• Evolve weights

ω𝑘
(𝑖)
= ω𝑘−1

(𝑖)
𝑝 𝒚𝑘|𝒙𝑘

(𝑖)
𝑖 = 1,… , 𝑁P

• Resample

• Compute expected value:

ෝ𝒙𝑘 =

𝑖=1

𝑁P

ω𝑘
(𝑖)
𝒙𝑘
(𝑖)



- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡:

 Prediction stage:

• Draw particles: 𝒙𝑘
(𝑖)
∼ 𝑝 𝒙𝑘|𝒙𝑘−1

(𝑖)
𝑖 = 1,… ,𝑁P

• Push the particles toward the region of high probability through an EKF:

𝑷𝑘
𝑖 −
= 𝑭𝑘𝑷𝑘−1

𝑖
𝑭𝑘
T + 𝑽

𝑮𝑘
(𝑖)
= 𝑷𝑘

𝑖 −
𝑯𝑘
T 𝑯𝑘𝑷𝑘

𝑖 −
𝑯𝑘
T +𝑾

−1

𝒙𝑘
(𝑖)
= 𝒙𝑘

𝑖 −
+ 𝑮𝑘
(𝑖)
𝒚𝑘 −𝑯𝑘𝒙𝑘

𝑖 −

𝑷𝑘
𝑖
= 𝑷𝑘

𝑖 −
− 𝑮𝑘

(𝑖)
𝑯𝑘𝑷𝑘

𝑖 −
𝑖 = 1,… ,𝑁P

 Update stage:

• Evolve weights:                              ω𝑘
(𝑖)
= ω𝑘−1

(𝑖)
𝑝 𝒚𝑘|𝒙𝑘

(𝑖)
𝑖 = 1,… ,𝑁P

• Resample

• Compute expected value:

ෝ𝒙𝑘 =

𝑖=1

𝑁P

ω𝑘
(𝑖)
𝒙𝑘
(𝑖)

Extended Kalman Particle Filter [de Freitas et. al., 2000]
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model parameters:

A simple example: 

1-DOF OSCILLATOR with nonLINEAR (SOFTENING) SPRING

25

𝑚 ሷ𝑢 + 𝑟 = 𝑞

𝑟 = ቊ
𝑘1𝑢 𝑖𝑓 𝑢 < 𝑢𝑀
𝑘1𝑢𝑀 +𝑘2 𝑢 − 𝑢𝑀 𝑖𝑓 𝑢 > 𝑢𝑀

𝝑 = 𝑘1 𝑘2 𝑢𝑀
𝑇

Time integration through HHT-a method 



Extended Kalman Filter
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Linear-hardening:

Linear-perfectly plastic:

Linear-softening:



Sigma-Point Kalman Filter

27
 

 

 

Linear-hardening:

Linear perfectly plastic:

Linear-softening:



Particle Filter
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Linear-hardening:

Linear perfectly plastic:

Linear-softening:



Extended Kalman Particle Filter
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Linear-hardening:

Linear-perfectly plastic:

Linear-softening:



NUMERICAL RESULTS: n-DOF linear case
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n = 2

EKF (red) versus EK-PF (blue)
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Shear buildings studied here feature same mass 

and inter-storey stiffnesses at each floor

acceleration time history at the last floor is observed



NUMERICAL RESULTS: n-DOF linear case
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n = 3

EKF (red) versus EK-PF (blue)
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NUMERICAL RESULTS: n-DOF linear case
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n = 4

EKF (red) versus EK-PF (blue)
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REDUCED ORDER MODELING OF DYNAMIC 

SYSTEMS:

PROPER ORTOGHONAL DECOMPOSITION



REDUCED ORDER MODELS for n-DOF SYSTEMS
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𝑴 ሷ𝒖(𝑡) + 𝑫 ሶ𝒖(𝑡) + 𝑲𝒖(𝑡) = 𝑭(𝑡)

Linear case: equations of motion

The displacement vector 𝒖 can be expressed in terms of a set of orthonormal bases 𝝋𝑖 :

𝒖 = 

𝑖=1

𝑚

𝝋𝑖 𝑦𝑖 = 𝚽𝒚

𝒖𝑙 =

𝑖=1

𝑙

𝝋𝑖 𝑦𝑖 = 𝚽𝑙 𝜶

A reduced-order representation of 𝒖 reads (𝑙<<𝑚): 

Aim of POD is to minimize the norm 𝒖 − 𝒖𝑙 .

