
Amaya Nogales Gómez
Luc Pronzato

Maria-João Rendas
I3S, Sophia Antipolis

Incremental space-filling design based
on coverings and spacings: improving

upon low discrepancy sequences
UQSay

March 18th, 2021



Objective

Find algorithmic constructions to define space-filling designs.

Given a compact subset X ⊂ Rd, we say that a finite subset Zn ⊂X is
a space-filling design if Zn fills X evenly.
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Objective

Ultimate aim

The definition of incremental algorithms that generate sequences
Xn with small optimality gap, i.e., with a small increase in the
maximum distance between points of X and the elements of Xn

with respect to the optimal solution X?
n.

Incremental space-filling design based on coverings and spacings: improving upon low
discrepancy sequences, Nogales-Gómez, A., Pronzato, L., Rendas, M.J. Submitted,
2020. https://hal.archives-ouvertes.fr/hal-02987983v1
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Basic definitions and notation
X ⊂ Rd, compact: the hypercube Cd = [0, 1]d as typical example.
Zn = {z1, . . . , zn} a n-point design in X .
d(x,Zn) = mini=1,...,n ‖x− zi‖, for x ∈ X with ‖ · ‖ the `2 norm.

Covering radius

CR(Zn) = CRX (Zn) = max
x∈X

d(x,Zn)

Packing radius

PR(Zn) = min
zi 6=zj∈Zn

1
2
‖zi−zj‖ (n ≥ 2)

Mesh-ratio

ρ(Zn) =
CR(Zn)
PR(Zn)

(n ≥ 2)
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Submodularity

XC a finite set with C elements.
f : 2XC → R a set-function.

Diminishing returns property

A set-function f : 2XC → R is submodular if and only if

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B),

∀A ⊂ B ∈ 2XC , x ∈ XC \B

2nd order diminishing returns property

f(A ∪ {x})− f(A) ≥ f(A ∪ {x,y})− f(A ∪ {y}),
∀A,B ∈ 2XC , x,y ∈ XC \A
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Greedy Algorithm

Greedy Algorithm

1: set X = ∅
2: while |X| < k do
3: find x in XC such that f(X ∪ {x}) is maximal
4: X← X ∪ {x}
5: end while
6: return X
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Theorem (Nemhauser, Wolsey & Fisher, 1978)

Let f be a non-decreasing submodular function, then, for any given
k, 1 ≤ k ≤ C, the Greedy Algorithm returns a set X with bounded
optimality gap

f? − f(X)
f? − f(∅) ≤ (1− 1/k)k ≤ 1/e < 0.3679 , (1)

where f? = maxX⊂XC :|X|≤k f(X) and e = exp(1).

6/31



Lazy Greedy Algorithm

Improvement of f , δX(x) = f(X ∪ {x})− f(X) ≥ 0
max f(Xn ∪ {x})⇔ max δXn

(x)
By construction, Xi ⊂ Xn for all i < n. Then, since f is
submodular, for all i < n, δXn

(x) ≤ δXi
(x)

First iteration: compute all δX0(x) for all x ∈ XC , and define
it as the current upper bound δ(x).

At iteration k: Initialize Lk−1 = XC \Xk−1
And let x??k be its member with largest δ(x).
While Lk−1 6= ∅:
update δ(x??k ) = δXk−1(x??k ),
remove from Lk−1 all x s.t. δ(x) ≤ δ(x??k ).
When Lk−1 = ∅, update Xk−1 into Xk = Xk−1 ∪ {x??k }.
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Covering measures

For any r ≥ 0, we define the covering measure of Zn by

Φr(Zn) = vol{X ∩ [∪ni=1B(zi, r)]}
vol(X ) .

For a given Zn, consider also the function r ∈ R+ → FZn
(r) = Φr(Zn).

FZn
is non-decreasing, FZn

(0) = 0 and FZn
(r) = 1 for any r ≥ CR(Zn).

If X is distributed with the uniform probability measure µ on X , we
have

Prob {X ∈ ∪ni=1B(zi, r)} = Prob{d(X,Zn) ≤ r} =
∫
{x∈X : d(x,Zn)≤r}

µ(dx) = FZn (r) , (2)

and FZn
is the cumulative distribution function (c.d.f.) of the random

variable d(X,Zn), supported on [0,CR(Zn)].
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Integrated covering measure

fZn
the probability density function (p.d.f.) corresponding to FZn

.
For any b, B, 0 ≤ b < B, q > −1 and Zn 6= ∅:

Integrated covering measure

Ib,B,q(Zn) =
∫ B

b

rq FZn (r) dr

=
1

q + 1

{[
Bq+1FZn (B)− bq+1FZn (b)

]
−
∫ B

b

rq+1 fZn (r) dr
}
,

with Ib,B,q(Zn) = 0 for Zn = ∅.

