Amaya Nogales Gómez Luc Pronzato Maria-João Rendas

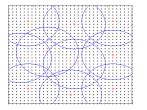
13S, Sophia Antipolis

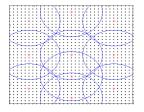
Incremental space-filling design based on coverings and spacings: improving upon low discrepancy sequences UQSay March 18th, 2021

Objective

Find algorithmic constructions to define space-filling designs.

Given a compact subset $\mathscr{X} \subset \mathbb{R}^d$, we say that a finite subset $\mathbf{Z}_n \subset \mathscr{X}$ is a space-filling design if \mathbf{Z}_n fills \mathscr{X} evenly.





Objective

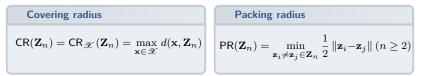
Ultimate aim

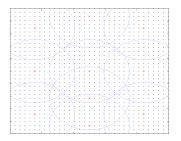
The definition of incremental algorithms that generate sequences \mathbf{X}_n with small optimality gap, i.e., with a small increase in the maximum distance between points of \mathscr{X} and the elements of \mathbf{X}_n with respect to the optimal solution \mathbf{X}_n^* .

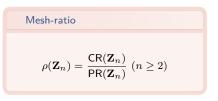
Incremental space-filling design based on coverings and spacings: improving upon low discrepancy sequences, Nogales-Gómez, A., Pronzato, L., Rendas, M.J. Submitted, 2020. https://hal.archives-ouvertes.fr/hal-02987983v1

Basic definitions and notation

- $\mathscr{X} \subset \mathbb{R}^d$, compact: the hypercube $\mathscr{C}_d = [0,1]^d$ as typical example.
- $\mathbf{Z}_n = {\mathbf{z}_1, \dots, \mathbf{z}_n}$ a *n*-point design in \mathscr{X} .
- $d(\mathbf{x}, \mathbf{Z}_n) = \min_{i=1,...,n} \|\mathbf{x} \mathbf{z}_i\|$, for $\mathbf{x} \in \mathscr{X}$ with $\|\cdot\|$ the ℓ_2 norm.







Submodularity

- \mathscr{X}_C a finite set with C elements.
- $f: 2^{\mathscr{X}_C} \to \mathbb{R}$ a set-function.

Diminishing returns property

A set-function $f: 2^{\mathscr{X}_C} \to \mathbb{R}$ is submodular if and only if $f(\mathbf{A} \cup \{\mathbf{x}\}) - f(\mathbf{A}) \ge f(\mathbf{B} \cup \{\mathbf{x}\}) - f(\mathbf{B}),$ $\forall \mathbf{A} \subset \mathbf{B} \in 2^{\mathscr{X}_C}, \ \mathbf{x} \in \mathscr{X}_C \setminus \mathbf{B}$

2nd order diminishing returns property

$$\begin{split} f(\mathbf{A} \cup \{\mathbf{x}\}) - f(\mathbf{A}) &\geq f(\mathbf{A} \cup \{\mathbf{x}, \mathbf{y}\}) - f(\mathbf{A} \cup \{\mathbf{y}\}), \\ \forall \mathbf{A}, \mathbf{B} \in 2^{\mathscr{X}_{C}}, \ \mathbf{x}, \mathbf{y} \in \mathscr{X}_{C} \setminus \mathbf{A} \end{split}$$

Greedy Algorithm

Greedy Algorithm

- 1: set $\mathbf{X} = \emptyset$
- 2: while $|\mathbf{X}| < k \text{ do}$
- 3: find \mathbf{x} in \mathscr{X}_C such that $f(\mathbf{X} \cup \{\mathbf{x}\})$ is maximal

4:
$$\mathbf{X} \leftarrow \mathbf{X} \cup \{\mathbf{x}\}$$

- 5: end while
- 6: return ${f X}$

Theorem (Nemhauser, Wolsey & Fisher, 1978)

Let f be a non-decreasing submodular function, then, for any given $k, 1 \le k \le C$, the Greedy Algorithm returns a set X with bounded optimality gap

$$\frac{f^{\star} - f(\mathbf{X})}{f^{\star} - f(\emptyset)} \le (1 - 1/k)^k \le 1/\mathsf{e} < 0.3679\,,\tag{1}$$

where $f^{\star} = \max_{\mathbf{X} \subset \mathscr{X}_C : |\mathbf{X}| \leq k} f(\mathbf{X})$ and $\mathbf{e} = \exp(1)$.

