Amaya Nogales Gómez

 Luc Pronzato Maria-João RendasI3S, Sophia Antipolis

Incremental space-filling design based on coverings and spacings: improving
upon low discrepancy sequences
UQSay
March 18th, 2021

Objective

> Find algorithmic constructions to define space-filling designs.

Given a compact subset $\mathscr{X} \subset \mathbb{R}^{d}$, we say that a finite subset $\mathbf{Z}_{n} \subset \mathscr{X}$ is a space-filling design if \mathbf{Z}_{n} fills \mathscr{X} evenly.

Objective

Ultimate aim

The definition of incremental algorithms that generate sequences \mathbf{X}_{n} with small optimality gap, i.e., with a small increase in the maximum distance between points of \mathscr{X} and the elements of \mathbf{X}_{n} with respect to the optimal solution \mathbf{X}_{n}^{\star}.

Incremental space-filling design based on coverings and spacings: improving upon low discrepancy sequences, Nogales-Gómez, A., Pronzato, L., Rendas, M.J. Submitted, 2020. https://hal.archives-ouvertes.fr/hal-02987983v1

Basic definitions and notation

- $\mathscr{X} \subset \mathbb{R}^{d}$, compact: the hypercube $\mathscr{C}_{d}=[0,1]^{d}$ as typical example.
- $\mathbf{Z}_{n}=\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right\}$ a n-point design in \mathscr{X}.
- $d\left(\mathbf{x}, \mathbf{Z}_{n}\right)=\min _{i=1, \ldots, n}\left\|\mathbf{x}-\mathbf{z}_{i}\right\|$, for $\mathbf{x} \in \mathscr{X}$ with $\|\cdot\|$ the ℓ_{2} norm.

Covering radius
 $\mathrm{CR}\left(\mathbf{Z}_{n}\right)=\mathrm{CR} \mathscr{X}_{\mathscr{X}}\left(\mathbf{Z}_{n}\right)=\max _{\mathbf{x} \in \mathscr{X}} d\left(\mathbf{x}, \mathbf{Z}_{n}\right)$

Packing radius

$$
\operatorname{PR}\left(\mathbf{Z}_{n}\right)=\min _{\mathbf{z}_{i} \neq \mathbf{z}_{j} \in \mathbf{Z}_{n}} \frac{1}{2}\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|(n \geq 2)
$$

Mesh-ratio

$$
\rho\left(\mathbf{Z}_{n}\right)=\frac{\operatorname{CR}\left(\mathbf{Z}_{n}\right)}{\operatorname{PR}\left(\mathbf{Z}_{n}\right)}(n \geq 2)
$$

Submodularity

- \mathscr{X}_{C} a finite set with C elements.
- $f: 2^{\mathscr{X}_{C}} \rightarrow \mathbb{R}$ a set-function.

Diminishing returns property
A set-function $f: 2^{\mathscr{X}_{C}} \rightarrow \mathbb{R}$ is submodular if and only if

$$
\begin{gathered}
f(\mathbf{A} \cup\{\mathbf{x}\})-f(\mathbf{A}) \geq f(\mathbf{B} \cup\{\mathbf{x}\})-f(\mathbf{B}), \\
\forall \mathbf{A} \subset \mathbf{B} \in 2^{\mathscr{X}_{C}}, \mathbf{x} \in \mathscr{X}_{C} \backslash \mathbf{B}
\end{gathered}
$$

2nd order diminishing returns property

$$
\begin{gathered}
f(\mathbf{A} \cup\{\mathbf{x}\})-f(\mathbf{A}) \geq f(\mathbf{A} \cup\{\mathbf{x}, \mathbf{y}\})-f(\mathbf{A} \cup\{\mathbf{y}\}), \\
\forall \mathbf{A}, \mathbf{B} \in 2^{\mathscr{X}_{C}}, \mathbf{x}, \mathbf{y} \in \mathscr{X}_{C} \backslash \mathbf{A}
\end{gathered}
$$

Greedy Algorithm

Greedy Algorithm

1: set $\mathbf{X}=\emptyset$
2: while $|\mathbf{X}|<k$ do
3: \quad find \mathbf{x} in \mathscr{X}_{C} such that $f(\mathbf{X} \cup\{\mathbf{x}\})$ is maximal
4: $\quad \mathbf{X} \leftarrow \mathbf{X} \cup\{\mathbf{x}\}$
5: end while
6: return X

