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Objective

Find algorithmic constructions to define space-filling designs.

Given a compact subset 2" C R4, we say that a finite subset Z,, C 2 is
a space-filling design if Z,, fills 2" evenly.
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Objective

Ultimate aim

The definition of incremental algorithms that generate sequences
X,, with small optimality gap, i.e., with a small increase in the
maximum distance between points of 2 and the elements of X,,
with respect to the optimal solution X;.

Incremental space-filling design based on coverings and spacings: improving upon low
discrepancy sequences, Nogales-Gémez, A., Pronzato, L., Rendas, M.J. Submitted,
2020. https://hal.archives-ouvertes.fr/hal-02987983v1
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Basic definitions and notation

@ 2 C R?, compact: the hypercube %, = [0,1]% as typical example.

@ Z, ={z1,...,2n} a n-point design in 2.
@ d(x,Z,) =min;—1,.  n ||x — 2], for x € 2" with || - || the £2 norm.
Covering radius Packing radius
1
CR(Z») =CRgx (Zn) = d(x,Z — : 2 llzi—zs
(@) = R (Z0) = g s Z0) PR = min, 5 lai=l (02 2)

Mesh-ratio

CR(Zn)
PR(Zn)

P(Zn) =
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Submodularity

o Zc a finite set with C elements.
e f:2%¢ R a set-function.

Diminishing returns property

A set-function f : 2%¢ — R is submodular if and only if
f(AU{x}) - f(A) > f(BU{x}) - f(B),
VACBe2%c, xe 2\ B

2nd order diminishing returns property

FAU{x}) - f(A) 2 F(AU{x,y}) — f(AU{y}),
VA,Bc2%¢, x,ye 2o\ A
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Greedy Algorithm

Greedy Algorithm

set X =10

while |X| < & do
find x in Z¢ such that f(X U {x}) is maximal
X+ XU {x}

end while

return X

) Gl e (D ID S
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Theorem (Nemhauser, Wolsey & Fisher, 1978)

Let f be a non-decreasing submodular function, then, for any given
k, 1 < k < C, the Greedy Algorithm returns a set X with bounded
optimality gap

P =IX) 1k < 1/e < 03679, (1)

f*= 1)

where f* = maxxc 2 x|<k [(X) and e = exp(1).
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Lazy Greedy Algorithm

@ Improvement of f, éx(x) = f(XU{x}) — f(X) >0

e max f(X, U{x}) & maxdx, (x)

@ By construction, X; C X,, for all i < n. Then, since f is
submodular, for all i < n, 0%, (x) < 0%, (%)

First iteration: compute all dx,(x) for all x € Z¢, and define
it as the current upper bound d(x).

At iteration k: Initialize %1 = Z¢ \ Xk-1

And let x;* be its member with largest §(x).

While %1 # 0-

update 6(x}*) = dx,_, (x}*),

remove from %1 all x s.t. §(x) < 6(x}*).

When Z;_1 = 0, update Xj,_; into X = X1 U {x}*}.

7/31



Covering measures

For any r» > 0, we define the covering measure of Z,, by

vol{ 2 N [Ul, B(zi,7)]}

r(Zn) = vol(2)

For a given Z,, consider also the function r € RT — Fyz (r) = ©,.(Z,,).

is non-decreasing, Fz (0) =0 and Fz_(r) =1 for any r > CR(Z,,).
If X is distributed with the uniform probablilty measure ;1 on 2", we
have

Prob{X € U], %(z;,r)} = Prob{d(X,Z,) <r} = / p(dx) = Fz, (1),
{xe X :d(x,Z,)<r}

and Fyz, is the cumulative distribution function (c.d.f.) of the random
variable d(X,Z,), supported on [0, CR(Z,)].
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Integrated covering measure

@ fz, the probability density function (p.d.f.) corresponding to Fz,,.

@ Forany b,B,0<b< B, ¢ > —1 and Z, # 0:

Integrated covering measure

B
Ib,B’q(Zn):/ r? Fg, (r)dr
b

B
__1 +1 _patt _ +1
= {[Bq Fz,,(B) — b7 Fg,, (b)) /b ritl 7 (r) dr} :

with I@B’q(zn) =0 for Zn = 0.

The set function Iy g4 : Z,, = Iy B,4(Z,,) is non-decreasing and
submodular, and satisfies I, g ,(0) = 0.

