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Introduction

o Machine learning is inseparably connected with uncertainty.

o Learning in the sense of generalizing beyond the data seen so far is
necessarily based on a process of induction.

o Models induced from data are never provably correct, but only
hypothetical and therefore uncertain, and the same holds true for the
predictions produced by a model.

o Other sources of uncertainty: incorrect model assumptions, noisy or
imprecise data, etc.

o Trustworthy representation of uncertainty is desirable and should
be considered as a key feature of any machine learning method, all
the more in safety-critical application domains.
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Introduction

o Many applications require safe and reliable predictions, and hence a
certain level of self-awareness of ML systems:
» equip predictions with an appropriate quantification of uncertainty,
» reject a decision in cases of high uncertainty (abstention) ,

» deliver a credible set-valued prediction (partial abstention),
S
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Driver assistance systems: a safety-critical application
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Introduction

Example of a lack of “uncertainty-awareness”:

Predictions by EfficientNet (Tan and Le, 2019) on test images from ImageNet:

For the left image, the neural network predicts “typewriter keyboard" with
certainty 83.14 %, for the right image “stone wall” with certainty 87.63 %.
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Aleatoric versus epistemic uncertainty

o Traditional approaches in ML fail to distinguish inherently different
sources of uncertainty, often referred to as aleatoric and epistemic
uncertainty (Hora, 1996; Der Kiureghian and Ditlevsen, 2009).

o Motivated in the context of ML for medical diagnosis by Senge et al.
(2014), increasing attention more recently due to interest by the deep
learning community (Kendall and Gal, 2017).

o Aleatoric (aka statistical) uncertainty refers to the notion of
randomness, that is, the variability in the outcome of an experiment
which is due to inherently random effects.

o Epistemic (aka systematic) uncertainty refers to uncertainty caused
by a lack of knowledge, i.e., to the epistemic state of the agent.

o As opposed to aleatoric uncertainty, epistemic uncertainty can in
principle be reduced on the basis of additional information.
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Aleatoric versus epistemic uncertainty

“kichwa”
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“Not knowing the chance of mutually exclusive events and knowing the
chance to be equal are two quite different states of knowledge"

Ronald Fisher (1890-1962)
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Generalized uncertainty calculi
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Largely motivated by the observation that standard probability is (arguably)
inappropriate to represent ignorance, to weaken closed world assumption, etc.
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Credal sets

PSG vs.
Olympique Marseille

Avai FC vs.
Fortaleza EC

Bayern Miinchen vs.
Borussia Dortmund

credal
set

Probability distributions p = (p(a), p(b), p(c)) on @ = {a, b, c}, for example
2 = {home wins, draw, away wins}, as points in a Barycentric coordinate system.
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Aleatoric versus epistemic uncertainty in ML

feature B

v

feature B

feature A

feature A

v

E. Hiillermeier

9/41



Aleatoric versus epistemic uncertainty in ML
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Aleatoric versus epistemic uncertainty in ML
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Is the uncertainty aleatoric or epistemic?
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Aleatoric versus epistemic uncertainty in ML
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Like random versus pseudo-random numbers ...
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Problem setting and assumptions

o A precise specification of the problem setting and underlying
assumptions is an important prerequisite, not only for providing
learning guarantees, but also for uncertainty quantification.

Possibly out of distribution, or is
this definitely excluded?
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o Here, one might be quite sure about the class of the query under
standard assumptions of binary classification, but much less so in a
setting of novelty detection, where new classes may emerge.

o Likewise, assumptions such as i.i.d. data generation are really
crucial (the past should be representative of the future).
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Supervised learning and predictive uncertainty

o Uncertainty occurs in various facets in machine learning, and different
settings and learning problems will usually require a different
handling from an uncertainty modeling point of view.

o Here, we focus on the standard setting of supervised learning and
predictive uncertainty.

induction  learning

rinciple  algorithm
P P & test data @

background knowledge MODEL INDUCTION [ -
MODEL h: X — Y ‘

training data D h = Ind(D) l

predictions § = h(z)

o Assuming probabilistic data generation P(x,y) = P(x)P(y | x),
probabilistic predictors (estimating P(y | x)) are natural primitives.
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Supervised learning and predictive uncertainty

o A learner is given access to a set of (i.i.d.) training data

D= {(XlaY1)7--~7(XN7YN)} C & x y ’

where X is an instance space and ) the set of outcomes.
o Given a hypothesis space % C ! and a loss function

