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Overview

1 Context & problem definition

2 Mixed-variable Bayesian optimization

3 Variable-size design space problems optimization
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Context: Complex system design optimization

Variable-Size Design Space Problem
Continuous variables (e.g., structure sizing, propellant mass,
combustion chamber pressure)
Discrete variables (e.g., number of structural reinforcements,
type of material, type of propellant)
Dimensional variables (e.g., architectural choices, presence of
wings)

Multiple constraints

Mission requirements
Safety requirements

Computationally intensive objective and constraint functions

Finite Element Models
Multi-Disciplinary Analyses
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Context: Variable-Size Design Space Problem

Presence of dimensional variables leads to
dynamically varying optimization problems

Dimensional variables variations can
influence:

The number and type of design variables

Presence of lifting surfaces
Type of propulsion (i.e., solid, liquid)

The number and the nature of the
constraints
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Context: Variable-Size Design Space Problem

Presence of dimensional variables leads to
dynamically varying optimization problems

Dimensional variables variations can
influence:

The number and type of design variables
Presence of lifting surfaces
Type of propulsion (i.e., solid, liquid)

The number and the nature of the
constraints
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constraints
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Problem statement

Variable-Size Design Space Problem (VSDSP)

min f (x,z,w) f : Rnx (w)×
nz(w)

∏
d=1

Fzd ×Fw → Ff ⊆ R

w.r.t. x ∈ Fx(w)⊆ Rnx (w) Continuous variables

z ∈
nz(w)

∏
d=1

Fzd Discrete variables

w ∈ Fw Dimensional variables
s.t. g(x,z,w)≤ 0

gi : Fxi (w)×
nzi (w)

∏
d=1

Fzdi
×Fw → Fgi ⊆ R

for i = 1, ...,ng(w)
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Context: Existing approaches
Redefinition of the optimization problem through high-level
variables (e.g., thrust) Frank 2016

Hierarchical decomposition of optimization problems Venter 2004, Roy 2017

Heuristic algorithms

Hidden gene Genetic Algorithm Abdelkhalik 2013

Hidden gene Differential Evolution Abdelkhalik 2013

Structured-chromosome evolutionary algorithm Nyew 2015

Mesh-search algorithms Audet 2000, Abramson 2007, Abramson 2009

7 Large number of function evaluations
7 Inefficient constraint handling

⇒⇒⇒ Not viable for computationally intensive design problems
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Context

Proposed approach:

Surrogate Model Based Design Optimization (SMBDO)

more specifically

Bayesian Optimization (BO) Jones 1998

3 Relying on computationally cheap surrogate models of the problem
functions
3 Problem functions evaluated at the most promising locations of
the search space
3 Fast convergence towards the optimum neighborhood
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Bayesian Optimization

Prediction of the modeled function at an unmapped location x∗
computed with the help of a Gaussian Process (GP) Y .

Prediction: ŷ(x∗) = µ +ψψψ
T (x∗)K−1(y−1µ)

Variance: ŝ2(x∗) = k(x∗,x∗)−ψψψ
T (x∗)K−1

ψψψ(x∗)

Defined through a
parameterized covariance
kernel k(·, ·)

Ki ,j = k
(
xi ,xj)

ψψψ i = k
(
xi ,x∗

)
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Bayesian Optimization
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Bayesian Optimization

Original formulation of BO defined for
purely continuous optimization problems.

In order to adapt the algorithm for variable-size design space
problems, it is necessary to:

1 Redefine the covariance kernel
2 Redefine the acquisition function definition and

optimization

A few discrete variable GP kernel parameterizations exist
Never applied within the context of BO
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Approach layout

Followed approach

1 Modeling of mixed continuous/discrete functions

2 Bayesian Optimization of constrained mixed
continuous/discrete problems

3 Bayesian Optimization of variable-size design space
problems
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Part 1: Mixed-variable modeling

