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a b s t r a c t

A new technique is proposed to construct observers and to achieve output feedback stabilization of a
class of continuous-time switched linear systems with a time-varying delay in the output. The delay is
a piecewise continuous bounded function of time and no constraint is imposed on the delay derivative.
For stability analysis, an extension of a recent trajectory based approach is used; this is fundamentally
different from classical Lyapunov function based methods. A stability condition is given in terms of the
upper bound on the time-varying delay to ensure global uniform exponential stability of the switched
feedback system. The main result applies in cases where some of the subsystems of the switched system
are not stabilizable and not detectable.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Switched systems have extensive applications in networks, au-
tomotive control, power systems, aircraft and air traffic control,
process control, mechanical systems, and many other domains;
see Lin and Antsaklis (2009), and the references therein. Due to this
strong motivation, many questions related to switched systems
such as stability (Liberzon, 2003; Liberzon & Morse, 1999; Sun &
Ge, 2011), controllability (Liu, Lin, & Chen, 2013; Sun, Ge, & Lee,
2002), observability and reachability (Hespanha, Liberzon, Angeli,
& Sontag, 2005; Ji, Feng, & Guo, 2007; Sun et al., 2002; Tanwani,
Shim, & Liberzon, 2013), and synthesis (Pettersson, 2003; Sun &
Ge, 2005), have been extensively studied in various contributions.
Stability and stabilization are challenging problems pertaining to
switched systems due to their hybrid nature and they are themain
topic of the present paper.

There are mainly two approaches used in the literature for
establishing the stability of switched systems:
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(i) It is shown in Liberzon and Morse (1999) that existence of
a common strict Lyapunov function is a necessary and sufficient
condition for the switched system to be stable under arbitrary
switching. On the other hand, when such a Lyapunov function
exists, finding it may be a difficult task because it is an NP-hard
problem; see Blondel and Tsitsiklis (1997). (ii) Liberzon and Morse
(1999) also showed that even if a switched systemdoes not possess
a common strict Lyapunov function, itmay be stable under a dwell-
time requirement, typically derived usingmultiple strict Lyapunov
functions. It is worthmentioning thatmultiple Lyapunov functions
may lead to an undesirable attenuation property which can only
be mitigated by imposing some strong assumptions; see Zhai, Hu,
Yasuda, and Michel (2001).

Both of the above mentioned approaches are mainly de-
veloped for non-delayed systems. But measurement delays are
present in many practical applications, such as chemical pro-
cesses, aerodynamics and communication networks, and they are
time-varying (see for instance Wu and Grigoriadis (2001) and
Yan and Özbay (2005)). Therefore, the problem of stabilizing
switched systems when a time-varying delay is present in the
output is strongly motivated. State feedback stabilization of de-
layed switched linear systems is proposed in Vu and Morgansen
(2010) using a combination of the multiple Lyapunov functions
approach and the merging switching signal technique. An online
and offline state feedback controller design for delayed switched
linear systems in the detection of the switching signal are dis-
cussed in Xie and Wang (2005). Moreover, Koru, Delibaşı, and
Özbay (2018) and Yan, Özbay, and Şansal (2014) present state
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feedback designs for delayed switched systems using a dwell-
time based stability analysis approach. Note that Koru et al.
(2018), Vu and Morgansen (2010), Xie and Wang (2005) and
Yan et al. (2014) assume that all of the subsystems of the switched
systemare controllable. Finally, a state feedback stabilization prob-
lem for a class of delayed switched systems is studied in Kim,
Campbell, and Liu (2006) and Sun, Wang, Liu, and Zhao (2008)
under the assumption that the subsystems satisfy a certain Hur-
witz convex combination condition. A common Lyapunov function
approach is used in Kim et al. (2006) and Sun et al. (2008) to carry
out stability analysis.

Contributions of this study: We propose a new technique to de-
sign observers and stabilizing dynamic output feedbacks offering
robust stability results with respect to the presence of a time-
varying pointwise delay in the output of the switched linear sys-
tem. To establish the stability of the closed-loop switched system,
we develop an extension of the trajectory based stability result
recently proposed in Mazenc and Malisoff (2015), and Mazenc,
Malisoff, and Niculescu (2017). We wish to point out that the new
extension of the trajectory based approach we state and prove in
the present paper is of interest by itself: it can be applied to a wide
range of systems, notably to families of systems with time-varying
delays wider than those invoked in Mazenc and Malisoff (2015),
and Mazenc, Malisoff et al. (2017), and therefore it is one of the
important contributions of our work.

