Bayesian optimization of variable-size design space problems

Julien Pelamatti¹
in collaboration with Loïc Brevault², Mathieu Balesdent²,
El-Ghazali Talbi³, Yannick Guerin⁴

 1 EDF R&D 2 ONERA/DTIS 3 Inria Lille-Nord Europe 4 CNES, direction des lanceurs

1st of April 2021 UQSay seminars

1/48

Disclaimer

The presented work originates from a PhD thesis and a collaboration between ONERA, CNES and the University of Lille.

- Supervisors : Loïc Brevault & Mathieu Balesdent
- Research director : El-Ghazali Talbi
- Industrial supervisor : Yannick Guerin

More details can be found in the thesis manuscript: Mixed-variable Bayesian optimization : application to aerospace system design

Overview

Context & problem definition

Mixed-variable Bayesian optimization

Variable-size design space problems optimization

Context: Complex system design optimization

- Variable-Size Design Space Problem
 - Continuous variables (e.g., structure sizing, propellant mass, combustion chamber pressure)
 - Discrete variables (e.g., number of structural reinforcements, type of material, type of propellant)
 - Dimensional variables (e.g., architectural choices, presence of wings)

Context: Complex system design optimization

- Variable-Size Design Space Problem
 - Continuous variables (e.g., structure sizing, propellant mass, combustion chamber pressure)
 - Discrete variables (e.g., number of structural reinforcements, type of material, type of propellant)
 - Dimensional variables (e.g., architectural choices, presence of wings)
- Multiple constraints
 - Mission requirements
 - Safety requirements

Context: Complex system design optimization

- Variable-Size Design Space Problem
 - Continuous variables (*e.g.*, structure sizing, propellant mass, combustion chamber pressure)
 - Discrete variables (e.g., number of structural reinforcements, type of material, type of propellant)
 - Dimensional variables (e.g., architectural choices, presence of wings)
- Multiple constraints
 - Mission requirements
 - Safety requirements
- Computationally intensive objective and constraint functions
 - Finite Element Models
 - Multi-Disciplinary Analyses

 Presence of dimensional variables leads to dynamically varying optimization problems

- Presence of dimensional variables leads to dynamically varying optimization problems
- Dimensional variables variations can influence:

- Presence of dimensional variables leads to dynamically varying optimization problems
- Dimensional variables variations can influence:
 - The number and type of design variables
 - Presence of lifting surfaces
 - Type of propulsion (i.e., solid, liquid)

- Presence of dimensional variables leads to dynamically varying optimization problems
- Dimensional variables variations can influence:
 - The number and type of design variables
 - Presence of lifting surfaces
 - Type of propulsion (i.e., solid, liquid)
 - The number and the nature of the constraints

Problem statement

Variable-Size Design Space Problem (VSDSP)

$$\begin{aligned} & \text{min} & & f(\mathbf{x}, \mathbf{z}, \mathbf{w}) & & f: \mathbb{R}^{n_{\mathbf{x}}(\mathbf{w})} \times \prod_{d=1}^{n_{\mathbf{z}}(\mathbf{w})} F_{z_d} \times F_w \to F_f \subseteq \mathbb{R} \\ & \text{w.r.t.} & & \mathbf{x} \in F_{\mathbf{x}}(\mathbf{w}) \subseteq \mathbb{R}^{n_{\mathbf{x}}(\mathbf{w})} & & \text{Continuous variables} \\ & & \mathbf{z} \in \prod_{d=1}^{n_{\mathbf{z}}(\mathbf{w})} F_{z_d} & & & \text{Discrete variables} \\ & & \mathbf{w} \in F_w & & & \text{Dimensional variables} \\ & \text{s.t.} & & \mathbf{g}(\mathbf{x}, \mathbf{z}, \mathbf{w}) \leq 0 & & \\ & & g_i: F_{x_i}(\mathbf{w}) \times \prod_{d=1}^{n_{z_i}(\mathbf{w})} F_{z_{d_i}} \times F_w \to F_{g_i} \subseteq \mathbb{R} \\ & & \text{for} & & i = 1, \dots, n_g(\mathbf{w}) & & \end{aligned}$$