The set function Ib,B,q : Zn → Ib,B,q(Zn) is non-decreasing and
submodular, and satisfies Ib,B,q(∅) = 0.

Maximizing I0,B,q(Zn) for B ≥ diam(X )↔ minimizing
∫ B

0 rq+1 fZn (r) dr
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Integrated covering measure (continuation)

(∫ B

0
rq+1 fZn (r) dr

)1/(q+1)

= Eq+1(Zn)

Eq+1(Zn)→ CR(Zn) as q →∞

For B and q large enough, maximizing I0,B,q(Zn) should therefore
provide designs with small values of CR(Zn).

Greedy maximization of I0,B,q(Zn) ↔ greedy minimization of Eq+1(Zn).
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Choice of b and B
Choices of b and B relate to lower and upper bounds on CR?n, the
optimal (minimum) value of CR(Zn), for designs of size n1 and n2, for
n ∈ {n1, n1 + 1, . . . , n2}.

Since the n balls B(xi,CR?n) centered at the optimal design points cover X ,
nVd(CR?n)d ≥ vol(X ) = 1, with Vd the volume of the d-dimensional unit ball
B(0, 1), Vd = πd/2/Γ(d/2 + 1).

CR?n ≥ R?(n, d) = (nVd)−1/d .

X can be covered by md hypercubes with side 1/m → by md balls with
radius

√
d/(2m). Taking m = bn1/dc, we have n ≥ md and:

CR?n ≤ CR?
md ≤ R?(n, d) =

√
d

2 bn1/dc
.

A reasonable choice when n ∈ [n1, n2] is then b = b? = R?(n2, d) and
B = B? = R?(n1, d). 11/31



Implementation: ÎAb,B,q(Zn)

To evaluate Ib,B,q(Zn), we substitute the empirical c.d.f. F̂Zn ,
obtained by replacing µ by the uniform measure µQ supported on a
finite subset XQ of X .
XQ = {x(1),x(2), . . . ,x(Q)}, well spread over X .
dj(Zn) = d(x(j),Zn), j = 1, . . . , Q.
dj(Zn) = min{max{dj(Zn), b}, B}, j = 1, . . . , Q.
dj:Q the dj sorted by increasing values, with
d1:Q(Zn) ≤ d2:Q(Zn) ≤ · · · ≤ d2:Q(Zn) ≤ dQ+1:Q(Zn) = B,

we obtain:

Ib,B,q(Zn) ≈ ÎAb,B,q(Zn) = 1
Q(q + 1)

Q∑
j=1

j
[
d
q+1
j+1:Q(Zn) − d

q+1
j:Q (Zn)

]

12/31



An alternative approach: ÎBb,B,q(Zn)

Discrete approximation

Taking m radii ri well spread over [b, B], with b = r1 < r2 <
· · · < rm = B, the trapezoidal rule gives

Ib,B,q(Zn) ≈ ÎBb,B,q(Zn) =
m−1∑
i=1

rqi+1 F̂Zn (ri+1) + rqi F̂Zn (ri)
2

(ri+1 − ri) .

When the ri are regularly spaced, with ri+1− ri = δr for all i, the
expression simplifies into

ÎBb,B,q(Zn) = δr

[
rq1 F̂Zn(r1) + rqm F̂Zn(rm)

2 +
m−1∑
i=2

rqi F̂Zn
(ri)
]
.
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Approximations ÎAb,B,q and ÎBb,B,q

We compare the designs obtained by maximizing ÎAb,B,q(Zn) and
ÎBb,B,q(Zn), with m = 100, in terms of CR(Zn).
The set XC of candidate points coincides with XQ and corresponds
to the first 211 = 2 048 elements of Sobol’ sequence in X = Cd.
We consider the two cases d = 2 and d = 10 and take q = 5.
The covering radius CR(Zn) is approximated by CRXN

(Zn), with
XN given by 218 points of a scrambled Sobol’ sequence
complemented by a 2d full factorial design, which gives N = 262 176
for d = 5 and N = 263 168 for d = 10.
We consider the two cases where b = b? = R?(n2, d) and
B = B? = R?(n1, d), with n1 = 50 and n2 = 100 and b = 0,
B =

√
d/2
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Computational times of the greedy and lazy-greedy
maximizations of ÎA0,

√
d/2,5(Zn) and ÎB0,

√
d/2,5(Zn).