Through the snapshot matrix 𝑼 = 𝒖(1) 𝒖(2)… 𝒖(𝑛) , 𝒖(𝑘) = 𝒖(𝑡𝑘) being the system 

response at instant 𝑡𝑘, and singular value decomposition:

𝑼 = 𝚽𝚺 𝑹T

Eventually, 𝑙 set by:  
 Σ𝑖𝑖

2𝑙

𝑖=1

 Σ𝑖𝑖
2𝑚

𝑖=1

≥  𝑝 

Left singular vectors

singular values

Fraction of energy

Set of ordered bases (POMs)

Sensor or simulation



REDUCED ORDER MODELS for n-DOF SYSTEMS
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𝑴 ሷ𝒖(𝑡) + 𝑫 ሶ𝒖(𝑡) + 𝑲𝒖(𝑡) = 𝑭(𝑡)

Linear case: equations of motion

How to obtain the reduced order model:

𝒖 ≈ 𝚽𝑙𝜶 ሶ𝒖 ≈ 𝚽𝑙 ሶ𝜶 ሷ𝒖 ≈ 𝚽𝑙 ሷ𝜶

𝑴𝚽𝑙 ሷ𝜶(𝑡) + 𝑫𝚽𝑙 ሶ𝜶(𝑡) + 𝑲𝚽𝑙𝜶(𝑡) ≅ 𝑭(𝑡)

𝒓 = 𝑭(𝑡) − 𝑴𝚽𝑙 ሷ𝜶(𝑡) + 𝑫𝚽𝑙 ሶ𝜶(𝑡) + 𝑲𝚽𝑙𝜶(𝑡)

or, through residual 𝒓 :

𝚽𝑙
T𝒓 = 𝟎

𝚽𝑙
T𝑴𝚽𝑙 ሷ𝜶(𝑡) + 𝚽𝑙

T𝑫𝚽𝑙 ሶ𝜶(𝑡) + 𝚽𝑙
T𝑲𝚽𝑙𝜶(𝑡) = 𝚽𝑙

T𝑭(𝑡)

Within a Galerkin projection frame:



NUMERICAL RESULTS: 

Pirelli Tower excited by El Centro earthquake (E-W direction)  
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NUMERICAL RESULTS: 

Pirelli Tower excited by El Centro earthquake (E-W direction)  
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horizontal displacement, velocity 

and acceleration of the 20th floor



NUMERICAL RESULTS: 

Pirelli Tower excited by El Centro earthquake (E-W direction)  
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kinetic and elastic energies
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NUMERICAL RESULTS: 

Pirelli Tower excited by El Centro earthquake (E-W direction)  
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Cumulative discrepancy full-reduced models

(kinetic and potential energies)
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# DOFs 𝑝 speedup 

1 0.99 515 

2 0.999 385 

3 0.9999 276 

4 0.99999 244 

 



NUMERICAL RESULTS: 10-DOF linear shear building POMs
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POMs of 10-story shear building 

before (red line) 

and after (blue line) 

a stiffness reduction at 5th floor



NUMERICAL RESULTS: 10-DOF linear shear building POMs

41

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

9

10

1st POM

 

 

50% damage level

40% damage level

30% damage level

20% damage level

10% damage level

virgin state

sensititivity of 1st POM to 

damage, for different levels 

of stiffness reduction at 5th

floor
0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27

4

5

1st POM

 

 



0 0.5
0

1

2

3

4

5

6

7

8

9

10

 s
to

re
y

 i
n

d
ex

dam. @1st floor
0 0.5

0

1

2

3

4

5

6

7

8

9

10

dam. @2nd floor
0 0.5

0

1

2

3

4

5

6

7

8

9

10

dam. @3rd floor
0 0.5

0

1

2

3

4

5

6

7

8

9

10

dam. @4th floor
0 0.5

0

1

2

3

4

5

6

7

8

9

10

dam.@5th floor

NUMERICAL RESULTS: 10-DOF linear shear building POMs

42

1st POM at varying place of stiffness reduction:

Red line: before damage

Blue line: after damage
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Dual estimation and reduced order modelling of a 

damaging shear building



Dual estimation: reduced model vs full model
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𝑴 ሷ𝒖(𝑡) + 𝑫 ሶ𝒖(𝑡) + 𝑲𝒖(𝑡) = 𝑭(𝑡)

𝑴𝑙 ሷ𝜶(𝑡) + 𝑫𝑙 ሶ𝜶(𝑡) + 𝑲𝑙𝜶(𝑡) = 𝚽𝑙
T𝑭(𝑡)

Identification of 𝑲 gives insights concerning damage in building

Does identification of 𝑲𝑙 gives insights concerning location and intensity of 

the damage in building?