Lazy Greedy Algorithm

- Improvement of $f,\,\delta_{\mathbf{X}}(\mathbf{x})=f(\mathbf{X}\cup\{\mathbf{x}\})-f(\mathbf{X})\geq 0$
- $\max f(\mathbf{X}_n \cup \{\mathbf{x}\}) \Leftrightarrow \max \delta_{\mathbf{X}_n}(\mathbf{x})$
- By construction, $\mathbf{X}_i \subset \mathbf{X}_n$ for all i < n. Then, since f is submodular, for all i < n, $\delta_{\mathbf{X}_n}(\mathbf{x}) \le \delta_{\mathbf{X}_i}(\mathbf{x})$

First iteration: compute all $\delta_{\mathbf{X}_0}(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{X}_C$, and define it as the current upper bound $\overline{\delta}(\mathbf{x})$.

At iteration k: Initialize $\mathscr{L}_{k-1} = \mathscr{X}_C \setminus \mathbf{X}_{k-1}$ And let $\mathbf{x}_k^{\star\star}$ be its member with largest $\overline{\delta}(\mathbf{x})$. While $\mathscr{L}_{k-1} \neq \emptyset$: update $\overline{\delta}(\mathbf{x}_k^{\star\star}) = \delta_{\mathbf{X}_{k-1}}(\mathbf{x}_k^{\star\star})$, remove from \mathscr{L}_{k-1} all \mathbf{x} s.t. $\overline{\delta}(\mathbf{x}) \leq \overline{\delta}(\mathbf{x}_k^{\star\star})$. When $\mathscr{L}_{k-1} = \emptyset$, update \mathbf{X}_{k-1} into $\mathbf{X}_k = \mathbf{X}_{k-1} \cup \{\mathbf{x}_k^{\star\star}\}$.

Covering measures

For any $r \geq 0$, we define the covering measure of \mathbf{Z}_n by

$$\Phi_r(\mathbf{Z}_n) = \frac{\operatorname{vol}\{\mathscr{X} \cap [\bigcup_{i=1}^n \mathscr{B}(\mathbf{z}_i, r)]\}}{\operatorname{vol}(\mathscr{X})}.$$

For a given \mathbf{Z}_n , consider also the function $r \in \mathbb{R}^+ \to F_{\mathbf{Z}_n}(r) = \Phi_r(\mathbf{Z}_n)$. $F_{\mathbf{Z}_n}$ is non-decreasing, $F_{\mathbf{Z}_n}(0) = 0$ and $F_{\mathbf{Z}_n}(r) = 1$ for any $r \geq \mathsf{CR}(\mathbf{Z}_n)$. If X is distributed with the uniform probability measure μ on \mathscr{X} , we have

$$\operatorname{Prob}\left\{X \in \bigcup_{i=1}^{n} \mathscr{B}(\mathbf{z}_{i}, r)\right\} = \operatorname{Prob}\left\{d(X, \mathbf{Z}_{n}) \leq r\right\} = \int_{\left\{\mathbf{x} \in \mathscr{X} : d(\mathbf{x}, \mathbf{Z}_{n}) \leq r\right\}} \mu(\mathrm{d}\mathbf{x}) = F_{\mathbf{Z}_{n}}(r),$$

and $F_{\mathbf{Z}_n}$ is the cumulative distribution function (c.d.f.) of the random variable $d(X, \mathbf{Z}_n)$, supported on $[0, CR(\mathbf{Z}_n)]$.