 Redefinition of the optimization problem through high-level variables (e.g., thrust) Frank 2016

- Redefinition of the optimization problem through high-level variables (e.g., thrust) Frank 2016
- Hierarchical decomposition of optimization problems Venter 2004, Roy 2017

- Redefinition of the optimization problem through high-level variables (e.g., thrust) Frank 2016
- Hierarchical decomposition of optimization problems Venter 2004, Roy 2017
- Heuristic algorithms
 - Hidden gene Genetic Algorithm Abdelkhalik 2013
 - Hidden gene Differential Evolution Abdelkhalik 2013
 - Structured-chromosome evolutionary algorithm Nyew 2015

- Redefinition of the optimization problem through high-level variables (e.g., thrust) Frank 2016
- Hierarchical decomposition of optimization problems Venter 2004, Roy 2017
- Heuristic algorithms
 - Hidden gene Genetic Algorithm Abdelkhalik 2013
 - Hidden gene Differential Evolution Abdelkhalik 2013
 - Structured-chromosome evolutionary algorithm Nyew 2015
- Mesh-search algorithms

 Audet 2000, Abramson 2007, Abramson 2009

- Redefinition of the optimization problem through high-level variables (e.g., thrust) Frank 2016
- Hierarchical decomposition of optimization problems Venter 2004, Roy 2017
- Heuristic algorithms
 - Hidden gene Genetic Algorithm Abdelkhalik 2013
 - Hidden gene Differential Evolution Abdelkhalik 2013
 - Structured-chromosome evolutionary algorithm Nyew 2015
- Mesh-search algorithms

 Audet 2000, Abramson 2007, Abramson 2009
- X Large number of function evaluations
- Inefficient constraint handling
- ⇒ Not viable for computationally intensive design problems

J. Pelamatti Bayesian optimization 7/48 J 7/48

Context

Proposed approach:

Surrogate Model Based Design Optimization (SMBDO)

more specifically

Bayesian Optimization (BO) Jones 1998

- ✓ Relying on computationally cheap surrogate models of the problem functions
- \checkmark Problem functions evaluated at the most promising locations of the search space
- ✓ Fast convergence towards the optimum neighborhood

Prediction of the modeled function at an unmapped location \mathbf{x}^* computed with the help of a Gaussian Process (GP) Y.

Prediction:
$$\hat{y}(\mathbf{x}^*) = \mu + \boldsymbol{\psi}^T(\mathbf{x}^*) \mathbf{K}^{-1}(\mathbf{y} - \mathbf{1}\mu)$$

Variance: $\hat{s}^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - \boldsymbol{\psi}^T(\mathbf{x}^*) \mathbf{K}^{-1} \boldsymbol{\psi}(\mathbf{x}^*)$

Prediction of the modeled function at an unmapped location \mathbf{x}^* computed with the help of a Gaussian Process (GP) Y.

Prediction:
$$\hat{y}(\mathbf{x}^*) = \mu + \boldsymbol{\psi}^T(\mathbf{x}^*) \mathbf{K}^{-1}(\mathbf{y} - \mathbf{1}\mu)$$

Variance: $\hat{s}^2(\mathbf{x}^*) = k(\mathbf{x}^*, \mathbf{x}^*) - \boldsymbol{\psi}^T(\mathbf{x}^*) \mathbf{K}^{-1} \boldsymbol{\psi}(\mathbf{x}^*)$

• Defined through a parameterized covariance $k(\cdot, \cdot)$

$$\mathbf{K}_{i,j} = k(\mathbf{x}^i, \mathbf{x}^j)$$

 $\mathbf{\psi}_i = k(\mathbf{x}^i, \mathbf{x}^*)$

9 / 48

 Original formulation of BO defined for purely continuous optimization problems.