Update POMs of the building on the fly

Recall POMs are indicative of damage



Dual estimation: reduced model vs full model
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𝒙𝑟,𝑘 = 𝒇𝑟,𝑘 𝒙𝑟,𝑘−1 + 𝒗𝑘

𝒚𝑘 = 𝑯𝑳𝑘𝒙𝑟,𝑘 +𝒘𝑘

𝑳𝑘 =

𝜱𝑙,𝑘
𝜱𝑙,𝑘

𝜱𝑙,𝑘
𝟎

𝜱𝑙,𝑘 = 𝜱𝑙,𝑘−1+𝒗𝑘
𝑠𝑠

𝒚𝑘 = 𝑯𝑠𝑠𝜱𝑙,𝑘 +𝒘𝑘

Reduced state 

and parameters
Process noise

Fictitious noise for 

POMs estimation

𝒙𝑟,𝑘 =

𝜶𝑘
ሶ𝜶𝑘
ሷ𝜶𝑘
𝝑𝑘

Reduced 

parameters
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- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡:

 Prediction stage:

• Computing process model Jacobian: 𝑭𝑟,𝑘 = 𝛻𝑥𝒇𝒌 𝒙 |𝒙 = ෝ𝒙𝒌−𝟏

• Evolution of state and prediction of covariance:

𝒙𝑟,𝑘
− = 𝒇𝑟,𝑘 𝒙𝑟,𝑘−1

𝑷𝑟,𝑘
− = 𝑭𝑟,𝑘𝑷𝑟,𝑘−1

− 𝑭𝑟,𝑘
𝑇 + 𝑽

 Update stage:

• Use 𝜱𝑙,𝑘−1 to estimated 𝑳𝑘 and Kalman gain: 𝑮𝑘 = 𝑷𝑟,𝑘
− 𝑳𝑘
T𝑯T 𝑯𝑳𝑘𝑷𝑟,𝑘

− 𝑳𝑘
T 𝑯T +𝑾

−1

• Update state and covariance:

𝒙𝑟,𝑘 = 𝒙𝑟,𝑘
− + 𝑮𝑘 𝒚𝑘 −𝑯𝑳𝑘𝒙𝑟,𝑘

−

𝑷𝑟,𝑘 = 𝑷𝑟,𝑘
− − 𝑮𝑘𝑯𝑳𝑘𝑷𝑟,𝑘

−

• Predict subspace and its associated covariance:

𝜱𝑙,𝑘
− = 𝜱𝑙,𝑘−1

𝑷𝑠𝑠,𝑘
− = 𝑷𝑠𝑠,𝑘−1 + ϒ

• Calculate Kalman gain for updating subspace:

𝑮𝑠𝑠,𝑘 = 𝑷𝑠𝑠,𝑘
− 𝑯𝑠𝑠

T 𝑯𝑠𝑠𝑷𝑠𝑠,𝑘
− 𝑯𝑠𝑠

T +𝑾
−1

• Update subspace and its associated covariance:

𝜱𝑙,𝑘 = 𝜱𝑙,𝑘
− + 𝑮𝑠𝑠,𝑘 𝒚𝑘 −𝑯𝑠𝑠𝒙𝑟,𝑘

−

𝑷𝑠𝑠,𝑘 = 𝑷𝑠𝑠,𝑘
− − 𝑮𝑠𝑠,𝑘𝑯𝑠𝑠𝑷𝑠𝑠,𝑘

−
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Damage at 5th floor

1 DOF retained in the ROM

• Identified first POM 

• Identified reduced stiffness
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Damage at 5th floor, 1 DOF retained in the ROM

Components of first POM (1-5)
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Damage at 5th floor, 1 DOF retained in the ROM

Components of first POM (6-10)
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Damage at 5th floor, 2 DOF retained in the ROM
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- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡:

 Prediction stage:

• Draw particles:

𝒙𝑟,𝑘
𝑖 −
∼ 𝑝 𝒙𝑟,𝑘|𝒙𝑟,𝑘−1

(𝑖)
𝑖 = 1,… , 𝑁P

• Push the particles toward the region of high probability through an EKF:

𝑷𝑟,𝑘
𝑖 −
= 𝑭𝑟,𝑘

(𝑖)
𝑷𝑟,𝑘−1
𝑖
𝑭𝑟,𝑘
𝑖 𝑇
+ 𝑽

𝑮𝑘
(𝑖)
= 𝑷𝑟,𝑘

𝑖 −
𝑳𝑘−1
T 𝑯𝑘

T 𝑯𝑳𝑘−1𝑷𝑟,𝑘
𝑖 −
𝑳𝑘−1
T 𝑯T +𝑾

−1

𝒙𝑟,𝑘
(𝑖)
= 𝒙𝑟,𝑘

𝑖 −
+ 𝑮𝑘
(𝑖)
𝒚𝑘 −𝑯𝑳𝑘−1𝒙𝑟,𝑘

𝑖 −

𝑷𝑟,𝑘
𝑖
= 𝑷𝑟,𝑘

𝑖 −
− 𝑮𝑘

(𝑖)
𝑯𝑳𝑘−1𝑷𝑟,𝑘

𝑖 −
𝑖 = 1,… , 𝑁P



- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡:

 Update stage:

• Evolve weights:

ω𝑘
(𝑖)
= ω𝑘−1

(𝑖)
𝑝 𝒚𝑘|𝒙𝑟,𝑘

(𝑖)
𝑖 = 1,… , 𝑁P

• Resample.

• Compute expected value or other required statistics: ෝ𝒙𝑟,𝑘 = σ𝑖=1
𝑁P ω𝑘

(𝑖)
𝒙𝑟,𝑘
(𝑖)

• Predict subspace and its associated covariance:

𝜱𝑙,𝑘
− = 𝜱𝑙,𝑘−1

𝑷𝑠𝑠,𝑘
− = 𝑷𝑠𝑠,𝑘−1 + ϒ

• Calculate Kalman gain for updating subspace:

𝑮𝑠𝑠,𝑘 = 𝑷𝑠𝑠,𝑘
− 𝑯𝑠𝑠

T 𝑯𝑠𝑠𝑷𝑠𝑠,𝑘
− 𝑯𝑠𝑠

T +𝑾
−1

• Update subspace and its associated covariance:

𝜱𝑙,𝑘 = 𝜱𝑙,𝑘
− + 𝑮𝑠𝑠,𝑘 𝒚𝑘 −𝑯𝑠𝑠𝜱𝑙,𝑘

−

𝑷𝑠𝑠,𝑘 = 𝑷𝑠𝑠,𝑘
− − 𝑮𝑠𝑠,𝑘𝑯𝑠𝑠𝑷𝑠𝑠,𝑘

−

PROBLEM FORMULATION through POD-EKPF-KF
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Damage at 5th floor

1 DOF retained in the ROM

• Identified first POM 

• Identified reduced stiffness
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Issue with the estimation of stiffness parameters
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model to a damage at the 5th floor

Remedy:
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POD-EKF-KF versus POD-EKPF-KF

Damage at 5th floor

1-2 DOF retained in the ROM

Phase-space plots relevant to the fifth floor
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ASSESSMENT OF THE COMPUTATIONAL COMPLEXITY, POD-EKPF-KF

57

Computational complexity of the full-order model-based analysis

Computational complexity of the reduced-order model-based analysis

Estimate of the speed-up



SUMMARY AND CONCLUSION
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• Bayesian Filters for MDOF system identification.

• Shown that by increasing DOFs accuracy of filters decreases.

• Efficiency of POD for reduced order modelling (case of Pirelli tower).

• Shown that POMs given by POD are not robust to change of parameters         

(parameter identifiability).

• Algorithms proposed for dual estimation and reduced order modelling of damaging 

Structures.

• Shown good performances of proposed algorithms for reduced model identification and 

subspace update.



SUGGESTIONS FOR FUTHER CURRENT AND FUTURE RESEARCH 

ACTIVITIES
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• Bayesian Filters: assessment of the performance of evolutionary particle filters

• Assessment of the effect of nonlinear mechanisms in the construction of POD-based 

reduced-order models

• Suggested use of Artificial Neural Networks to learn the damage state                        

(e.g. identify damage based on the update of POMs)
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