We think that our main result can be regarded as an extension
of Kim et al. (2006), Koru et al. (2018), Sun et al. (2008), Vu and
Morgansen (2010), Xie andWang (2005), Yan et al. (2014) and Zhai,
Hu, Yasuda, and Michel (2000), offering new advantages because,
(i) our study does not assume that all the states are available for
feedback, (ii) it is not limited to systems whose all subsystems
are stabilizable and detectable, (iii) we use a new extension of
trajectory based approach for stability analysis which circumvents
the serious obstacle presented by the search for appropriate Lya-
punov functions, (iv) the application of our results is not restricted
to the class of delayed switched systems where all the convex
combinations of the subsystems in the absence of control must be
Hurwitz, (v) we allow the delay to be time-varying and piecewise
continuous function of time, and we do not impose any constraint
on the upper bound of the delay derivative.

Now, we point out that the present paper is a continuation
of our conference paper (Mazenc, Ahmed, & Özbay, 2017). We
propose a significant extension of it by including, (i) dynamic
output feedback stabilization, (ii) a new extension of trajectory
based approach of Mazenc and Malisoff (2015) to produce less
conservative results, (iii) a systematic way to compute an explicit
value for the lower bound on the largest admissible delay for a
broad family of switched systems so that when the delay is smaller
than this bound, global uniform exponential stability (GUES) of the
feedback switched systems is guaranteed. Moreover, we do not
assume that the systems have synchronous switching sequences.

Organization of the paper: An extension of the trajectory based
approach is given in Section 2. Section 3 is devoted to the main
result of the paper. Section 4 discusses computational issues re-
lated to the delay bound. The results are illustrated by a numerical
example in Section 5. Finally, we summarize and highlight our
contributions in Section 6.

Notation: The notation will be simplified whenever no confu-
sion can arise from the context. I denotes the identitymatrix of any
dimension. The usual Euclidean norm of vectors, and the induced
norm of matrices, are denoted by |·|. Given any constant τ > 0,
we let C([−τ , 0],Rn) denote the set of all continuous Rn-valued
functions that are defined on [−τ , 0]. We abbreviate this set as Cin,
and call it the set of all initial functions. Also, for any continuous
function x : [−τ , ∞) → Rn and all t ≥ 0, we define xt by
xt (θ ) = x(t + θ ) for all θ ∈ [−τ , 0], i.e., xt ∈ Cin is the translation

operator. A vector or amatrix is nonnegative (resp. positive) if all of
its entries are nonnegative (resp. positive). We write M ≻ 0 (resp.
M ⪯ 0) to indicate that M is a symmetric positive definite (resp.
negative semi-definite) matrix. For two vectors V = (v1...vn)⊤
and U = (u1...un)⊤, we write V ≤ U to indicate that for all
i ∈ {1, . . . , n}, vi ≤ ui.

2. Extension of the trajectory based approach

We now provide with an extension of the trajectory based
approach given in Mazenc and Malisoff (2015).

Lemma 1. Let us consider a constant T > 0 and l functions zg :

[−T , +∞) → [0, +∞), g = 1, . . . , l. Let Z(t) = (z1(t) ... zl(t))⊤
and, for any θ ≥ 0 and t ≥ θ , define Vθ (t) =

(
sups∈[t−θ,t]z1(s) . . .

sups∈[t−θ,t]zl(s)
)⊤. Let Υ ∈ Rl×l be a nonnegative Schur stable

matrix. If for all t ≥ 0, the inequalities Z(t) ≤ ΥVT (t) are satisfied,
then limt→+∞zg (t) = 0 ∀ g = 1, . . ., l.

Proof. Since Υ is Schur stable, there is an integer q > 1 such that

|Υ q
|
√
l < 1. (1)

From Lemma 4 of Appendix A, we deduce that

Z(t) ≤ Υ qVqT (t) (2)

for all t ≥ qT . Consequently, |Z(t)| ≤ |Υ q
||VqT (t)|.

Using |VqT (t)| ≤
√
l sups∈[t−qT ,t]|Z(s)|, we obtain

|Z(t)| ≤ |Υ q
|
√
l sup
s∈[t−qT ,t]

|Z(s)| .

This inequality, in combinationwith the inequality (1) andMazenc
andMalisoff (2015, Lemma 1), allows us to conclude the result. □

3. Observer and control design

We introduce a range dwell-time condition, i.e. a sequence of
real numbers tk such that there are two positive constants δ and δ

such that t0 = 0 and for all k ∈ Z≥0,

tk+1 − tk ∈ [δ, δ]. (3)

Definition 1. Let π = {(i0, t0), . . . , (ik, tk), . . . , |ik ∈ Ξ , k ∈ Z≥0}

be a switching sequence. The function σ : [0, ∞) → Ξ =

{1, . . . , n} such that σ (t) = ik when t ∈ [tk, tk+1) is called an
associated switching signal.