Maximizing Iy, B,q(Zn) for B > diam(2") <> minimizing (/'OB ratl fz (r)dr
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Integrated covering measure (continuation)

B 1/(q+1)
< / it fz,(r) dr> = Eq+1(Zn)
0

Eq+1(Zy) — CR(Zy) as g — oo

e For B and ¢ large enough, maximizing Iy g 4(Z,,) should therefore
provide designs with small values of CR(Z,,).

Greedy maximization of Iy g 4(Zn) <> greedy minimization of Fyy1(Zy).
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Choice of b and B

Choices of b and B relate to lower and upper bounds on CR}, the
optimal (minimum) value of CR(Z,,), for designs of size n; and nq, for
ne{ny,n +1,...,n2}.

Since the n balls Z(x;, CR},) centered at the optimal design points cover 2,
nV4(CR)4 > vol(2') = 1, with V; the volume of the d-dimensional unit ball
B(0,1), Vg =72 /T(d/2 +1).

CRY > Ry(n,d) = (nVy)~ /4.

% can be covered by m? hypercubes with side 1/m — by m¢ balls with
radius v/d/(2m). Taking m = |n'/¢], we have n > m? and:

Vd
CRy < CR* , < R*(n,d) = —————.
e — md — (71, ) 2 Lnl/dj

A reasonable choice when n € [nq,ns] is then b = b, = R,(ng,d) and
B = B* = R*(’ﬂl, d) 11/31



Implementation: I}fB’q(Zn)

o To evaluate I, 5 4(Z,), we substitute the empirical c.d.f. Fy
obtained by replacing 1 by the uniform measure p1g supported on a
finite subset 2 of 2.

o 2o ={xM x® .. x(@}, well spread over 2.
e di(Z,) = d(x(]),Zn), i=1,...,Q.
e d;(Z,) = min{max{d;(Z,),b},B}, j=1,...,Q.
° d] .Q the d sorted by increasing values, with
d1.q(Zn) <ds Q(Zn) < -+ < d2:g(Zn) < dg11:0(Zn) = B,

we obtain:

Q
~ 7{ +1 —q+1
Iy, B,q(Zn) ~ ]b_.\B,q(Z E [ 11:0(Zn) — dio (Zn)
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An alternative approach: ]A(fB,q(Zn)

Discrete approximation

Taking m radii r; well spread over [b, B], with b = r; < ry <
-+ < 1y = B, the trapezoidal rule gives

71 ~ ~
(Z) = mz i1 Fa, (rig1) + i Fz,, (r)
n

D (rig1 —7s)-

=1
When the r; are regularly spaced, with r;,.1 —r; = 4, for all 4, the
expression simplifies into

= m—1

I1F. q F\ m ~
AR TR T) 3 ot ()

flfB,q(Zn) =0,
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Approximations Ig‘}B’q and IlfB’q

@ We compare the designs obtained by maximizing fsz,q(zn) and
fb’?B’q(Zn), with m = 100, in terms of CR(Z,,).

@ The set Z¢ of candidate points coincides with £ and corresponds
to the first 211 = 2048 elements of Sobol' sequence in 2" = %,.

@ We consider the two cases d = 2 and d = 10 and take ¢ = 5.

@ The covering radius CR(Z,,) is approximated by CR 2, (Z,,), with
Z'n given by 2'8 points of a scrambled Sobol’ sequence

complemented by a 2¢ full factorial design, which gives N = 262176
ford =5 and N = 263 168 for d = 10.

@ We consider the two cases where b = b, = R, (ns,d) and
B = B* = R*(n1,d), with ny = 50 and ns = 100 and b = 0,
B =+/d/2
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Computational times of the greedy and lazy-greedy
maximizations of I f/%(Zn) and IO f/25(Z ).