- Original formulation of BO defined for purely continuous optimization problems.
- In order to adapt the algorithm for variable-size design space problems, it is necessary to:
 - Redefine the covariance kernel
 - Redefine the acquisition function definition and optimization

11 / 48

- Original formulation of BO defined for purely continuous optimization problems.
- In order to adapt the algorithm for variable-size design space problems, it is necessary to:
 - Redefine the covariance kernel
 - Redefine the acquisition function definition and optimization

A few discrete variable GP kernel parameterizations exist
 Never applied within the context of BO

Approach layout

Followed approach

- Modeling of mixed continuous/discrete functions
- Bayesian Optimization of constrained mixed continuous/discrete problems
- Bayesian Optimization of variable-size design space problems

Part 1: Mixed-variable modeling

Mixed-variable functions

$$f(\mathbf{x}, \mathbf{z}) \qquad f: \mathbb{R}^{n_x} \times \prod_{d=1}^{n_z} F_{z_d} \to F_f \subseteq \mathbb{R}$$
where
$$\mathbf{x} \in F_x \subseteq \mathbb{R}^{n_x}$$

$$\mathbf{z} \in \prod_{d=1}^{n_z} F_{z_d}$$

- Each discrete variable z_s is characterized by finite number of possible values: <u>Level</u>
- Discrete level combination: Category

- Each discrete variable z_s is characterized by finite number of possible values: **Level**
- Discrete level combination: Category

Levels:

```
\begin{aligned} & \mathsf{material} = \{\mathsf{steel}, \ \mathsf{aluminum}, \ \mathsf{titanium}\} \\ & \mathsf{propulsion} \ \mathsf{type} = \{\mathsf{solid}, \ \mathsf{liquid}, \ \mathsf{hybrid}\} \\ & \mathsf{number} \ \mathsf{of} \ \mathsf{boosters} = \{2,\!4\} \end{aligned}
```


Category:

{steel, hybrid propulsion, 2 boosters }

Example:
$$f(x, z) = \cos(x) + 0.5 \cdot z$$

with $z = \{0, 1\}, x \in [0, 7]$

Example:
$$f(x,z) = \cos(x) + 0.5 \cdot z$$

with
$$z = \{0, 1\}, x \in [0, 7]$$

Separate surrogate modeling

Example:
$$f(x,z) = \cos(x) + 0.5 \cdot z$$

with
$$z = \{0, 1\}, x \in [0, 7]$$

Separate surrogate modeling

Mixed surrogate modeling

Mixed-variable kernel

 Complex kernels can be composed through sums and products of valid kernels following the RKHS formalism

Mixed-variable kernel

- Complex kernels can be composed through sums and products of valid kernels following the RKHS formalism
- A mixed-variable kernel can be obtained by combining purely continuous and discrete kernels Roustant 2018:

$$k((\mathbf{x},\mathbf{z}),(\mathbf{x}',\mathbf{z}')) = k_c(\mathbf{x},\mathbf{x}') * k_d(\mathbf{z},\mathbf{z}')$$

Mixed-variable kernel

- Complex kernels can be composed through sums and products of valid kernels following the RKHS formalism
- A mixed-variable kernel can be obtained by combining purely continuous and discrete kernels Roustant 2018:

$$k((\mathbf{x},\mathbf{z}),(\mathbf{x}',\mathbf{z}')) = k_c(\mathbf{x},\mathbf{x}') * k_d(\mathbf{z},\mathbf{z}')$$

 Common continuous kernels, such as the squared-exponential, can be used:

$$k_c(\mathbf{x}^i, \mathbf{x}^j) = \exp\left(-\sum_{i=1}^{n_x} \theta_i |x_i - x_i'|^2\right)$$

Discrete kernel parameterizations

 Decomposing the discrete kernel into a product of uni-dimensional ones Pelamatti 2018:

$$k_d(\mathbf{z},\mathbf{z}') = \prod_{i=1}^{n_z} k_{d_i}(z_i,z_i')$$

Discrete kernel parameterizations

 Decomposing the discrete kernel into a product of uni-dimensional ones Pelamatti 2018:

$$k_d(\mathbf{z},\mathbf{z}') = \prod_{i=1}^{n_z} k_{d_i}(z_i,z_i')$$

A valid kernel can be constructed through the RKHS formalism

$$k(z,z') := \langle \phi(z), \phi(z') \rangle_{\mathscr{H}}$$

- $\phi(z): F_z \to \mathscr{H}$ Is a mapping function
- $\bullet \ \langle \cdot, \cdot \rangle_{\mathscr{H}}$ Is an inner product on \mathscr{H}