Linear increase of computational cost with n for the greedy version:
acceleration provided by the lazy-greedy implementation.
For the lazy-greedy algorithm, maximization of ÎB0,√d/2,5(Zn) (with
m = 100� Q) is faster than maximization of ÎA0,√d/2,5(Zn).
The effect of d is negligible.
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Effect of b,B
We apply Greedy algorithm to the maximization of ÎAb,B,q(Zn).
XC = XQ corresponds to the first 210 = 1 024 elements of Sobol’
sequence in X = C2.
We compare b = 0, B =

√
d/2 and b = R?(n2, d), B = R?(n1, d)

for q = 5, with n1 = 10 and n2 = 20.

Figure: CR(Xn) (red solid line and F), CRXQ (Xn) (black dashed curve and
◦), CR?n (blue dashed curve and +), empirical value of Eq+1(Xn) (magenta
curve and O), for Xn obtained by greedy maximization of ÎAb,B,q(Xn).
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Effect of b,B

Figure: CR(Xn) (red solid line and F), CRXQ
(Xn) (black dashed curve and ◦), CR?

n (blue dashed curve and +), empirical

value of Eq+1(Xn) (magenta curve and O).

Figure: X20 and circles centered at design points with radius CR(X20); the
order of selection of the points is indicated.
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Effect of q

Figure: CR(Xn) (red solid line and F), CRXQ (Xn) (black dashed curve and
◦), CR?n (blue dashed curve and +), empirical value of Eq+1(Xn) (magenta
curve and O), for Xn obtained by greedy maximization of ÎAb,B,q(Xn).

The approximation Eq+1(Xn) is closer to CR(Xn) for q = 50, but
when q = 5 CR(Xn) is smaller for n ∈ {1, 2, 3, 7, . . . , 12, 14, . . . , 20}.
Best performances are not necessarily achieved with high values of q.
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Maximization of ÎAb,B,q and ÎBb,B,q: covering radii and
computational times

Figure: ÎAb?,B?,5 (red F), ÎBb?,B?,5 (blue O), ÎA0,
√
d/2,5 (magenta ◦) and

ÎB0,
√
d/2,5 (black ×); m = 100 for ÎBb,B,q, C = Q = 211.

ÎAb?,B?,5 ÎA
0,
√
d/2,5

ÎBb?,B?,5 ÎB
0,
√
d/2,5

d = 2 2.4 5.3 0.8 2.3
d = 5 3.8 5.2 1.4 2.2
d = 10 4.1 4.1 1.8 1.8
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Coffee-house design
Coffee-house designs

Obtained by greedy maximization of PR(Zn) for n > 1.
x1 is usually the Chebyshev center of X .
xn+1 ∈ Arg maxx∈X d(x,Xn).

The simple greedy coffee-house construction ensures:
1
2 ≤

CR?n
CR(Xn) ≤ 1 (n ≥ 1) and 1

2 ≤
PR(Xn)

PR?n
≤ 1 (n ≥ 2) ,

with PR?n, CR?n the optimal (maximum) value of PR(Zn), CR(Zn)
respectively.

Clustering to minimize the maximum intercluster distance, Gonzalez, T., Theoretical Computer Science, 38: 293-306, 1985. 20/31



Enhancing the coffee-house design

Places design points on the boundary of X : not favourable to
obtain low CR(Zn).
We consider a modified method that forces design points to stay
away from the boundary of X .
Parameter β that controls the ratio between the distance to the
design and the distance to the boundary ∂X of the compact set X .

β-spacing of Zn, for β > 0

Sβ(Zn) = sup
{
r : ∃x ∈ X such that d(x,Zn) ≥ r and d(x, ∂X ) ≥

r

β

}
=

sup
x∈X

Dβ(x,Zn) ,

where Dβ(x,Zn) = min {d(x,Zn) , β d(x, ∂X )} , x ∈ X , and
d(x, ∂X ) = infz∈∂X ‖x− z‖.
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Enhancing the coffee-house design (continuation)

The coffee-house algorithm can be extended to:

The greedy maximization of Pβ(Zn), β > 0, where

Pβ(Zn) = min
zi 6=zj∈Zn

1
2

min {‖zi − zj‖ , β d(zi, ∂X )}

using xn+1 ∈ Arg maxx∈X Dβ(x,Xn) for any n ≥ 1, where
Dβ(x,Zn) = min {d(x,Zn) , β d(x, ∂X )} , x ∈ X , and
d(x, ∂X ) = infz∈∂X ‖x− z‖.
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Choice of β

Depending on n2, such that x2 be at distance R?(n2, d) from a vertex
of X , with R?(n2, d) the lower bound on CR?n2 .