Theorem (Nemhauser, Wolsey \& Fisher, 1978)

Let f be a non-decreasing submodular function, then, for any given $k, 1 \leq k \leq C$, the Greedy Algorithm returns a set \mathbf{X} with bounded optimality gap

$$
\begin{equation*}
\frac{f^{\star}-f(\mathbf{X})}{f^{\star}-f(\emptyset)} \leq(1-1 / k)^{k} \leq 1 / \mathrm{e}<0.3679 \tag{1}
\end{equation*}
$$

where $f^{\star}=\max _{\mathbf{X} \subset \mathscr{X}_{C}:|\mathbf{X}| \leq k} f(\mathbf{X})$ and $\mathrm{e}=\exp (1)$.

Lazy Greedy Algorithm

- Improvement of $f, \delta_{\mathbf{X}}(\mathbf{x})=f(\mathbf{X} \cup\{\mathbf{x}\})-f(\mathbf{X}) \geq 0$
- $\max f\left(\mathbf{X}_{n} \cup\{\mathbf{x}\}\right) \Leftrightarrow \max \delta_{\mathbf{X}_{n}}(\mathbf{x})$
- By construction, $\mathbf{X}_{i} \subset \mathbf{X}_{n}$ for all $i<n$. Then, since f is submodular, for all $i<n, \delta \mathbf{X}_{n}(\mathbf{x}) \leq \delta \mathbf{X}_{i}(\mathbf{x})$

First iteration: compute all $\delta_{\mathbf{x}_{0}}(\mathbf{x})$ for all $\mathrm{x} \in \mathscr{X}_{C}$, and define it as the current upper bound $\bar{\delta}(\mathbf{x})$.

At iteration k : Initialize $\mathscr{L}_{k-1}=\mathscr{X}_{C} \backslash \mathbf{X}_{k-1}$
And let $\mathbf{x}_{k}^{\star \star}$ be its member with largest $\bar{\delta}(\mathbf{x})$.
While $\mathscr{L}_{k-1} \neq \emptyset$:
update $\bar{\delta}\left(\mathbf{x}_{k}^{\star \star}\right)=\delta_{\mathbf{x}_{k-1}}\left(\mathbf{x}_{k}^{\star \star}\right)$,
remove from \mathscr{L}_{k-1} all \mathbf{x} s.t. $\bar{\delta}(\mathbf{x}) \leq \bar{\delta}\left(\mathbf{x}_{k}^{\star \star}\right)$.
When $\mathscr{L}_{k-1}=\emptyset$, update \mathbf{X}_{k-1} into $\mathbf{X}_{k}=\mathbf{X}_{k-1} \cup\left\{\mathbf{x}_{k}^{\star \star}\right\}$.

Covering measures

For any $r \geq 0$, we define the covering measure of \mathbf{Z}_{n} by

$$
\Phi_{r}\left(\mathbf{Z}_{n}\right)=\frac{\operatorname{vol}\left\{\mathscr{X} \cap\left[\cup_{i=1}^{n} \mathscr{B}\left(\mathbf{z}_{i}, r\right)\right]\right\}}{\operatorname{vol}(\mathscr{X})} .
$$

For a given \mathbf{Z}_{n}, consider also the function $r \in \mathbb{R}^{+} \rightarrow F_{\mathbf{Z}_{n}}(r)=\Phi_{r}\left(\mathbf{Z}_{n}\right)$. $F_{\mathbf{Z}_{n}}$ is non-decreasing, $F_{\mathbf{Z}_{n}}(0)=0$ and $F_{\mathbf{Z}_{n}}(r)=1$ for any $r \geq \mathrm{CR}\left(\mathbf{Z}_{n}\right)$. If X is distributed with the uniform probability measure μ on $\overline{\mathscr{X}}$, we have

Prob $\left\{X \in \cup_{i=1}^{n} \mathscr{B}\left(\mathbf{z}_{i}, r\right)\right\}=\operatorname{Prob}\left\{d\left(X, \mathbf{Z}_{n}\right) \leq r\right\}=\int_{\left\{\mathbf{x} \in \mathscr{X}: d\left(\mathbf{x}, \mathbf{Z}_{n}\right) \leq r\right\}} \mu(\mathrm{d} \mathbf{x})=F_{\mathbf{Z}_{n}}(r)$,
and $F_{\mathbf{Z}_{n}}$ is the cumulative distribution function (c.d.f.) of the random variable $d\left(X, \mathbf{Z}_{n}\right)$, supported on $\left[0, \operatorname{CR}\left(\mathbf{Z}_{n}\right)\right]$.