Mixed-variable functions

f (x,z) f : Rnx ×
nz

∏
d=1

Fzd → Ff ⊆ R

where x ∈ Fx ⊆ Rnx

z ∈
nz

∏
d=1

Fzd

J. Pelamatti Bayesian optimization 13/48 J 13 / 48



Mixed-variable modeling
Each discrete variable zs is characterized by finite number of
possible values: Level
Discrete level combination: Category

Levels:
material = {steel, aluminum, titanium}
propulsion type = {solid, liquid, hybrid}
number of boosters = {2,4}

⇓
Category:
{steel, hybrid propulsion, 2 boosters }

J. Pelamatti Bayesian optimization 14/48 J 14 / 48



Mixed-variable modeling
Each discrete variable zs is characterized by finite number of
possible values: Level
Discrete level combination: Category

Levels:
material = {steel, aluminum, titanium}
propulsion type = {solid, liquid, hybrid}
number of boosters = {2,4}

⇓
Category:
{steel, hybrid propulsion, 2 boosters }

J. Pelamatti Bayesian optimization 14/48 J 14 / 48



Mixed-variable modeling

Example: f (x ,z) = cos(x)+0.5 · z

with z = {0,1}, x ∈ [0,7]

Separate surrogate modeling
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Mixed-variable kernel
Complex kernels can be composed through sums and products
of valid kernels following the RKHS formalism

A mixed-variable kernel can be obtained by combining purely
continuous and discrete kernels Roustant 2018 :

k
(
(x,z),(x′,z′)

)
= kc(x,x′)∗kd(z,z′)

Common continuous kernels, such as the squared-exponential,
can be used:

kc(xi ,xj) = exp

(
−

nx

∑
i=1

θi |xi − x ′
i |2
)
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Discrete kernel parameterizations
Decomposing the discrete kernel into a product of
uni-dimensional ones Pelamatti 2018 :

kd(z,z′) =
nz

∏
i=1

kdi (zi ,z ′i )

A valid kernel can be constructed through the RKHS
formalism

k(z,z ′) := 〈φ(z),φ(z ′)〉H

φ(z) : Fz → H Is a mapping function
〈·, ·〉H Is an inner product on H

→ Different parameterizations can be considered
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Discrete kernel parameterizations
Example: Compound symmetry kernel

k(z,z ′) = δ (z,z ′) =
{

1 if z = z ′

0 if z 6= z ′

mapping:

z ∈ {z1,z2,z3,z4}→


φ(z = z1) = [1,0,0,0]
φ(z = z2) = [0,1,0,0]
φ(z = z3) = [0,0,1,0]
φ(z = z4) = [0,0,0,1]

Inner product:

〈φ(z),φ(z ′)〉= φ(z)T φ(z ′) = δz(z,z ′)

J. Pelamatti Bayesian optimization 18/48 J 18 / 48



Discrete kernel parameterizations
Alternatively:

Finite number of categories

Discrete kernel represented by a matrix T.
Symmetric
Positive-definite

Each element Ti ,j contains the correlation between two
categories of the problem kd(zi ,zj)

Size of T proportional to the number of categories

→ Different parameterizations can be considered

”Overview and comparison of gaussian process-based surrogate models for mixed
continuous and discrete variables: application on aerospace design problems”
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Mixed-variable modeling considerations
Hyperparameter scaling

The number of hyperparameters characterizing each kernel
varies as a function of the number of levels
Trade-off between modeling complexity and available data

2 4 6 8 10 12
N  of levels

0

20

40

60

80

100

120

140

N
 o

f h
yp

er
pa

ra
m

et
er

s

CS
LV
HS
CN

J. Pelamatti Bayesian optimization 20/48 J 20 / 48



Part 2: Mixed-variable
problems Bayesian optimization

min f (x,z) f : Fx ×Fz → Ff ⊆ R
w.r.t. x ∈ Fx ⊆ Rnx

z ∈ Fz

s.t. g(x,z)≤ 0
gi : Fxi ×Fzi → Fgi ⊆ R for i = 1, ...,ng
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Mixed-variable Bayesian Optimization

Extension of continuous Bayesian Optimization to the
mixed-variable case

Popular acquisition functions can be used under the condition that
the GP prediction is normally distributed