This implies d(x2, ∂X ) = R?(n2, d)/
√
d = ‖x2 − x1‖/β and gives

β = β?(n2, d) =
d

2R?(n2, d)
−
√
d .
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Enhancing the coffee-house design (continuation)

Figure: Edgephobe compromise distance Dβ(x, Zn) for a 4-point design (yellow
stars) in X = [0, 1]2.
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Numerical study
We compare the performance of

Designs XA
n that incrementally maximize the covering

measure ÎAb?,B?,q(Xn).
Nested subsequences XH

n and XS
n of low discrepancy Halton

and Sobol’ sequences.
XCH,β
n obtained by greedy maximization of the criteria

Pβ(Zn) based on pairwise distances.
Incremental constructions:

XVD
n , Wynn’s Vertex-Direction method1.

XRD
n , a relaxed version2 of the covering criterion.

1The sequential generation of D-optimum experimental designs, Wynn, H., Annals of Math. Stat., 41: 1655-1664, 1970.

2An algorithm for the construction of spatial coverage designs with implementation in SPLUS, Royle, J., Nychka, D., Computers and

Geosciences, 24(5): 479-488, 1998. 25/31



Covering radii for d = 10, q = 5

Figure: Left: XA
n (red F), XH

n (blue O) and XS
n Sobol’ sequence (black ×).

Right: XA
n (red F), XCH,∞

n (black ×), XCH,2
√

2 d
n (magenta ◦) and

XCH,β?(100,d)
n , (blue O).

XA
n best overall performance.

XCH,β?(100,d)
n yields smaller covering radii for a few values of n.

XCH,∞
n is almost always outperformed by the two other variants.
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Mesh-ratio for d = 10

Figure: Left: XA
n (red F), XH

n (blue O) and XS
n Sobol’ sequence (black ×). Right:

XA
n (red F), XCH,∞

n (black ×), XCH,2
√

2 d
n (magenta ◦) and XCH,β?(100,d)

n , (blue
O).

Minimizing covering radius→ reduces packing radius.
XA
n (red F) worse than other designs.

The best mesh-ratios are observed for XCH,∞
n , which greedily

maximizes PR(Xn).
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Covering radius and mesh-ratio for d = 10,
X100 = ZLh,100

Figure: Greedy maximization of ÎAbn,Bn,5(Zn) (red F) and of Pβ(Zn) with β =∞
(black ×), β = 2

√
2 d (magenta ◦) and β = β?(n2, d) (blue O).
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Figure: XA
n (red F), XVD

n (blue O) and XRD
n (black ×).

XA
n (red F) and XRD

n (black ×) perform rather similarly, with a
small advantage to XA

n .
XV D
n more sensitive to Q.

XA
n XVD

n XRD
n XLRD

n XCH,∞
n XCH,2

√
2 d

n XCH,β?(100,d)
n

Q = 211 4.1 0.7 5.6 4.4 0.3 0.6 0.6
Q = 212 15.8 2.8 21.4 17.6 0.3 0.6 0.6
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Designs in non-convex domain: annular geometry

Figure: Left: XA
n obtained by greedy maximization of ÎAb?,B?,5(Zn) (red �) and

points XS
n from Sobol’ sequence (black dots). Right: coffee-house designs

XCH,∞
n in X (magenta �) and XCH′,∞

n in X ′ ⊂ X (blue dots).
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Conclusion
XA
n attractive alternative to classic incremental constructions:

outperforms low discrepancy sequences.
better overall performance than best coffee-house versions.
stability advantage over XVD

n and XRD
n .

Different design methods → significantly different computational
load.
Coffee-house design hard to outperform in mesh-ratio since
ρ(Xn) ≤ 2, but
Highly sensitive to design packing (or separating) radius.

Ib,B,q(Zn) proposed in the paper is able to guarantee small
covering radius.
its incremental maximization is an attractive alternative,
leading to small covering radii designs.
Computationally efficient implementations: finite set XC +
lazy-greedy.
Limitation: approximation of the uniform measure on X ,
poor when the dimension d is very large.
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