4 D > 4 P > 4 B > 4 B > B 9 Q P

Discrete kernel parameterizations

 Decomposing the discrete kernel into a product of uni-dimensional ones Pelamatti 2018:

$$k_d(\mathbf{z},\mathbf{z}') = \prod_{i=1}^{n_z} k_{d_i}(z_i,z_i')$$

A valid kernel can be constructed through the RKHS formalism

$$k(z,z') := \langle \phi(z), \phi(z') \rangle_{\mathscr{H}}$$

- $\phi(z): F_z \to \mathscr{H}$ Is a mapping function
- \bullet $\langle \cdot, \cdot \rangle_{\mathscr{H}}$ Is an inner product on \mathscr{H}

→ Different parameterizations can be considered

<u>►</u> 4 ≣ ▶ ≣ ♥ 9 Q (>

Discrete kernel parameterizations

Example: Compound symmetry kernel

$$k(z,z') = \delta(z,z') = \begin{cases} 1 & \text{if } z=z' \\ 0 & \text{if } z \neq z' \end{cases}$$

mapping:

$$z \in \{z_1, z_2, z_3, z_4\} \rightarrow \begin{cases} \phi(z = z_1) = [1, 0, 0, 0] \\ \phi(z = z_2) = [0, 1, 0, 0] \\ \phi(z = z_3) = [0, 0, 1, 0] \\ \phi(z = z_4) = [0, 0, 0, 1] \end{cases}$$

Inner product:

$$\langle \phi(z), \phi(z') \rangle = \phi(z)^T \phi(z') = \delta_z(z, z')$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Discrete kernel parameterizations

Alternatively:

- Finite number of categories
- Discrete kernel represented by a matrix T.
 - Symmetric
 - Positive-definite
- Each element $T_{i,j}$ contains the correlation between two categories of the problem $k_d(\mathbf{z}^i, \mathbf{z}^j)$
- Size of T proportional to the number of categories
- ullet Different parameterizations can be considered

[&]quot;Overview and comparison of gaussian process-based surrogate models for mixed continuous and discrete variables: application on aerospace design problems"

Mixed-variable modeling considerations

Hyperparameter scaling

- The number of hyperparameters characterizing each kernel varies as a function of the number of levels
- Trade-off between modeling complexity and available data

Part 2: Mixed-variable problems Bayesian optimization

$$\begin{array}{ll} \min & f(\mathbf{x},\mathbf{z}) & f: F_{x} \times F_{z} \to F_{f} \subseteq \mathbb{R} \\ \text{w.r.t.} & \mathbf{x} \in F_{x} \subseteq \mathbb{R}^{n_{x}} \\ & \mathbf{z} \in F_{z} \\ \text{s.t.} & \mathbf{g}(\mathbf{x},\mathbf{z}) \leq 0 \\ & g_{i}: F_{x_{i}} \times F_{z_{i}} \to F_{g_{i}} \subseteq \mathbb{R} \quad \text{ for } \quad i = 1,...,n_{g} \end{array}$$

21 / 48

Mixed-variable Bayesian Optimization

Extension of continuous Bayesian Optimization to the mixed-variable case

Popular acquisition functions can be used under the condition that the GP prediction is normally distributed

- Objective function: $Y(\mathbf{x}^*, \mathbf{z}^*) \sim \mathcal{N}\left(\hat{y}(\mathbf{x}^*, \mathbf{z}^*), \hat{s}^2(\mathbf{x}^*, \mathbf{z}^*)\right)$
- Constraints: $G(\mathbf{x}^*, \mathbf{z}^*) \sim \mathcal{N}\left(\hat{g}(\mathbf{x}^*, \mathbf{z}^*), \hat{s}_g^2(\mathbf{x}^*, \mathbf{z}^*)\right)$

Mixed-variable Bayesian Optimization

Extension of continuous Bayesian Optimization to the mixed-variable case

Popular acquisition functions can be used under the condition that the GP prediction is normally distributed