1 7B 11 )
Tivaes(@=2") T2 1 105(@ =21 m = 100)
- - Lazy greedy d = 2 « -¢ Lazy greedy d =2
80 | |[—g—Greedy d = 2 80 | |[—g—Greedy d = 2
|- Lazy greedy d = 10 | |~@ Lazy greedy d = 10
—o-Greedy d = 10 —-Greedy d = 10
0 6
— % — 50
= 40 = 0
30 30
20 20
10 10
G =G =GV= =0V= =0¥= 7= DF= B = *
<o = =GV =GV= "0V V= = o= D K = =0 =09 0= V= 7= O O = 9=
50 100 150 200 50 100 150 200

n n

@ Linear increase of computational cost with n for the greedy version:
acceleration provided by the lazy-greedy implementation
o For the lazy-greedy algorithm, maximization of I f/g 5( n) (with

m = 100 < @) is faster than maximization of Io,\/E/z,5(Z”)'
@ The effect of d is negligible.
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Effect of b,B

@ We apply Greedy algorithm to the maximization of f,;‘}B,q(zn).
e Zc = Zg corresponds to the first 2!9 = 1024 elements of Sobol’
sequence in 2 = %5.
@ We compare b =0, B =+/d/2 and b = R,(nz,d), B = R*(ni,d)
for ¢ = 5, with n; = 10 and no = 20.
1=50=0.5= 1> 0=5b=b.B= b

Figure: CR(X,) (red solid line and %), CRa, (X,) (black dashed curve and
o), CR;}, (blue dashed curve and +), empirical value of EqH( n) (magenta

curve and V), for X,, obtained by greedy maximization of Ib B.¢(Xn).
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Effect of b,B

q=5b=0,B= 2

Figure: cr Xn,) (red solid line and %), CR (Xp,) (black dashed curve and o), CRY (blue dashed curve and +), empirical
Xn) ( 25 5
value of Eg 41 (Xn) (magenta curve and V).
q=5b=0,B= 2 q="5,b=b, B =B

Figure: X2 and circles centered at design points with radius CR(X20); the
order of selection of the points is indicated.
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Effect of q

¢=5b=b,, B =B ¢=50,b=b,, B =B

Figure: CR(X,,) (red solid line and %), CRa, (X,) (black dashed curve and
o), CR};, (blue dashed curve and +), empirical value of Eq+1( ») (magenta

curve and V), for X,, obtained by greedy maximization of Ib B,q(Xn).

@ The approximation Eq1(Xy,) is closer to CR(X,,) for ¢ = 50, but
when ¢ = 5 CR(X4,) is smaller for n € {1,2,3,7,...,12,14,...,20}.

@ Best performances are not necessarily achieved with high values of g.
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Maximization of [g‘}B,q and Ivaq: covering radii and
computational times

Figure: Zﬁ,B*,S (red %), E,B“B*j (blue v), %4\/3/2 5 (magenta o) and

TB . B ) _ oll
Io,\/E/z,s (black x); m =100 for I,’5 ,, C=Q =2"".
TA TA 7B TB
Ian*ﬁ Io,\/E/z,s Ime*ﬁ Io,\/E/2,5
d=2 2.4 5.3 0.8 2.3
d= 3.8 5.2 1.4 2.2

d=10 4.1 4.1 1.8 1.8
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Coffee-house design
Coffee-house designs

o Obtained by greedy maximization of PR(Z,,) for n > 1.
@ x; is usually the Chebyshev center of 2.
® X,11 € Argmaxye g d(x,X,,).

The simple greedy coffee-house construction ensures:

1 CR* 1 PR(X,)

- < —" <1 >1 d - <—=<1 >2

2 S TR, Szl end g s e slnz2),
with PR, CR’ the optimal (maximum) value of PR(Z,,), CR(Z,,)

respectively.

Clustering to minimize the maximum intercluster distance, Gonzalez, T., Theoretical Computer Science, 38: 293-306, 1985.

20/31



Enhancing the coffee-house design

@ Places design points on the boundary of 2" not favourable to
obtain low CR(Z,,).

@ We consider a modified method that forces design points to stay
away from the boundary of 2 .

@ Parameter § that controls the ratio between the distance to the
design and the distance to the boundary 0.2  of the compact set 2 .

[-spacing of Z,,, for 5 > 0

Sg(Zn) = sup {7" :3dx € £ such that d(x,Z,) > r and d(x,0%4") > %} =

sup Dg(x,Zn),
xeEZX

where Dg(x,Zn) = min {d(x,Zy), fd(x,02)} , x € 2, and
d(x,02") = infyco o ||x — z||.
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Enhancing the coffee-house design (continuation)

The coffee-house algorithm can be extended to:

The greedy maximization of Pg(Zy), 8 > 0, where

1
Po(Zn) = min, 5 min (s~ 2, Bd(s:,92))

using Xp 41 € Argmaxye o Dg(x,Xy) for any n > 1, where
Dg(x,Zn) = min{d(x,Z,), Bd(x,02)}, x€ 2, and
d(x,&%) = infzeagg Hx — Z||
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Choice of 3

@ Depending on ng, such that x2 be at distance R, (n2,d) from a vertex
of 27, with R« (n2,d) the lower bound on CRY, .