Objective function: Y (x∗,z∗)∼ N
(
ŷ(x∗,z∗), ŝ2(x∗,z∗)

)
Constraints: G(x∗,z∗)∼ N

(
ĝ(x∗,z∗), ŝ2

g(x∗,z∗)
)

Criteria validity can be ensured in the mixed search space through
proper kernel parameterization
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Acquisition functions
Objective function:

Expected Improvement:

EI(x∗,z∗) = E [max(ymin −Y (x∗,z∗),0)]

Constraints : Schonlau 2011

Probability of Feasibility:

PoF (x∗,z∗) =
ng

∏
i=1

P(Gi(x∗,z∗)≤ 0)

Expected Violation:

EVi(x∗,z∗) = E [max(0−Gi(x∗,z∗),0)]

Acquisition function must be optimized in the mixed search space
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Optimization performance comparison
Augmented Branin function:

10 continuous variables
2 discrete variables (4 categories)
1 constraint
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Variable-size design space optimization problem

Part 3: Variable-size design space problems

min f (x,z,w) f : Rnx (w)×
nz(w)

∏
d=1

Fzd ×Fw → Ff ⊆ R

w.r.t. x ∈ Fx(w)⊆ Rnx (w) Continuous variables

z ∈
nz(w)

∏
d=1

Fzd Discrete variables

w ∈ Fw Dimensional variables
s.t. g(x,z,w)≤ 0

gi : Fxi (w)×
nzi (w)

∏
d=1

Fzdi
×Fw → Fgi ⊆ R

for i = 1, ...,ng(w)
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Variable-size design space problems

Two alternative solutions are explored:

Approach 1:
Separate optimization of several
fixed-sized sub-problems:

Budget allocation as a
function of the surrogate
model information

Discarding of worst
performing sub-problems

Approach 2:
Direct Bayesian optimization in
the variable-size design space:

Definition of a covariance
kernel in the variable-size
design space
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SOMVSP
Approach 1:
Strategy for the Optimization of Mixed
Variable-Size design space Problems (SOMVSP)

min f (x,z,wq) f : Rnx (wq)×
nz (wq)

∏
d=1

Fzd ×Fw → Ff ⊆ R

w.r.t. x ∈ Fx (wq)⊆ Rnx (wq)

z ∈
nz (wq)

∏
d=1

Fzd

s.t. g(x,z,wq)≤ 0

gi : Fxi (wq)×
nzi (wq)

∏
d=1

Fzdi
×Fw → Fgi ⊆ R

for i = 1, ...,ng(wq)

Separate optimization for every combinatorial value wq of w
J. Pelamatti Bayesian optimization 27/48 J 27 / 48



SOMVSP
Step 1 : Predicted optimum range computation
For each sub-problem, the range between the best-case and
worst-case feasible optimum is computed
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SOMVSP
Step 2 : Sub-problem discarding
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A sub-problem can be discarded if the optimum ranges do not
overlap
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SOMVSP
Step 3 : Computational budget allocation

Each remaining sub-problem is allocated a computational
budget as a function of the predicted feasible optimum and its
total dimension

Step 4 : Optimization of remaining sub-problems
Mixed-variable BO of each remaining sub-problem
Number of infilled data samples proportional to the allocated
computational budget

	 Iterated until exhaustion of the computational budget
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Variable-size design space BO

Approach 2:
Direct BO of the variable-size design space problem

Necessity of defining a kernel in the variable-size design space:

k
(
(x,z,w),(x′,z′,w′)

)
Computes the covariance between samples characterized by partially
different sets of variables

2 proposed alternatives:
1 Sub-Problem-Wise decomposition
2 Dimensional Variable-Wise decomposition
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Variable-size design space BO

Sub-Problem-Wise (SPW) decomposition kernel
Based on grouping the training samples as a function of the
sub-problem they belong to

The kernel is decomposed in:
Between sub-problems covariance

With respect to dimensional variables
Within sub-problems covariance

With respect to continuous and discrete variables

k
(
(x,z,w),(x′,z′,w ′)

)
=

Np

∑
q=1

kxq(xq,x′q) ·kzq(zq,z′q) ·δq(w ,w ′)+kw (w ,w ′)

where

δq(w ,w ′) =

{
1 if w = w ′ = q
0 else

J. Pelamatti Bayesian optimization 32/48 J 32 / 48



Variable-size design space BO

K =


W1 +B1,1 B1,2 . . . B1,Np

B2,1 W2 +B2,2
. . . ...