Integrated covering measure

- $f_{\mathbf{Z}_{n}}$ the probability density function (p.d.f.) corresponding to $F_{\mathbf{Z}_{n}}$.
- For any $b, B, 0 \leq b<B, q>-1$ and $\mathbf{Z}_{n} \neq \emptyset$:

Integrated covering measure

$$
\begin{gathered}
I_{b, B, q}\left(\mathbf{Z}_{n}\right)=\int_{b}^{B} r^{q} F_{\mathbf{Z}_{n}}(r) \mathrm{d} r \\
=\frac{1}{q+1}\left\{\left[B^{q+1} F_{\mathbf{Z}_{n}}(B)-b^{q+1} F_{\mathbf{Z}_{n}}(b)\right]-\int_{b}^{B} r^{q+1} f_{\mathbf{Z}_{n}}(r) \mathrm{d} r\right\},
\end{gathered}
$$

with $I_{b, B, q}\left(\mathbf{Z}_{n}\right)=0$ for $\mathbf{Z}_{n}=\emptyset$.
The set function $I_{b, B, q}: \mathbf{Z}_{n} \rightarrow I_{b, B, q}\left(\mathbf{Z}_{n}\right)$ is non-decreasing and submodular, and satisfies $I_{b, B, q}(\emptyset)=0$.

Maximizing $I_{0, B, q}\left(\mathbf{Z}_{n}\right)$ for $B \geq \operatorname{diam}(\mathscr{X}) \leftrightarrow$ minimizing $\int_{0}^{B} r^{q+1} f_{\mathbf{Z}_{n}}(r) \mathrm{d} r$

Integrated covering measure (continuation)

$$
\begin{gathered}
\left(\int_{0}^{B} r^{q+1} f_{\mathbf{Z}_{n}}(r) \mathrm{d} r\right)^{1 /(q+1)}=E_{q+1}\left(\mathbf{Z}_{n}\right) \\
E_{q+1}\left(\mathbf{Z}_{n}\right) \rightarrow \mathrm{CR}\left(\mathbf{Z}_{n}\right) \text { as } q \rightarrow \infty
\end{gathered}
$$

- For B and q large enough, maximizing $I_{0, B, q}\left(\mathbf{Z}_{n}\right)$ should therefore provide designs with small values of $\operatorname{CR}\left(\mathbf{Z}_{n}\right)$.

Greedy maximization of $I_{0, B, q}\left(\mathbf{Z}_{n}\right) \leftrightarrow$ greedy minimization of $E_{q+1}\left(\mathbf{Z}_{n}\right)$.

Choice of b and B

Choices of b and B relate to lower and upper bounds on CR_{n}^{\star}, the optimal (minimum) value of $\mathrm{CR}\left(\mathbf{Z}_{n}\right)$, for designs of size n_{1} and n_{2}, for $n \in\left\{n_{1}, n_{1}+1, \ldots, n_{2}\right\}$.

Since the n balls $\mathscr{B}\left(\mathbf{x}_{i}, \mathrm{CR}_{n}^{\star}\right)$ centered at the optimal design points cover \mathscr{X}, $n V_{d}\left(\mathrm{CR}_{n}^{\star}\right)^{d} \geq \operatorname{vol}(\mathscr{X})=1$, with V_{d} the volume of the d-dimensional unit ball $\mathscr{B}(\mathbf{0}, 1), V_{d}=\pi^{d / 2} / \Gamma(d / 2+1)$.

$$
\mathrm{CR}_{n}^{\star} \geq R_{\star}(n, d)=\left(n V_{d}\right)^{-1 / d}
$$

\mathscr{X} can be covered by m^{d} hypercubes with side $1 / m \rightarrow$ by m^{d} balls with radius $\sqrt{d} /(2 m)$. Taking $m=\left\lfloor n^{1 / d}\right\rfloor$, we have $n \geq m^{d}$ and:

$$
\mathrm{CR}_{n}^{\star} \leq \mathrm{CR}_{m^{d}}^{\star} \leq R^{\star}(n, d)=\frac{\sqrt{d}}{2\left\lfloor n^{1 / d}\right\rfloor}
$$

A reasonable choice when $n \in\left[n_{1}, n_{2}\right]$ is then $b=b_{\star}=R_{\star}\left(n_{2}, d\right)$ and $B=B^{\star}=R^{\star}\left(n_{1}, d\right)$.