Integrated covering measure

- $f_{\mathbf{Z}_n}$ the probability density function (p.d.f.) corresponding to $F_{\mathbf{Z}_n}$.
- For any $b, B, 0 \le b < B, q > -1$ and $\mathbf{Z}_n \neq \emptyset$:

Integrated covering measure

$$\begin{split} I_{b,B,q}(\mathbf{Z}_n) &= \int_b^B r^q \, F_{\mathbf{Z}_n}(r) \, \mathrm{d}r \\ &= \frac{1}{q+1} \left\{ \left[B^{q+1} F_{\mathbf{Z}_n}(B) - b^{q+1} F_{\mathbf{Z}_n}(b) \right] - \int_b^B r^{q+1} \, f_{\mathbf{Z}_n}(r) \, \mathrm{d}r \right\} \,, \\ &\text{with } I_{b,B,q}(\mathbf{Z}_n) = 0 \, \, \text{for} \, \, \mathbf{Z}_n = \emptyset. \end{split}$$

The set function $I_{b,B,q}: \mathbf{Z}_n \to I_{b,B,q}(\mathbf{Z}_n)$ is non-decreasing and submodular, and satisfies $I_{b,B,q}(\emptyset) = 0$.

Maximizing $I_{0,B,q}(\mathbf{Z}_n)$ for $B \ge diam(\mathscr{X}) \leftrightarrow \min(\mathbf{Z}_n)$ for $f_{\mathbf{Z}_n}(r) dr$

Integrated covering measure (continuation)

$$\begin{pmatrix} \int_0^B r^{q+1} f_{\mathbf{Z}_n}(r) \, \mathrm{d}r \end{pmatrix}^{1/(q+1)} = E_{q+1}(\mathbf{Z}_n) \\ E_{q+1}(\mathbf{Z}_n) \to \mathsf{CR}(\mathbf{Z}_n) \text{ as } q \to \infty$$

• For *B* and *q* large enough, maximizing $I_{0,B,q}(\mathbf{Z}_n)$ should therefore provide designs with small values of $CR(\mathbf{Z}_n)$.

Greedy maximization of $I_{0,B,q}(\mathbf{Z}_n) \leftrightarrow$ greedy minimization of $E_{q+1}(\mathbf{Z}_n)$.

Choice of b and B

Choices of b and B relate to lower and upper bounds on CR_n^* , the optimal (minimum) value of $CR(\mathbf{Z}_n)$, for designs of size n_1 and n_2 , for $n \in \{n_1, n_1 + 1, \dots, n_2\}$.

Since the *n* balls $\mathscr{B}(\mathbf{x}_i, \mathsf{CR}_n^*)$ centered at the optimal design points cover \mathscr{X} , $nV_d(\mathsf{CR}_n^*)^d \geq \operatorname{vol}(\mathscr{X}) = 1$, with V_d the volume of the *d*-dimensional unit ball $\mathscr{B}(\mathbf{0}, 1)$, $V_d = \pi^{d/2} / \Gamma(d/2 + 1)$.

 $\mathsf{CR}_n^* \ge R_*(n,d) = (nV_d)^{-1/d}$.

 \mathscr{X} can be covered by m^d hypercubes with side $1/m \to$ by m^d balls with radius $\sqrt{d}/(2m)$. Taking $m = \lfloor n^{1/d} \rfloor$, we have $n \ge m^d$ and:

$$\mathsf{CR}_n^\star \leq \mathsf{CR}_{m^d}^\star \leq R^\star(n,d) = \frac{\sqrt{d}}{2 \lfloor n^{1/d} \rfloor}$$

A reasonable choice when $n \in [n_1, n_2]$ is then $b = b_{\star} = R_{\star}(n_2, d)$ and $B = B^{\star} = R^{\star}(n_1, d)$.

11/31

Implementation: $\widehat{I}_{b,B,q}^A(\mathbf{Z}_n)$

- To evaluate $I_{b,B,q}(\mathbf{Z}_n)$, we substitute the empirical c.d.f. $\widehat{F}_{\mathbf{Z}_n}$, obtained by replacing μ by the uniform measure μ_Q supported on a finite subset \mathscr{X}_Q of \mathscr{X} .
- $\mathscr{X}_Q = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(Q)}\}$, well spread over \mathscr{X} .
- $d_j(\mathbf{Z}_n) = d(\mathbf{x}^{(j)}, \mathbf{Z}_n), \ j = 1, \dots, Q.$
- $\overline{d}_j(\mathbf{Z}_n) = \min\{\max\{d_j(\mathbf{Z}_n), b\}, B\}, j = 1, \dots, Q.$
- $\overline{d}_{j:Q}$ the \overline{d}_j sorted by increasing values, with $\overline{d}_{1:Q}(\mathbf{Z}_n) \leq \overline{d}_{2:Q}(\mathbf{Z}_n) \leq \cdots \leq \overline{d}_{2:Q}(\mathbf{Z}_n) \leq \overline{d}_{Q+1:Q}(\mathbf{Z}_n) = B$,