- Objective function: $Y(\mathbf{x}^*, \mathbf{z}^*) \sim \mathcal{N}\left(\hat{y}(\mathbf{x}^*, \mathbf{z}^*), \hat{s}^2(\mathbf{x}^*, \mathbf{z}^*)\right)$
- Constraints: $G(\mathbf{x}^*, \mathbf{z}^*) \sim \mathcal{N}\left(\hat{g}(\mathbf{x}^*, \mathbf{z}^*), \hat{s}_g^2(\mathbf{x}^*, \mathbf{z}^*)\right)$

Criteria validity can be ensured in the mixed search space through proper kernel parameterization

Acquisition functions

Objective function:

• Expected Improvement:

$$EI(\mathbf{x}^*, \mathbf{z}^*) = \mathbb{E}\left[\max\left(y_{min} - Y(\mathbf{x}^*, \mathbf{z}^*), 0\right)\right]$$

Constraints: Schonlau 2011

Probability of Feasibility:

$$PoF(\mathbf{x}^*,\mathbf{z}^*) = \prod_{i=1}^{n_g} \mathbb{P}(G_i(\mathbf{x}^*,\mathbf{z}^*) \leq 0)$$

Expected Violation:

$$EV_i(\mathbf{x}^*, \mathbf{z}^*) = \mathbb{E}\left[\max\left(0 - G_i(\mathbf{x}^*, \mathbf{z}^*), 0\right)\right]$$

Acquisition functions

Objective function:

• Expected Improvement:

$$EI(\mathbf{x}^*, \mathbf{z}^*) = \mathbb{E}\left[\max\left(y_{min} - Y(\mathbf{x}^*, \mathbf{z}^*), 0\right)\right]$$

Constraints: Schonlau 2011

• Probability of Feasibility:

$$PoF(\mathbf{x}^*,\mathbf{z}^*) = \prod_{i=1}^{n_g} \mathbb{P}(G_i(\mathbf{x}^*,\mathbf{z}^*) \leq 0)$$

Expected Violation:

$$EV_i(\mathbf{x}^*, \mathbf{z}^*) = \mathbb{E}\left[\max(0 - G_i(\mathbf{x}^*, \mathbf{z}^*), 0)\right]$$

Acquisition function must be optimized in the mixed search space

Optimization performance comparison

Augmented Branin function:

- 10 continuous variables
- 2 discrete variables (4 categories)
- 1 constraint

Variable-size design space optimization problem

Part 3: Variable-size design space problems

min
$$f(\mathbf{x}, \mathbf{z}, \mathbf{w})$$
 $f: \mathbb{R}^{n_x(\mathbf{w})} \times \prod_{d=1}^{n_z(\mathbf{w})} F_{z_d} \times F_w \to F_f \subseteq \mathbb{R}$

w.r.t. $\mathbf{x} \in F_x(\mathbf{w}) \subseteq \mathbb{R}^{n_x(\mathbf{w})}$ Continuous variables

 $\mathbf{z} \in \prod_{d=1}^{n_z(\mathbf{w})} F_{z_d}$ Discrete variables

 $\mathbf{w} \in F_w$ Dimensional variables

s.t. $\mathbf{g}(\mathbf{x}, \mathbf{z}, \mathbf{w}) \leq 0$
 $g_i: F_{x_i}(\mathbf{w}) \times \prod_{d=1}^{n_{z_i}(\mathbf{w})} F_{z_{d_i}} \times F_w \to F_{g_i} \subseteq \mathbb{R}$

for $i = 1, ..., n_g(\mathbf{w})$

Variable-size design space problems

Two alternative solutions are explored:

Variable-size design space problems

Two alternative solutions are explored:

Approach 1:

Separate optimization of several fixed-sized sub-problems:

- Budget allocation as a function of the surrogate model information
- Discarding of worst performing sub-problems

Variable-size design space problems

Two alternative solutions are explored:

Approach 1:

Separate optimization of several fixed-sized sub-problems:

- Budget allocation as a function of the surrogate model information
- Discarding of worst performing sub-problems

Approach 2:

Direct Bayesian optimization in the variable-size design space:

 Definition of a covariance kernel in the variable-size design space

Approach 1: Strategy for the Optimization of Mixed Variable-Size design space Problems (SOMVSP)

$$\begin{aligned} & \min \qquad f(\mathbf{x}, \mathbf{z}, \mathbf{w}_q) \qquad f: \mathbb{R}^{n_{\mathbf{x}}(\mathbf{w}_q)} \times \prod_{d=1}^{n_{\mathbf{z}}(\mathbf{w}_q)} F_{\mathbf{z}_d} \times F_w \to F_f \subseteq \mathbb{R} \\ & \text{w.r.t.} \qquad \mathbf{x} \in F_{\mathbf{x}}(\mathbf{w}_q) \subseteq \mathbb{R}^{n_{\mathbf{x}}(\mathbf{w}_q)} \\ & \mathbf{z} \in \prod_{d=1}^{n_{\mathbf{z}}(\mathbf{w}_q)} F_{\mathbf{z}_d} \\ & \text{s.t.} \qquad \mathbf{g}(\mathbf{x}, \mathbf{z}, \mathbf{w}_q) \leq 0 \\ & g_i: F_{\mathbf{x}_i}(\mathbf{w}_q) \times \prod_{d=1}^{n_{\mathbf{z}_i}(\mathbf{w}_q)} F_{\mathbf{z}_{d_i}} \times F_w \to F_{g_i} \subseteq \mathbb{R} \\ & \text{for} \qquad i = 1, ..., n_{\mathbf{g}}(\mathbf{w}_q) \end{aligned}$$

Separate optimization for every combinatorial value \mathbf{w}_{q} of \mathbf{w} \mathbf{w} \mathbf{v} \mathbf{v}

Step 1 : Predicted optimum range computation

For each sub-problem, the range between the best-case and worst-case feasible optimum is computed

• Optimization of $(\hat{y} - a\sigma)$ and $(\hat{y} + a\sigma)$

Step 2 : Sub-problem discarding

• A sub-problem can be discarded if the optimum ranges do not overlap

Step 3 : Computational budget allocation

 Each remaining sub-problem is allocated a computational budget as a function of the predicted feasible optimum and its total dimension

Step 3 : Computational budget allocation

 Each remaining sub-problem is allocated a computational budget as a function of the predicted feasible optimum and its total dimension

Step 4 : Optimization of remaining sub-problems

- Mixed-variable BO of each remaining sub-problem
- Number of infilled data samples proportional to the allocated computational budget

Step 3 : Computational budget allocation

 Each remaining sub-problem is allocated a computational budget as a function of the predicted feasible optimum and its total dimension

Step 4 : Optimization of remaining sub-problems

- Mixed-variable BO of each remaining sub-problem
- Number of infilled data samples proportional to the allocated computational budget

Iterated until exhaustion of the computational budget

30 / 48

Approach 2:

Direct BO of the variable-size design space problem

Necessity of defining a kernel in the variable-size design space:

$$k\left((\mathbf{x},\mathbf{z},\mathbf{w}),(\mathbf{x}',\mathbf{z}',\mathbf{w}')\right)$$

Computes the covariance between samples characterized by partially different sets of variables

Approach 2:

Direct BO of the variable-size design space problem

Necessity of defining a kernel in the variable-size design space:

$$k((\mathbf{x},\mathbf{z},\mathbf{w}),(\mathbf{x}',\mathbf{z}',\mathbf{w}'))$$

Computes the covariance between samples characterized by partially different sets of variables

2 proposed alternatives:

- Sub-Problem-Wise decomposition
- Dimensional Variable-Wise decomposition

Sub-Problem-Wise (SPW) decomposition kernel

Based on grouping the training samples as a function of the sub-problem they belong to

The kernel is decomposed in:

- Between sub-problems covariance
 - With respect to dimensional variables
- Within sub-problems covariance
 - With respect to continuous and discrete variables

$$k\left((\mathbf{x},\mathbf{z},w),(\mathbf{x}',\mathbf{z}',w')\right) = \sum_{q=1}^{N_p} k_{\mathsf{x}_q}(\mathbf{x}_q,\mathbf{x}_q') \cdot k_{\mathsf{z}_q}(\mathbf{z}_q,\mathbf{z}_q') \cdot \delta_q(w,w') + k_{\mathsf{w}}(w,w')$$

where

$$\delta_q(w,w') = egin{cases} 1 & ext{if} & w=w'=q \\ 0 & ext{else} \end{cases}$$