Implementation: $\widehat{I}_{b, B, q}^{A}\left(\mathbf{Z}_{n}\right)$

- To evaluate $I_{b, B, q}\left(\mathbf{Z}_{n}\right)$, we substitute the empirical c.d.f. $\widehat{F}_{\mathbf{Z}_{n}}$, obtained by replacing μ by the uniform measure μ_{Q} supported on a finite subset \mathscr{X}_{Q} of \mathscr{X}.
- $\mathscr{X}_{Q}=\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(Q)}\right\}$, well spread over \mathscr{X}.
- $d_{j}\left(\mathbf{Z}_{n}\right)=d\left(\mathbf{x}^{(j)}, \mathbf{Z}_{n}\right), j=1, \ldots, Q$.
- $\bar{d}_{j}\left(\mathbf{Z}_{n}\right)=\min \left\{\max \left\{d_{j}\left(\mathbf{Z}_{n}\right), b\right\}, B\right\}, j=1, \ldots, Q$.
- $\bar{d}_{j: Q}$ the \bar{d}_{j} sorted by increasing values, with

$$
\bar{d}_{1: Q}\left(\mathbf{Z}_{n}\right) \leq \bar{d}_{2: Q}\left(\mathbf{Z}_{n}\right) \leq \cdots \leq \bar{d}_{2: Q}\left(\mathbf{Z}_{n}\right) \leq \bar{d}_{Q+1: Q}\left(\mathbf{Z}_{n}\right)=B
$$

we obtain:

$$
I_{b, B, q}\left(\mathbf{Z}_{n}\right) \approx \widehat{I}_{b, B, q}^{A}\left(\mathbf{Z}_{n}\right)=\frac{1}{Q(q+1)} \sum_{j=1}^{Q} j\left[\bar{d}_{j+1: Q}^{q+1}\left(\mathbf{Z}_{n}\right)-\bar{d}_{j: Q}^{q+1}\left(\mathbf{Z}_{n}\right)\right]
$$

An alternative approach: $\hat{I}_{b, B, q}^{B}\left(\mathbf{Z}_{n}\right)$

Discrete approximation

Taking m radii r_{i} well spread over $[b, B]$, with $b=r_{1}<r_{2}<$ $\cdots<r_{m}=B$, the trapezoidal rule gives

$$
I_{b, B, q}\left(\mathbf{Z}_{n}\right) \approx \widehat{I}_{b, B, q}^{B}\left(\mathbf{Z}_{n}\right)=\sum_{i=1}^{m-1} \frac{r_{i+1}^{q} \widehat{F}_{\mathbf{Z}_{n}}\left(r_{i+1}\right)+r_{i}^{q} \widehat{F}_{\mathbf{Z}_{n}}\left(r_{i}\right)}{2}\left(r_{i+1}-r_{i}\right) .
$$

When the r_{i} are regularly spaced, with $r_{i+1}-r_{i}=\delta_{r}$ for all i, the expression simplifies into

$$
\widehat{I}_{b, B, q}^{B}\left(\mathbf{Z}_{n}\right)=\delta_{r}\left[\frac{r_{1}^{q} \widehat{F}_{\mathbf{Z}_{n}}\left(r_{1}\right)+r_{m}^{q} \widehat{F}_{\mathbf{Z}_{n}}\left(r_{m}\right)}{2}+\sum_{i=2}^{m-1} r_{i}^{q} \widehat{F}_{\mathbf{Z}_{n}}\left(r_{i}\right)\right] .
$$