£:YxY—R,
the goal of the learner is to induce a hypothesis h* € H with low risk

R(R) = [, Hh(.y)dP(x.y)

o The learner’s choice is commonly guided by the empirical risk

emp Z E
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Supervised learning and predictive uncertainty

o Yet, since Remp(h) is only an estimation of the true risk R(h), the
hypothesis (empirical risk minimizer)
h:= arg min Remp(h)
heH

will normally not coincide with the true risk minimizer

h* := arg min R(h).
heH
o Correspondingly, there remains uncertainty regarding h* as well as

the approximation quality of h (in the sense of its proximity to h*)
and its true risk R(h).

o Eventually, one is often interested in the predictive uncertainty, i.e.,
the uncertainty related to the prediction j4 for an individual (query)
instance xq € X.
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Sources of uncertainty

o A query instance x4 gives rise to a conditional probability on V:

P(Xq; ¥)

P(y[xq) = o(xe)

o Thus, even given full information in the form of the measure P (and
its density p), uncertainty about the actual outcome y remains.

o This uncertainty is of an aleatoric nature.

o The best point predictions (minimizing expected loss) are prescribed
by the pointwise Bayes predictor f*:

F(x) = arg min [ £(y.9)dP(y|x).
yey JY
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Sources of uncertainty
o The Bayes predictor does not necessarily coincide with the pointwise
Bayes predictor.

o This discrepancy between h* and f* is connected to the uncertainty
regarding the right type of model to be fit, and hence the choice of
the hypothesis space H.

o We shall refer to this uncertainty as model uncertainty.

o Due to model uncertainty, one cannot guarantee
h(x) = f(x),
or, in the case of probabilistic predictions p(y | x, h*), that

p(-[x,h") = p(-x).
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Sources of uncertainty

o Hypothesis h produced by the learner is an estimate of h*.

o The quality of this estimate strongly depends on the quality and the
amount of training data.

o We refer to the uncertainty about the discrepancy between h and h*
as approximation uncertainty.

o Both model and approximation uncertainty are of epistemic nature.
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Reducible versus irreducible uncertainty

o One way to characterize uncertainty as aleatoric or epistemic is to
ask whether or not it can be reduced through additional information.

o Aleatoric uncertainty refers to the irreducible part of the uncertainty,
which is due to the stochastic dependency between instances x and
outcomes y.

flipping a biased coin

o Model uncertainty and approximation uncertainty are subsumed under
the notion of epistemic uncertainty, that is, uncertainty due to a lack
of knowledge about the perfect predictor.

o In principle, these uncertainties are reducible.
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Reducible versus irreducible uncertainty

o But what does “reducible” actually mean?

o An obvious source of additional information is the training data D:
Uncertainty can be reduced by observing more data, ...

o ... while the problem setting (X, ), H, P) remains fixed.
o In practice, this is of course not always the case.

o For example, a learner may decide to extend the description of
instances by additional features, thereby replacing the current
instance space X’ by another space X”.

o Thus, aleatoric and epistemic uncertainty should not be seen as
absolute notions. Instead, they are context-dependent in the sense
of depending on the setting (X, ), H, P).

E. Hiillermeier 23/41



Reducible versus irreducible uncertainty
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Left: The two classes are overlapping, which causes (aleatoric) uncertainty
in a certain region of the instance space. Right: By adding a second
feature, and hence embedding the data in a higher-dimensional space, the
two classes become separable, and the uncertainty can be resolved.
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Approaches for representing uncertainty in ML
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Bayesian agents

o An explicit attempt at uncertainty quantification, i.e., separating
and measuring aleatoric and epistemic uncertainty (in the context of
regression with DNNs) is made by Depeweg et al. (2018).

o Here, epistemic uncertainty corresponds to uncertainty about network
weights w (playing the role of hypotheses h).

o The idea is to model epistemic uncertainty as mutual information
between outcomes and hypotheses:

H[Y] = I(Y;W)+H[Y|W]
—— ——— N——
total uncertainty epistemic aleatoric

o Intuitively, epistemic uncertainty thus captures the amount of
information about the model parameters w that would be gained
through knowledge of the true outcome y.
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Bayesian agents

o Total uncertainty = entropy of the predictive posterior distribution,
in the case of discrete ) given by