◆□ Þ ◆ 昼 Þ ◆ 臺 Þ → 臺 → 夕 (や)

$$K = \begin{bmatrix} W_1 + B_{1,1} & B_{1,2} & \dots & B_{1,N_p} \\ B_{2,1} & W_2 + B_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & B_{N_p-1,N_p} \\ B_{N_p,1} & \dots & B_{N_p,N_p-1} & W_{N_p} + B_{N_p,N_p} \end{bmatrix}$$

 W_q represents the within sub-problem covariance:

$$W_q = k_{\mathsf{x}_q}(\mathbf{x}_q, \mathbf{x}_q') \cdot k_{\mathsf{z}_q}(\mathbf{z}_q, \mathbf{z}_q')$$

 $B_{q,p}$ represents the covariance between the sub-problems q and p:

$$B_{q,p} = k_w(w = q, w' = p)$$

Dimensional Variable-Wise (DVW) decomposition kernelBased on grouping the variables as a function of the dimensional variable they depend on

A SPW approach can be relied on for each dimensional variable:

$$k\left((\mathbf{x},\mathbf{z},\mathbf{w}),(\mathbf{x}',\mathbf{z}',\mathbf{w}')\right) = \prod_{d=1}^{n_w} \left(\sum_{l=1}^{l_{w_d}} k_{x_{d_l}}(\mathbf{x}_{d_l},\mathbf{x}'_{d_l}) \cdot k_{z_{d_l}}(\mathbf{z}_{d_l},\mathbf{z}'_{d_l}) \cdot \delta_l(w_d,w'_d) + k_{w_d}(w_d,w'_d)\right)$$

- n_w number of dimensional variables
- I_{w_d} number of levels associated to w_d

4□ > 4□ > 4≡ > 4≡ > 900

- Both SPW and DVW kernels are constructed through sums and product of kernels
- Their validity is ensured as long as the single continuous and discrete kernels are valid

Acquisition function optimization

Negligible infill criterion cost \to the acquisition function can be separately optimized for each sub-problem:

$$\left\{ \mathbf{x}^n, \mathbf{z}^n, \mathbf{w}^n \right\} = \operatorname{argmax} \left\{ \begin{array}{ll} \operatorname{argmax} & \left(El(\mathbf{x}, \mathbf{z}, \mathbf{w}_q) \right) \\ \\ \operatorname{s.t.} & EV\left(g_c(\mathbf{x}, \mathbf{z}, \mathbf{w}_q) \right) < t_c \quad \text{for} \quad c = 1, \ldots, n_g(\mathbf{w}_q) \\ \\ \operatorname{w.r.t.} & \mathbf{x} \in F_x(\mathbf{w}_q) \subseteq \mathbb{R}^{n_x(\mathbf{w}_q)} \\ \\ \mathbf{z} \in \prod_{d=1}^{n_z(\mathbf{w}_q)} F_{z_d} \end{array} \right.$$

- √ Simpler implementation
- √ Straightforward handling of constraints

4□ > 4□ > 4 = > 4 = > = 90

Optimization performance comparison

Test-cases

Several analytical and engineering related test-cases of various complexity Pelamatti 2020 :

Analytical test-case

- 5 continuous variables
- 4 discrete variables
- 648 equivalent continuous problems

Engineering related test-case

- 14 continuous variables
- 12 discrete variables
- 19 constraints
- ullet \sim 30000 equivalent continuous problems

Variable-size design space Goldstein function

- 5 continuous variables
- 4 discrete variables
- 2 dimensional variables
- 8 sub-problems
- 648 equivalent continuous problems
- 1 constraint
- Initial data set size: 104 samples
- Number of infilled samples: 104

J. Pelamatti

- Both proposed algorithms provide faster convergence w.r.t., the reference approach
- Direct BO yields better results if compared to the budget allocation

Bayesian optimization 40/48 J 40 /48

 Budget allocation characterized by a larger result variance because of premature sub-problem discarding