Approximations $\widehat{I}_{b, B, q}^{A}$ and $\widehat{I}_{b, B, q}^{B}$

- We compare the designs obtained by maximizing $\widehat{I}_{b, B, q}^{A}\left(\mathbf{Z}_{n}\right)$ and $\widehat{I}_{b, B, q}^{B}\left(\mathbf{Z}_{n}\right)$, with $m=100$, in terms of $\mathrm{CR}\left(\mathbf{Z}_{n}\right)$.
- The set \mathscr{X}_{C} of candidate points coincides with \mathscr{X}_{Q} and corresponds to the first $2^{11}=2048$ elements of Sobol' sequence in $\mathscr{X}=\mathscr{C}_{d}$.
- We consider the two cases $d=2$ and $d=10$ and take $q=5$.
- The covering radius $\operatorname{CR}\left(\mathbf{Z}_{n}\right)$ is approximated by $\mathrm{CR}_{\mathscr{X}_{N}}\left(\mathbf{Z}_{n}\right)$, with \mathscr{X}_{N} given by 2^{18} points of a scrambled Sobol' sequence complemented by a 2^{d} full factorial design, which gives $N=262176$ for $d=5$ and $N=263168$ for $d=10$.
- We consider the two cases where $b=b_{\star}=R_{\star}\left(n_{2}, d\right)$ and $B=B^{\star}=R^{\star}\left(n_{1}, d\right)$, with $n_{1}=50$ and $n_{2}=100$ and $b=0$, $B=\sqrt{d} / 2$

Computational times of the greedy and lazy-greedy

 maximizations of $\widehat{I}_{0, \sqrt{d} / 2,5}^{A}\left(\mathbf{Z}_{n}\right)$ and $\widehat{I}_{0, \sqrt{d} / 2,5}^{B}\left(\mathbf{Z}_{n}\right)$.

- Linear increase of computational cost with n for the greedy version: acceleration provided by the lazy-greedy implementation.
- For the lazy-greedy algorithm, maximization of $\widehat{I}_{0, \sqrt{d} / 2,5}^{B}\left(\mathbf{Z}_{n}\right)$ (with $m=100 \ll Q)$ is faster than maximization of $\widehat{I}_{0, \sqrt{d} / 2,5}^{A}\left(\mathbf{Z}_{n}\right)$.
- The effect of d is negligible.

Effect of b, B

- We apply Greedy algorithm to the maximization of $\widehat{I}_{b, B, q}^{A}\left(\mathbf{Z}_{n}\right)$.
- $\mathscr{X}_{C}=\mathscr{X}_{Q}$ corresponds to the first $2^{10}=1024$ elements of Sobol' sequence in $\mathscr{X}=\mathscr{C}_{2}$.
- We compare $b=0, B=\sqrt{d} / 2$ and $b=R_{\star}\left(n_{2}, d\right), B=R^{\star}\left(n_{1}, d\right)$ for $q=5$, with $n_{1}=10$ and $n_{2}=20$.

Figure: $\mathrm{CR}\left(\mathbf{X}_{n}\right)$ (red solid line and $\boldsymbol{\star}$), $\mathrm{CR}_{\mathscr{X}_{Q}}\left(\mathbf{X}_{n}\right)$ (black dashed curve and o), CR_{n}^{\star} (blue dashed curve and +), empirical value of $E_{q+1}\left(\mathbf{X}_{n}\right)$ (magenta curve and ∇), for \mathbf{X}_{n} obtained by greedy maximization of $\widehat{I}_{b, B, q}^{A}\left(\mathbf{X}_{n}\right)$.

Effect of b, B

Figure: $\operatorname{CR}\left(\mathbf{x}_{n}\right)$ (red solid line and \star), $\mathrm{CR}_{\mathscr{X}_{Q}}\left(\mathbf{x}_{n}\right)$ (black dashed curve and \circ), CR_{n}^{\star} (blue dashed curve and +), empirical value of $E_{q+1}\left(\mathbf{X}_{n}\right)$ (magenta curve and ∇).

Figure: \mathbf{X}_{20} and circles centered at design points with radius $\mathrm{CR}\left(\mathbf{X}_{20}\right)$; the order of selection of the points is indicated.

Effect of q

Figure: $\mathrm{CR}\left(\mathbf{X}_{n}\right)$ (red solid line and \star), $\mathrm{CR}_{\mathscr{X}_{Q}}\left(\mathbf{X}_{n}\right)$ (black dashed curve and ○), CR_{n}^{\star} (blue dashed curve and +), empirical value of $E_{q+1}\left(\mathbf{X}_{n}\right)$ (magenta curve and ∇), for \mathbf{X}_{n} obtained by greedy maximization of $\widehat{I}_{b, B, q}^{A}\left(\mathbf{X}_{n}\right)$.