we obtain:

$$I_{b,B,q}(\mathbf{Z}_n) \approx \widehat{I}_{b,B,q}^A(\mathbf{Z}_n) = \frac{1}{Q(q+1)} \sum_{j=1}^Q j \left[\overline{d}_{j+1:Q}^{q+1}(\mathbf{Z}_n) - \overline{d}_{j:Q}^{q+1}(\mathbf{Z}_n) \right]$$

An alternative approach: $\hat{I}^B_{b,B,q}(\mathbf{Z}_n)$

Discrete approximation

Taking m radii r_i well spread over [b,B], with $b=r_1 < r_2 < \cdots < r_m = B,$ the trapezoidal rule gives

$$I_{b,B,q}(\mathbf{Z}_n) \approx \widehat{I}_{b,B,q}^B(\mathbf{Z}_n) = \sum_{i=1}^{m-1} \frac{r_{i+1}^q \, \widehat{F}_{\mathbf{Z}_n}(r_{i+1}) + r_i^q \, \widehat{F}_{\mathbf{Z}_n}(r_i)}{2} \left(r_{i+1} - r_i \right).$$

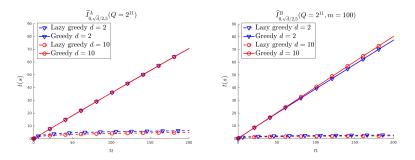
When the r_i are regularly spaced, with $r_{i+1} - r_i = \delta_r$ for all i, the expression simplifies into

$$\widehat{I}_{b,B,q}^{B}(\mathbf{Z}_{n}) = \delta_{r} \left[\frac{r_{1}^{q} \widehat{F}_{\mathbf{Z}_{n}}(r_{1}) + r_{m}^{q} \widehat{F}_{\mathbf{Z}_{n}}(r_{m})}{2} + \sum_{i=2}^{m-1} r_{i}^{q} \widehat{F}_{\mathbf{Z}_{n}}(r_{i}) \right].$$

Approximations $\widehat{I}_{b,B,q}^A$ and $\widehat{I}_{b,B,q}^B$

- We compare the designs obtained by maximizing $\widehat{I}^{A}_{b,B,q}(\mathbf{Z}_{n})$ and $\widehat{I}^{B}_{b,B,q}(\mathbf{Z}_{n})$, with m = 100, in terms of $CR(\mathbf{Z}_{n})$.
- The set \mathscr{X}_C of candidate points coincides with \mathscr{X}_Q and corresponds to the first $2^{11} = 2.048$ elements of Sobol' sequence in $\mathscr{X} = \mathscr{C}_d$.
- We consider the two cases d = 2 and d = 10 and take q = 5.
- The covering radius $CR(\mathbf{Z}_n)$ is approximated by $CR_{\mathscr{X}_N}(\mathbf{Z}_n)$, with \mathscr{X}_N given by 2^{18} points of a scrambled Sobol' sequence complemented by a 2^d full factorial design, which gives $N = 262\,176$ for d = 5 and $N = 263\,168$ for d = 10.
- We consider the two cases where $b = b_{\star} = R_{\star}(n_2, d)$ and $B = B^{\star} = R^{\star}(n_1, d)$, with $n_1 = 50$ and $n_2 = 100$ and b = 0, $B = \sqrt{d}/2$

Computational times of the greedy and lazy-greedy maximizations of $\hat{I}^A_{0,\sqrt{d}/2,5}(\mathbf{Z}_n)$ and $\hat{I}^B_{0,\sqrt{d}/2,5}(\mathbf{Z}_n)$.