41 / 48

Applications: Multi-stage launch-vehicle architecture

Sub-problem	SL	LL	SSS	SSL	SLL	LLL
N° continuous variables	6	4	12	10	8	6
N° discrete variables	5	3	10	8	6	4
N° discrete categories	48	32	27648	1152	192	64
N° constraints	8	3	19	14	9	4

- Both proposed algorithms provide faster convergence w.r.t., the reference approach
- Both proposed algorithms behave similarly

Budget allocation characterized by a larger result variance

 Two proposed approaches for the optimization of variable-size design space problems

- Two proposed approaches for the optimization of variable-size design space problems
- Considerably faster convergence if compared to the independent optimization of each sub-problem

- Two proposed approaches for the optimization of variable-size design space problems
- Considerably faster convergence if compared to the independent optimization of each sub-problem
- The variable-size design space BO provides faster convergence and more robust results if compared to the SOMVSP

- Two proposed approaches for the optimization of variable-size design space problems
- Considerably faster convergence if compared to the independent optimization of each sub-problem
- The variable-size design space BO provides faster convergence and more robust results if compared to the SOMVSP
- Black-box optimization algorithm

- Two proposed approaches for the optimization of variable-size design space problems
- Considerably faster convergence if compared to the independent optimization of each sub-problem
- The variable-size design space BO provides faster convergence and more robust results if compared to the SOMVSP
- Black-box optimization algorithm
- Promising for the preliminary design of computationally intensive variable-size design space problems

- Two proposed approaches for the optimization of variable-size design space problems
- Considerably faster convergence if compared to the independent optimization of each sub-problem
- The variable-size design space BO provides faster convergence and more robust results if compared to the SOMVSP
- Black-box optimization algorithm
- Promising for the preliminary design of computationally intensive variable-size design space problems
- Curse of dimension & Hyperparameter scaling

• Sensitivity analysis to identify most influential variables -> How?

Application to multi-fidelity problems

- Application to multi-fidelity problems
- Extension of proposed methods to multi-objective optimization

- Application to multi-fidelity problems
- Extension of proposed methods to multi-objective optimization
- Integration of the proposed methods within MDO framework

- Application to multi-fidelity problems
- Extension of proposed methods to multi-objective optimization
- Integration of the proposed methods within MDO framework
- Coupling of the proposed methods with local optimization algorithms for solution refinement

References

- D. R. Jones, M. Schonlau, and W. J. Welch. Efficient Global Optimization of Expensive Black-Box Functions. Journal of Global Optimization, 1998.
- O. Roustant, E. Padonou, Y. Deville, A. Clément, G. Perrin, J. Giorla, and H. P. Wynn. Group kernels for Gaussian process metamodels with categorical inputs. working paper or preprint, arXiv:1802.02368, 2018.
- Q. Zhou, P. Z. G. Qian, and S. Zhou. A Simple Approach to Emulation for Computer Models With Qualitative and Quantitative Factors. Technometrics, 2011.
- M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series, 1998.
- C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT Press, 2006.
- J. Pinheiro and D. M. Bates. Unconstrained parametrizations for variance-covariance matrices. Statistics and Computing, 1996
- J. Pelamatti. L. Brevault, M. Balesdent, E.-G. Talbi, and Y. Guerin. Overview and comparison of Gaussian process-based surrogate models for mixed continuous and discrete variables, application on aerospace design problems (Publication pending). High-performance simulation based optimization, Springer series on Computational Intelligence, 2018.
- J. Pelamatti, L. Brevault, M. Balesdent, E.-G. Talbi, and Y. Guerin, Efficient global optimization of constrained mixed variable problems. Journal of Global Optimization, 2018.
- Y. Zhang, S. Tao, W. Chen et D. W. Apley, A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors, pp. 1-36 (2018).
- J. Pelamatti, L. Brevault, M. Balesdent, E.-G. Talbi, and Y. Guerin. Bayesian optimization of variable-size design space problems. Optimization & Engineering, 2020.
- Hutter, F. Automated configuration of algorithms for solving hard computational problems. Doctoral dissertation. University of British Columbia, 2009. 4 0 7 4 60 7 4 5 7 4 5 7 5