- The approximation $E_{q+1}\left(\mathbf{X}_{n}\right)$ is closer to $\operatorname{CR}\left(\mathbf{X}_{n}\right)$ for $q=50$, but when $q=5 \mathrm{CR}\left(\mathbf{X}_{n}\right)$ is smaller for $n \in\{1,2,3,7, \ldots, 12,14, \ldots, 20\}$.
- Best performances are not necessarily achieved with high values of q.

Maximization of $\widehat{I}_{b, B, q}^{A}$ and $\widehat{I}_{b, B, q}^{B}$: covering radii and computational times

Figure: $\widehat{I}_{b_{\star}, B^{\star}, 5}^{A}($ red $\star), \widehat{I}_{b_{\star}, B^{\star}, 5}^{B}$ (blue ∇), $\widehat{I}_{0, \sqrt{d} / 2,5}^{A}$ (magenta \circ) and $\widehat{I}_{0, \sqrt{d} / 2,5}^{B}\left(\right.$ black \times); $m=100$ for $\widehat{I}_{b, B, q}^{B}, C=Q=2^{11}$.

	$\widehat{I}_{b_{\star}, B^{\star}, 5}^{A}$	$\widehat{I}_{0, \sqrt{d} / 2,5}^{A}$	$\widehat{I}_{b_{\star}, B^{\star}, 5}^{B}$	$\widehat{I}_{0, \sqrt{d} / 2,5}^{B}$
$d=2$	2.4	5.3	0.8	2.3
$d=5$	3.8	5.2	1.4	2.2
$d=10$	4.1	4.1	1.8	1.8

Coffee-house design

Coffee-house designs

- Obtained by greedy maximization of $\operatorname{PR}\left(\mathbf{Z}_{n}\right)$ for $n>1$.
- \mathbf{x}_{1} is usually the Chebyshev center of \mathscr{X}.
- $\mathbf{x}_{n+1} \in \operatorname{Arg} \max _{\mathbf{x} \in \mathscr{X}} d\left(\mathbf{x}, \mathbf{X}_{n}\right)$.

The simple greedy coffee-house construction ensures:

$$
\frac{1}{2} \leq \frac{\mathrm{CR}_{n}^{\star}}{\mathrm{CR}\left(\mathbf{X}_{n}\right)} \leq 1(n \geq 1) \quad \text { and } \quad \frac{1}{2} \leq \frac{\mathrm{PR}\left(\mathbf{X}_{n}\right)}{\mathrm{PR}_{n}^{\star}} \leq 1(n \geq 2)
$$

with $\mathrm{PR}_{n}^{\star}, \mathrm{CR}_{n}^{\star}$ the optimal (maximum) value of $\operatorname{PR}\left(\mathbf{Z}_{n}\right), \mathrm{CR}\left(\mathbf{Z}_{n}\right)$ respectively.

Enhancing the coffee-house design

- Places design points on the boundary of \mathscr{X} : not favourable to obtain low $\operatorname{CR}\left(\mathbf{Z}_{n}\right)$.
- We consider a modified method that forces design points to stay away from the boundary of \mathscr{X}.
- Parameter β that controls the ratio between the distance to the design and the distance to the boundary $\partial \mathscr{X}$ of the compact set \mathscr{X}.

$$
\begin{aligned}
& \beta \text {-spacing of } \mathbf{Z}_{n} \text {, for } \beta>0 \\
& S_{\beta}\left(\mathbf{Z}_{n}\right)=\sup \left\{r: \exists \mathbf{x} \in \mathscr{X} \text { such that } d\left(\mathbf{x}, \mathbf{Z}_{n}\right) \geq r \text { and } d(\mathbf{x}, \partial \mathscr{X}) \geq \frac{r}{\beta}\right\}= \\
& \qquad \sup _{\mathbf{x} \in \mathscr{X}} D_{\beta}\left(\mathbf{x}, \mathbf{Z}_{n}\right),
\end{aligned} \quad \begin{aligned}
& \text { where } D_{\beta}\left(\mathbf{x}, \mathbf{Z}_{n}\right)=\min \left\{d\left(\mathbf{x}, \mathbf{Z}_{n}\right), \beta d(\mathbf{x}, \partial \mathscr{X})\right\}, \mathbf{x} \in \mathscr{X}, \text { and } \\
& d(\mathbf{x}, \partial \mathscr{X})=\inf _{\mathbf{z} \in \mathcal{X}}\|\mathbf{x}-\mathbf{z}\| .
\end{aligned}
$$