- Linear increase of computational cost with *n* for the greedy version: acceleration provided by the lazy-greedy implementation.
- For the lazy-greedy algorithm, maximization of $\widehat{I}^B_{0,\sqrt{d}/2,5}(\mathbf{Z}_n)$ (with $m = 100 \ll Q$) is faster than maximization of $\widehat{I}^A_{0,\sqrt{d}/2,5}(\mathbf{Z}_n)$.
- The effect of d is negligible.

Effect of b,B

- We apply Greedy algorithm to the maximization of $\widehat{I}_{b,B,q}^{A}(\mathbf{Z}_{n})$.
- $\mathscr{X}_C = \mathscr{X}_Q$ corresponds to the first $2^{10} = 1\,024$ elements of Sobol' sequence in $\mathscr{X} = \mathscr{C}_2$.
- We compare b = 0, $B = \sqrt{d}/2$ and $b = R_{\star}(n_2, d)$, $B = R^{\star}(n_1, d)$ for q = 5, with $n_1 = 10$ and $n_2 = 20$.

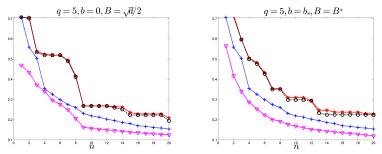


Figure: $CR(\mathbf{X}_n)$ (red solid line and \bigstar), $CR_{\mathscr{X}_Q}(\mathbf{X}_n)$ (black dashed curve and \circ), CR_n^{\star} (blue dashed curve and +), empirical value of $E_{q+1}(\mathbf{X}_n)$ (magenta curve and \bigtriangledown), for \mathbf{X}_n obtained by greedy maximization of $\widehat{I}_{b,B,q}^A(\mathbf{X}_n)$.

Effect of b, B

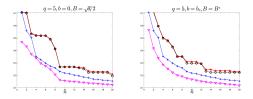


Figure: CR(\mathbf{X}_n) (red solid line and $\mathbf{\star}$), CR $_{\mathscr{K}_Q}(\mathbf{X}_n)$ (black dashed curve and o), CR $_n^{\star}$ (blue dashed curve and +), empirical value of $E_{q+1}(\mathbf{X}_n)$ (magenta curve and ∇).

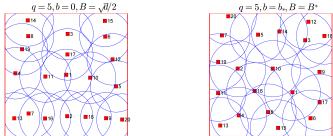


Figure: X_{20} and circles centered at design points with radius CR(X_{20}); the order of selection of the points is indicated.

Effect of q

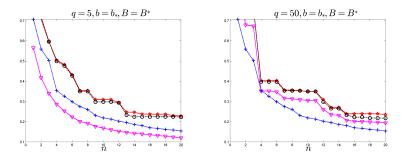


Figure: $CR(\mathbf{X}_n)$ (red solid line and \bigstar), $CR_{\mathscr{X}_Q}(\mathbf{X}_n)$ (black dashed curve and \circ), CR_n^{\star} (blue dashed curve and +), empirical value of $E_{q+1}(\mathbf{X}_n)$ (magenta curve and \bigtriangledown), for \mathbf{X}_n obtained by greedy maximization of $\widehat{I}_{b,B,q}^A(\mathbf{X}_n)$.

- The approximation $E_{q+1}(\mathbf{X}_n)$ is closer to $CR(\mathbf{X}_n)$ for q = 50, but when $q = 5 CR(\mathbf{X}_n)$ is smaller for $n \in \{1, 2, 3, 7, \dots, 12, 14, \dots, 20\}$.
- Best performances are not necessarily achieved with high values of q.

Maximization of $\hat{I}^A_{b,B,q}$ and $\hat{I}^B_{b,B,q}$: covering radii and computational times

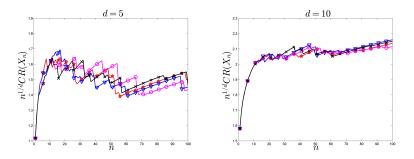


Figure: $\widehat{I}^A_{b_\star,B^\star,5}$ (red \bigstar), $\widehat{I}^B_{b_\star,B^\star,5}$ (blue \triangledown), $\widehat{I}^A_{0,\sqrt{d}/2,5}$ (magenta \circ) and $\widehat{I}^B_{0,\sqrt{d}/2,5}$ (black \times); m = 100 for $\widehat{I}^B_{b,B,q}$, $C = Q = 2^{11}$.