@ This implies d(x2,02°) = R«(na2,d)/vd = ||x2 — x1||/8 and gives

d
B = Bx(n2,d) = 2 Rr(na,d) — V.
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Enhancing the coffee-house design (continuation)

Figure: Edgephobe compromise distance Dg(x, Z,,) for a 4-point design (yellow
stars) in 2 = [0,1]%.
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Numerical study

We compare the performance of

@ Designs X that incrementally maximize the covering
TA

measure Ij p.  (X;).

@ Nested subsequences X and X of low discrepancy Halton
and Sobol’ sequences.

e XYH.5 obtained by greedy maximization of the criteria
P3(Z,,) based on pairwise distances.

@ Incremental constructions:

o XVP, Wynn's Vertex-Direction method®.
o XEP  a relaxed version? of the covering criterion.

1The sequential generation of D-optimum experimental designs, Wynn, H., Annals of Math. Stat., 41: 1655-1664, 1970.
2An algorithm for the construction of spatial coverage designs with implementation in SPLUS, Royle, J., Nychka, D., Computers and

Geosciences, 24(5): 479-488, 1998. 25/31



Covering radii for d = 10, ¢ =5

Figure: Left: X4 (red %), X (blue V) and X3 Sobol’ sequence (black x).
Right: X7 (red %), X§7°° (black x), X$#2V24 (magenta o) and
X 100D e ).

e X best overall performance.
° XSH’B*(wO’d) yields smaller covering radii for a few values of n.
e XGH:% is almost always outperformed by the two other variants.
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Mesh-ratio for d = 10

. .
M ) M
a5 as-
— —
>3 5
= =
st s
2 2GR R g T T T
15 150
1 b
o 2 % 4 s w0 70 & s 0 o w4 s s @ % o
n n

Figure: Left: X2 (red %), XX (blue V) and X3 Sobol’ sequence (black x). Right:
XA (red %), XGHo0 (black x), XSH’2m (magenta o) and XGH:B«(100,d) (blue
v).

@ Minimizing covering radius— reduces packing radius.

e X4 (red %) worse than other designs.

@ The best mesh-ratios are observed for X¢'H:> which greedily
maximizes PR(X,,).
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Covering radius and mesh-ratio for d = 10,

2100 = ZLirn,100

n/ACR(X,)

Figure: Greedy maximization of Tb‘i’Bms(Zn) (red %) and of P3(Zy,) with 8 = oo
(black x), 8 =2+v2d (magenta o) and 8 = B«(n2,d) (blue V).
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nl/dCR(X,)

198
) 0 10

Figure: X2 (red %), XV P (blue v) and XEP (black x).

o X# (red %) and XZP (black x) perform rather similarly, with a
small advantage to X2.

e XY Pmore sensitive to Q.

V H,B,(100,d
XA XVD XRD XLRD XSH,OO XSH’2 2d XS ,Bx (100,d)

Q=24 4.1 0.7 5.6 4.4 0.3
Q=22 1538 2.8 21.4 17.6 0.3

0.6 0.6
0.6 0.6
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Designs in non-convex domain: annular geometry

Figure: Left: X' obtained by greedy maximization of fbAﬂB*ﬁ(Zn) (red W) and
points X from Sobol’ sequence (black dots). Right: coffee-house designs
XSH> in 2 (magenta W) and XS7'>° in 27 € 2 (blue dots).
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Conclusion

e X# attractive alternative to classic incremental constructions:
e outperforms low discrepancy sequences.
o better overall performance than best coffee-house versions.
o stability advantage over XV P and XEP.
o Different design methods — significantly different computational
load.
o Coffee-house design hard to outperform in mesh-ratio since
p(X,) <2, but
@ Highly sensitive to design packing (or separating) radius.

e I g 4(Z,,) proposed in the paper is able to guarantee small
covering radius.

@ its incremental maximization is an attractive alternative,
leading to small covering radii designs.

o Computationally efficient implementations: finite set Z¢ +
lazy-greedy.

@ Limitation: approximation of the uniform measure on 2,
poor when the dimension d is very large.

31/31