Enhancing the coffee-house design (continuation)

The coffee-house algorithm can be extended to:

The greedy maximization of $P_{\beta}\left(\mathbf{Z}_{n}\right), \beta>0$, where

$$
P_{\beta}\left(\mathbf{Z}_{n}\right)=\min _{\mathbf{z}_{i} \neq \mathbf{z}_{j} \in \mathbf{z}_{n}} \frac{1}{2} \min \left\{\left\|\mathbf{z}_{i}-\mathbf{z}_{j}\right\|, \beta d\left(\mathbf{z}_{i}, \partial \mathscr{X}\right)\right\}
$$

using $\mathbf{x}_{n+1} \in \operatorname{Arg} \max _{\mathbf{x} \in \mathscr{X}} D_{\beta}\left(\mathbf{x}, \mathbf{X}_{n}\right)$ for any $n \geq 1$, where $D_{\beta}\left(\mathbf{x}, \mathbf{Z}_{n}\right)=\min \left\{d\left(\mathbf{x}, \mathbf{Z}_{n}\right), \beta d(\mathbf{x}, \partial \mathscr{X})\right\}, \mathbf{x} \in \mathscr{X}$, and $d(\mathbf{x}, \partial \mathscr{X})=\inf _{\mathbf{z} \in \partial \mathscr{X}}\|\mathbf{x}-\mathbf{z}\|$.

Choice of β

- Depending on n_{2}, such that \mathbf{x}_{2} be at distance $R_{\star}\left(n_{2}, d\right)$ from a vertex of \mathscr{X}, with $R_{\star}\left(n_{2}, d\right)$ the lower bound on $\mathrm{CR}_{n_{2}}^{\star}$.
- This implies $d\left(\mathbf{x}_{2}, \partial \mathscr{X}\right)=R_{\star}\left(n_{2}, d\right) / \sqrt{d}=\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\| / \beta$ and gives

$$
\beta=\beta_{\star}\left(n_{2}, d\right)=\frac{d}{2 R_{\star}\left(n_{2}, d\right)}-\sqrt{d}
$$

Enhancing the coffee-house design (continuation)

Figure: Edgephobe compromise distance $D_{\beta}\left(\mathbf{x}, \mathbf{Z}_{n}\right)$ for a 4-point design (yellow stars) in $\mathscr{X}=[0,1]^{2}$.

Numerical study

We compare the performance of

- Designs \mathbf{X}_{n}^{A} that incrementally maximize the covering measure $\widehat{I}_{b_{\star}, B^{\star}, q}^{A}\left(\mathbf{X}_{n}\right)$.
- Nested subsequences \mathbf{X}_{n}^{H} and \mathbf{X}_{n}^{S} of low discrepancy Halton and Sobol' sequences.
- $\mathbf{X}_{n}^{C H, \beta}$ obtained by greedy maximization of the criteria $P_{\beta}\left(\mathbf{Z}_{n}\right)$ based on pairwise distances.
- Incremental constructions:
- $\mathbf{X}_{n}^{V D}$, Wynn's Vertex-Direction method ${ }^{1}$.
- $\mathbf{X}_{n}^{R D}$, a relaxed version ${ }^{2}$ of the covering criterion.

[^0]
Covering radii for $d=10, q=5$

Figure: Left: \mathbf{X}_{n}^{A} (red $\boldsymbol{\star}$), \mathbf{X}_{n}^{H} (blue ∇) and \mathbf{X}_{n}^{S} Sobol' sequence (black \times). Right: \mathbf{X}_{n}^{A} (red \star), $\mathbf{X}_{n}^{C H, \infty}$ (black \times), $\mathbf{X}_{n}^{C H, 2 \sqrt{2 d}}$ (magenta \circ) and $\mathbf{X}_{n}^{C H, \beta_{\star}(100, d)}$, (blue ∇).

- \mathbf{X}_{n}^{A} best overall performance.
- $\mathbf{X}_{n}^{C H, \beta_{\star}(100, d)}$ yields smaller covering radii for a few values of n.
- $\mathbf{X}_{n}^{C H, \infty}$ is almost always outperformed by the two other variants.