	$\widehat{I}^A_{b_\star,B^\star,5}$	$\widehat{I}^A_{0,\sqrt{d}/2,5}$	$\widehat{I}^B_{b_\star,B^\star,5}$	$\widehat{I}^B_{0,\sqrt{d}/2,5}$
d = 2	2.4	5.3	0.8	2.3
d = 5	3.8	5.2	1.4	2.2
d = 10	4.1	4.1	1.8	1.8

Coffee-house design

Coffee-house designs

- Obtained by greedy maximization of $PR(\mathbf{Z}_n)$ for n > 1.
- \mathbf{x}_1 is usually the Chebyshev center of \mathscr{X} .
- $\mathbf{x}_{n+1} \in \operatorname{Arg} \max_{\mathbf{x} \in \mathscr{X}} d(\mathbf{x}, \mathbf{X}_n).$

The simple greedy coffee-house construction ensures:

$$\frac{1}{2} \leq \frac{\mathsf{CR}_n^\star}{\mathsf{CR}(\mathbf{X}_n)} \leq 1 \ (n \geq 1) \quad \text{and} \quad \frac{1}{2} \leq \frac{\mathsf{PR}(\mathbf{X}_n)}{\mathsf{PR}_n^\star} \leq 1 \ (n \geq 2) \,,$$

with PR_n^\star , CR_n^\star the optimal (maximum) value of $\mathsf{PR}(\mathbf{Z}_n)$, $\mathsf{CR}(\mathbf{Z}_n)$ respectively.

Enhancing the coffee-house design

- Places design points on the boundary of \mathscr{X} : not favourable to obtain low $CR(\mathbf{Z}_n)$.
- We consider a modified method that forces design points to stay away from the boundary of $\mathscr{X}.$
- Parameter β that controls the ratio between the distance to the design and the distance to the boundary ∂X of the compact set X.

 β -spacing of \mathbf{Z}_n , for $\beta > 0$

$$\begin{split} S_{\beta}(\mathbf{Z}_n) &= \sup \left\{ r : \exists \mathbf{x} \in \mathscr{X} \text{ such that } d(\mathbf{x}, \mathbf{Z}_n) \geq r \text{ and } d(\mathbf{x}, \partial \mathscr{X}) \geq \frac{r}{\beta} \right\} = \\ & \sup_{\mathbf{x} \in \mathscr{X}} D_{\beta}(\mathbf{x}, \mathbf{Z}_n), \\ \text{where } D_{\beta}(\mathbf{x}, \mathbf{Z}_n) &= \min \left\{ d(\mathbf{x}, \mathbf{Z}_n), \ \beta \ d(\mathbf{x}, \partial \mathscr{X}) \right\}, \ \mathbf{x} \in \mathscr{X}, \text{ and} \\ d(\mathbf{x}, \partial \mathscr{X}) &= \inf_{\mathbf{z} \in \partial \mathscr{X}} \|\mathbf{x} - \mathbf{z}\|. \end{split}$$

Enhancing the coffee-house design (continuation)

The coffee-house algorithm can be extended to:

The greedy maximization of $P_{\beta}(\mathbf{Z}_n)$, $\beta > 0$, where

$$P_{\beta}(\mathbf{Z}_{n}) = \min_{\mathbf{z}_{i} \neq \mathbf{z}_{j} \in \mathbf{Z}_{n}} \frac{1}{2} \min \left\{ \left\| \mathbf{z}_{i} - \mathbf{z}_{j} \right\|, \ \beta \ d(\mathbf{z}_{i}, \partial \mathscr{X}) \right\}$$

using $\mathbf{x}_{n+1} \in \operatorname{Arg} \max_{\mathbf{x} \in \mathscr{X}} D_{\beta}(\mathbf{x}, \mathbf{X}_n)$ for any $n \geq 1$, where $D_{\beta}(\mathbf{x}, \mathbf{Z}_n) = \min \left\{ d(\mathbf{x}, \mathbf{Z}_n) , \ \beta \ d(\mathbf{x}, \partial \mathscr{X}) \right\}$, $\mathbf{x} \in \mathscr{X}$, and $d(\mathbf{x}, \partial \mathscr{X}) = \inf_{\mathbf{z} \in \partial \mathscr{X}} \|\mathbf{x} - \mathbf{z}\|$.