... . . . . . . BNp−1,Np
BNp ,1 . . . BNp ,Np−1 WNp +BNp ,Np


Wq represents the within sub-problem covariance:

Wq = kxq(xq,x′q) ·kzq(zq,z′q)

Bq,p represents the covariance between the sub-problems q and p:

Bq,p = kw (w = q,w ′ = p)
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Variable-size design space BO

Dimensional Variable-Wise (DVW) decomposition kernel
Based on grouping the variables as a function of the dimensional
variable they depend on

A SPW approach can be relied on for each dimensional variable:

k
(
(x,z,w),(x′,z′,w′)

)
=

nw

∏
d=1

 lwd

∑
l=1

kxdl
(xdl ,x

′
dl
) ·kzdl

(zdl ,z
′
dl
) ·δl(wd ,w ′

d)+kwd (wd ,w ′
d)


nw number of dimensional variables
lwd number of levels associated to wd
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Variable-size design space BO

Both SPW and DVW kernels are constructed through sums and
product of kernels

Their validity is ensured as long as the single continuous and
discrete kernels are valid
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Variable-size design space BO
Acquisition function optimization
Negligible infill criterion cost → the acquisition function can be
separately optimized for each sub-problem:

{xn,zn,wn}=argmax



argmax (EI(x,z,wq))

s.t. EV (gc(x,z,wq))< tc for c = 1, ...,ng(wq)

w.r.t. x ∈ Fx (wq)⊆ Rnx (wq)

z ∈ ∏
nz (wq)
d=1 Fzd


for q = 1, . . . ,Np

X Simpler implementation

X Straightforward handling of constraints
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Optimization performance comparison
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Test-cases

Several analytical and engineering related test-cases of various
complexity Pelamatti 2020 :
Analytical test-case

5 continuous variables
4 discrete variables
648 equivalent continuous problems

Engineering related test-case
14 continuous variables
12 discrete variables
19 constraints
∼ 30000 equivalent continuous problems
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Applications

Variable-size design space Goldstein
function

5 continuous variables
4 discrete variables
2 dimensional variables
8 sub-problems
648 equivalent continuous problems
1 constraint
Initial data set size: 104 samples
Number of infilled samples: 104
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Applications
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Optimum

Both proposed algorithms provide faster convergence w.r.t., the
reference approach
Direct BO yields better results if compared to the budget
allocation
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Applications
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Applications: Multi-stage launch-vehicle
architecture

SL LL SSL SLL LLL SSS
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Sub-problem SL LL SSS SSL SLL LLL
N◦ continuous variables 6 4 12 10 8 6
N◦ discrete variables 5 3 10 8 6 4
N◦ discrete categories 48 32 27648 1152 192 64
N◦ constraints 8 3 19 14 9 4
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Applications
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Both proposed algorithms provide faster convergence w.r.t., the
reference approach
Both proposed algorithms behave similarly
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Applications
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VSDSP optimization synthesis

Two proposed approaches for the optimization of variable-size
design space problems

Considerably faster convergence if compared to the independent
optimization of each sub-problem
The variable-size design space BO provides faster convergence
and more robust results if compared to the SOMVSP
Black-box optimization algorithm
Promising for the preliminary design of computationally intensive
variable-size design space problems

7 Curse of dimension & Hyperparameter scaling
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Perspectives

Sensitivity analysis to identify most influential variables -> How?

Application to multi-fidelity problems

Extension of proposed methods to multi-objective optimization

Integration of the proposed methods within MDO framework

Coupling of the proposed methods with local optimization
algorithms for solution refinement
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