Hip(y|x)] ==Y p(y|x)logyp(y|x).
yey

o This uncertainty also includes the (epistemic) uncertainty about the
network weights w, but fixing a set of weights, i.e., considering a
distribution p(y | w, x), removes the epistemic uncertainty.

o Therefore, the expectation over the entropies of these distributions,
Eoow p)H[P(y | W, x)] =

z—/p(wlD) (Z p(y|W>X)|0g2p(y\w7X)) dw ,

yey

is a measure of the aleatoric uncertainty (conditional entropy).
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Bayesian agents

o Finally, the epistemic uncertainty is obtained as the difference

EU(X) = H[p(y | X)] - Ep(w|'D)H[p(y | va)] )
which equals the mutual information between y and w.

o A similar approach was recently adopted by Mobiny et al. (2017).
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Ensemble methods for uncertainty quantification
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o Ensemble can be seen as an approximation of a distribution.

o Intuitively, diversity is an indicator for epistemic uncertainty.
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Bayesian agents: Ensemble-based approximation

o Based on an ensemble H = {hy,..., hy} of hypotheses, an
approximation of conditional entropy can be obtained by

= _72 > p(y | hi,x)logy p(y | hi,x),
i=1ye)y
an approximation of total uncertainty (Shannon entropy) by

M M
U(x) ::—Z (MZ y|h,,x>|og2 <M§ y|h,,x>

yey 1

p(y | hi,x) p(y | hi,x)

and an approximation of epistemic uncertainty (mutual information)
by the difference, which is equivalent to Jensen-Shannon
divergence of the distributions p(y | hi,x), i=1,..., M.
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Bayesian agents: Ensemble-based approximation

o For neural networks, it has been shown that techniques such as
Dropout (Gal and Ghahramani, 2016) and DropConnect (Mobiny
et al., 2017) can be interpreted as (implicit) ensemble methods, and
can hence be used to implement this approach.

o Of course, any other ensemble technique could be used as well.

o We proposed an implementation based on Random Forests, using
decision trees that predict probabilities in terms of (Laplace-corrected)
relative frequencies (Shaker and Hillermeier, 2020).

o %@
@)
- O OOO [eXe) (©] O O
O O
@) G 00
313 1011 o O OO OOO
(

Qe
R
N

%)

R
S
ol
Qi

E. Hiillermeier 33/41



Experimental results

o Quality of uncertainty quantification was evaluated (indirectly) in
terms of accuracy-rejection curves.
o Results for two approaches, DNN with DropConnect and Random

Forests, both for aleatoric (above) and epistemic (below) uncertainty:
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Experimental results

o Relationship between uncertainty degrees from neural networks and
Random Forests (aleatoric left, epistemic right, diabetes data):
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Conclusion and outlook

o We highlighted the benefits of distinguishing between different types
of uncertainty in ML, notably aleatoric and epistemic uncertainty.

o In the setting of supervised learning, aleatoric uncertainty in a
prediction is due to the inherently stochastic dependency between
instances and outcomes (and hence irreducible).

o Epistemic uncertainty is naturally associated with the lack of
knowledge about the true (or Bayes-optimal) hypothesis.

o In a Bayesian setting, epistemic uncertainty is reflected by the
posterior p(h|D) on H: The less peaked, the less informed the
learner is, the higher its (epistemic) uncertainty.

o We considered an information-theoretic approach to uncertainty
quantification and its realization by means of ensemble learning.

o Ongoing work on generalizing this for Levi and GS agents, building
on uncertainty quantification for generalized representations.
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Conclusion and outlook

o We also highlighted the fact that uncertainty quantification, like
any other form of statistical inference, requires a precise specification
of the underlying assumptions.

o This might be one reason for why model uncertainty is so difficult
to deal with (and actually neglected by most approaches so far).

o On the other side, model misspecification is a common problem in
practice, and should therefore not be ignored.

o Indeed, conflict and inconsistency can be seen as another source of
uncertainty, in addition to randomness and a lack of knowledge.

o In addition to foundational work of that kind, there are many
interesting applications that can benefit from “uncertainty-informed”
decisions ...
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Epistemic uncertainty sampling

o The idea of epistemic uncertainty sampling is to use a measure of
epistemic (instead of total) uncertainty in uncertainty sampling for
active learning (Nguyen et al., 2019).
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Epistemic uncertainty sampling

o Performance curves for different uncertainty sampling techniques
using decision trees as base learners:

Banknote authentication Blood transfusion Breast cancer Climate model

Parkinson
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