Choice of β

- Depending on n_2 , such that \mathbf{x}_2 be at distance $R_{\star}(n_2, d)$ from a vertex of \mathscr{X} , with $R_{\star}(n_2, d)$ the lower bound on $\mathsf{CR}_{n_2}^{\star}$.
- This implies $d(\mathbf{x}_2, \partial \mathscr{X}) = R_\star(n_2, d)/\sqrt{d} = \|\mathbf{x}_2 \mathbf{x}_1\|/\beta$ and gives

$$\beta = \beta_{\star}(n_2, d) = \frac{d}{2 R_{\star}(n_2, d)} - \sqrt{d}.$$

Enhancing the coffee-house design (continuation)

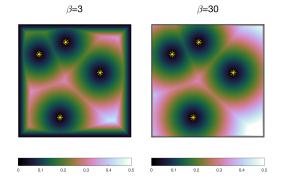


Figure: Edgephobe compromise distance $D_{\beta}(\mathbf{x}, \mathbf{Z}_n)$ for a 4-point design (yellow stars) in $\mathscr{X} = [0, 1]^2$.

Numerical study

We compare the performance of

- Designs \mathbf{X}_n^A that incrementally maximize the covering measure $\hat{I}_{b_\star,B^\star,q}^A(\mathbf{X}_n)$.
- Nested subsequences \mathbf{X}_n^H and \mathbf{X}_n^S of low discrepancy Halton and Sobol' sequences.
- $\mathbf{X}_n^{CH,\beta}$ obtained by greedy maximization of the criteria $P_{\beta}(\mathbf{Z}_n)$ based on pairwise distances.
- Incremental constructions:
 - \mathbf{X}_{n}^{VD} , Wynn's Vertex-Direction method¹.
 - \mathbf{X}_n^{RD} , a relaxed version² of the covering criterion.

¹The sequential generation of D-optimum experimental designs, Wynn, H., Annals of Math. Stat., 41: 1655-1664, 1970.

 2 An algorithm for the construction of spatial coverage designs with implementation in SPLUS, Royle, J., Nychka, D., Computers and

Covering radii for d = 10, q = 5

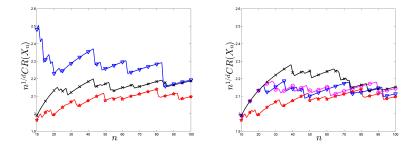


Figure: Left: \mathbf{X}_{n}^{A} (red \bigstar), \mathbf{X}_{n}^{H} (blue ∇) and \mathbf{X}_{n}^{S} Sobol' sequence (black \times). Right: \mathbf{X}_{n}^{A} (red \bigstar), $\mathbf{X}_{n}^{CH,\infty}$ (black \times), $\mathbf{X}_{n}^{CH,2\sqrt{2d}}$ (magenta \circ) and $\mathbf{X}_{n}^{CH,\beta_{\star}(100,d)}$, (blue ∇).

- \mathbf{X}_n^A best overall performance.
- $\mathbf{X}_{n}^{\hat{C}H,\beta_{\star}(100,d)}$ yields smaller covering radii for a few values of n.
- $\mathbf{X}_n^{CH,\infty}$ is almost always outperformed by the two other variants.

Mesh-ratio for d = 10

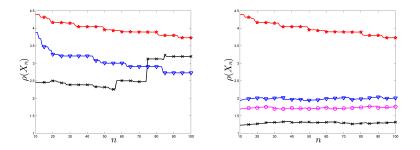


Figure: Left: \mathbf{X}_{n}^{A} (red \bigstar), \mathbf{X}_{n}^{H} (blue ∇) and \mathbf{X}_{n}^{S} Sobol' sequence (black \times). Right: \mathbf{X}_{n}^{A} (red \bigstar), $\mathbf{X}_{n}^{CH,\infty}$ (black \times), $\mathbf{X}_{n}^{CH,2\sqrt{2d}}$ (magenta \circ) and $\mathbf{X}_{n}^{CH,\beta_{\star}(100,d)}$, (blue ∇).