Mesh-ratio for $d=10$

Figure: Left: \mathbf{X}_{n}^{A} (red \star), \mathbf{X}_{n}^{H} (blue ∇) and \mathbf{X}_{n}^{S} Sobol' sequence (black \times). Right: $\mathbf{X}_{n}^{A}($ red $\star), \mathbf{X}_{n}^{C H, \infty}$ (black \times), $\mathbf{X}_{n}^{C H, 2 \sqrt{2 d}}$ (magenta \circ) and $\mathbf{X}_{n}^{C H, \beta_{\star}(100, d)}$, (blue ∇).

- Minimizing covering radius \rightarrow reduces packing radius.
- $\mathbf{X}_{n}^{A}($ red $\star)$ worse than other designs.
- The best mesh-ratios are observed for $\mathbf{X}_{n}^{C H, \infty}$, which greedily maximizes $\operatorname{PR}\left(\mathbf{X}_{n}\right)$.

Covering radius and mesh-ratio for $d=10$, $\mathscr{X}_{100}=\mathbf{Z}_{L h, 100}$

Figure: Greedy maximization of $\widehat{I}_{b_{n}, B_{n}, 5}^{A}\left(\mathbf{Z}_{n}\right)$ (red \star) and of $P_{\beta}\left(\mathbf{Z}_{n}\right)$ with $\beta=\infty$ (black \times), $\beta=2 \sqrt{2 d}$ (magenta \circ) and $\beta=\beta_{\star}\left(n_{2}, d\right)$ (blue ∇).

Figure: $\mathbf{X}_{n}^{A}($ red $\star), \mathbf{X}_{n}^{V D}$ (blue ∇) and $\mathbf{X}_{n}^{R D}$ (black \times).

- $\mathbf{X}_{n}^{A}(\operatorname{red} \star)$ and $\mathbf{X}_{n}^{R D}$ (black \times) perform rather similarly, with a small advantage to \mathbf{X}_{n}^{A}.
- $\mathbf{X}_{n}^{V D}$ more sensitive to Q.

	\mathbf{X}_{n}^{A}	$\mathbf{X}_{n}^{V D}$	$\mathbf{X}_{n}^{R D}$	$\mathbf{X}_{n}^{L R D}$	$\mathbf{X}_{n}^{C H, \infty}$	$\mathbf{X}_{n}^{C H, 2 \sqrt{2 d}}$	$\mathbf{X}_{n}^{C H, \beta_{\star}(100, d)}$
$Q=2^{11}$	4.1	0.7	5.6	4.4	0.3	0.6	0.6
$Q=2^{12}$	15.8	2.8	21.4	17.6	0.3	0.6	0.6

Designs in non-convex domain: annular geometry

Figure: Left: \mathbf{X}_{n}^{A} obtained by greedy maximization of $\widehat{I}_{b_{\star}, B^{\star}, 5}^{A}\left(\mathbf{Z}_{n}\right)$ (red $\left.\boldsymbol{\square}\right)$ and points \mathbf{X}_{n}^{S} from Sobol' sequence (black dots). Right: coffee-house designs $\mathbf{X}_{n}^{C H, \infty}$ in \mathscr{X} (magenta $■$) and $\mathbf{X}_{n}^{C H^{\prime}, \infty}$ in $\mathscr{X}^{\prime} \subset \mathscr{X}$ (blue dots).

Conclusion

- \mathbf{X}_{n}^{A} attractive alternative to classic incremental constructions:
- outperforms low discrepancy sequences.
- better overall performance than best coffee-house versions.
- stability advantage over $\mathbf{X}_{n}^{V D}$ and $\mathbf{X}_{n}^{R D}$.
- Different design methods \rightarrow significantly different computational load.
- Coffee-house design hard to outperform in mesh-ratio since $\rho\left(\mathbf{X}_{n}\right) \leq 2$, but
- Highly sensitive to design packing (or separating) radius.
- $I_{b, B, q}\left(\mathbf{Z}_{n}\right)$ proposed in the paper is able to guarantee small covering radius.
- its incremental maximization is an attractive alternative, leading to small covering radii designs.
- Computationally efficient implementations: finite set $\mathscr{X}_{C}+$ lazy-greedy.
- Limitation: approximation of the uniform measure on \mathscr{X}, poor when the dimension d is very large.

[^0]: ${ }^{1}$ The sequential generation of D-optimum experimental designs, Wynn, H., Annals of Math. Stat., 41: 1655-1664, 1970 .
 ${ }^{2}$ An algorithm for the construction of spatial coverage designs with implementation in SPLUS, Royle, J., Nychka, D., Computers and