- Minimizing covering radius

 → reduces packing radius.
- \mathbf{X}_n^A (red \bigstar) worse than other designs.
- The best mesh-ratios are observed for $\mathbf{X}_{n}^{CH,\infty}$, which greedily maximizes $\mathsf{PR}(\mathbf{X}_{n})$.

Covering radius and mesh-ratio for d = 10, $\mathscr{X}_{100} = \mathbf{Z}_{Lh,100}$

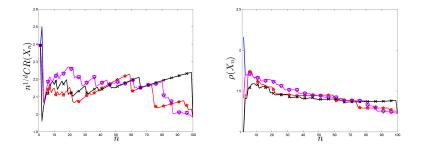


Figure: Greedy maximization of $\widehat{I}_{b_n,B_n,5}^A(\mathbf{Z}_n)$ (red \bigstar) and of $P_\beta(\mathbf{Z}_n)$ with $\beta = \infty$ (black \times), $\beta = 2\sqrt{2d}$ (magenta \circ) and $\beta = \beta_\star(n_2,d)$ (blue ∇).

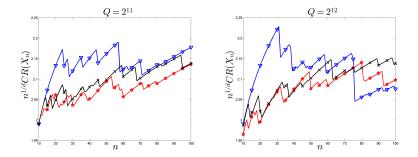


Figure: \mathbf{X}_n^A (red \bigstar), \mathbf{X}_n^{VD} (blue \triangledown) and \mathbf{X}_n^{RD} (black \times).

- X^A_n (red ★) and XRD_n (black ×) perform rather similarly, with a small advantage to X^A_n.
- \mathbf{X}_n^{VD} more sensitive to Q.

	\mathbf{X}_n^A	\mathbf{X}_n^{VD}	\mathbf{X}_n^{RD}	\mathbf{X}_{n}^{LRD}	$\mathbf{X}_n^{CH,\infty}$	$\mathbf{X}_n^{CH,2\sqrt{2d}}$	$\mathbf{X}_{n}^{CH,\beta_{\star}(100,d)}$
$Q = 2^{11}$	4.1	0.7	5.6	4.4	0.3	0.6	0.6
$\tilde{Q} = 2^{12}$	15.8	2.8	21.4	17.6	0.3	0.6	0.6

Designs in non-convex domain: annular geometry

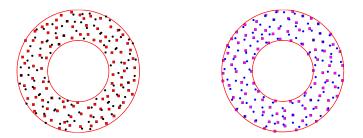


Figure: Left: \mathbf{X}_n^A obtained by greedy maximization of $\widehat{I}_{b_\star,B^\star,5}^A(\mathbf{Z}_n)$ (red \blacksquare) and points \mathbf{X}_n^S from Sobol' sequence (black dots). Right: coffee-house designs $\mathbf{X}_n^{CH,\infty}$ in \mathscr{X} (magenta \blacksquare) and $\mathbf{X}_n^{CH',\infty}$ in $\mathscr{X}' \subset \mathscr{X}$ (blue dots).

Conclusion

- \mathbf{X}_n^A attractive alternative to classic incremental constructions:
 - outperforms low discrepancy sequences.
 - better overall performance than best coffee-house versions.
 - stability advantage over \mathbf{X}_n^{VD} and \mathbf{X}_n^{RD} .
- $\bullet\,$ Different design methods \to significantly different computational load.
- Coffee-house design hard to outperform in mesh-ratio since $\rho(\mathbf{X}_n) \leq 2, \; \mathrm{but}$
- Highly sensitive to design packing (or separating) radius.
 - $I_{b,B,q}(\mathbf{Z}_n)$ proposed in the paper is able to guarantee small covering radius.
 - its incremental maximization is an attractive alternative, leading to small covering radii designs.
 - \bullet Computationally efficient implementations: finite set \mathscr{X}_C + lazy-greedy.
 - \bullet Limitation: approximation of the uniform measure on $\mathscr X$, poor when the dimension d is very large.