We consider the continuous-time switched linear system:{
ẋ(t) = Aσ (t)x(t) + Bσ (t)u(t)
y(t) = Cσ (t)x(t − τ (t))

(4)

with x ∈ Rdx , u ∈ Rdu , y ∈ Rdy , for all t ≥ 0, τ (t) ∈ [0, τ ] with
τ > 0 and an initial condition in Cin. The delay τ (t) is supposed
to be a piecewise continuous function. For any i ∈ Ξ , Ai, Bi, and Ci
are real and constant matrices of compatible dimensions and σ is
a switching signal. We introduce an assumption which pertains to
the stabilizability and the detectability of the system (4), but does
not imply that all the pairs (Ai, Bi) are stabilizable and all the pairs
(Ai, Ci) are detectable.

Assumption 1. There are matrices Ki and Li for all i ∈ Ξ and
constants T ≥ τ̄ , a ∈ [0, 1), b ≥ 0, c ∈ [0, 1) and d ≥ 0 such
that the solutions of the system

α̇(t) = Mσ (t)α(t) + ζ (t) (5)
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with Mi = Ai + BiKi and ζ being a piecewise continuous function,
satisfy

|α(t)| ≤ a|α(t − T )| + b sup
ℓ∈[t−T ,t]

|ζ (ℓ)| (6)

for all t ≥ T . Similarly, the solutions of the system

β̇(t) = Nσ (t)β(t) + η(t) (7)

with Ni = Ai + LiCi and η being a piecewise continuous function,
satisfy the following inequality for all t ≥ T

|β(t)| ≤ c|β(t − T )| + d sup
ℓ∈[t−T ,t]

|η(ℓ)|. (8)

Theorem 1. Let the system (4) satisfy Assumption 1 and, s1, s2 and s3
be defined by

s1 = sup
i∈Ξ

|BiKi| , s2 = sup
i∈Ξ

|LiCi| , s3 = sup
i∈Ξ

|Mi| . (9)

If

τ (t) ≤ τ̄ < τ̄u (10)

for all t ≥ 0, where

τ̄u =
(1 − a)(1 − c)

ds1s2((1 − a) + bs3)
, (11)

then the origin of the following feedback system is GUES:⎧⎪⎨⎪⎩
ẋ(t) = Aσ (t)x(t) + Bσ (t)Kσ (t)x̂(t)
˙̂x(t) = Aσ (t)x̂(t) + Bσ (t)Kσ (t)x̂(t)

+ Lσ (t)[Cσ (t)x̂(t) − y(t)].
(12)

Proof. Let us introduce x̃(t) = x̂(t) − x(t). Then

˙̃x(t) = Aσ (t)x̃(t) + Lσ (t)[Cσ (t)x̂(t) − Cσ (t)x(t − τ (t))].

As an immediate consequence, using the definitions of thematrices
Mi and Ni, we obtain{
ẋ(t) = Mσ (t)x(t) + Bσ (t)Kσ (t)x̃(t)
˙̃x(t) = Nσ (t)x̃(t) + Lσ (t)Cσ (t)[x(t) − x(t − τ (t))].

From Assumption 1 and the equality x(ℓ) − x(ℓ − τ (ℓ)) =
∫ ℓ

ℓ−τ (ℓ)
[Mσ (m)x(m) + Bσ (m)Kσ (m)x̃(m)]dm, it follows that, for all t ≥ T + τ̄ ,

|x(t)| ≤ a|x(t − T )| + b sup
ℓ∈[t−T ,t]

|Bσ (ℓ)Kσ (ℓ)x̃(ℓ)| , (13)

|x̃(t)| ≤ c|x̃(t − T )| + d sup
ℓ∈[t−T ,t]

⏐⏐⏐⏐Lσ (ℓ)Cσ (ℓ)

×

∫ ℓ

ℓ−τ (ℓ)
[Mσ (m)x(m) + Bσ (m)Kσ (m)x̃(m)]dm

⏐⏐⏐⏐ . (14)

Using the constants defined in (9), we deduce from (13) and (14)
that (x(t), x̃(t)) satisfies:

|x(t)| ≤ a|x(t − T )| + bs1 sup
ℓ∈[t−T−τ̄ ,t]

|x̃(ℓ)| ,

|x̃(t)| ≤ ds2s3τ̄ sup
ℓ∈[t−T−τ̄ ,t]

|x(ℓ)|

+ (c + ds1s2τ̄ ) sup
ℓ∈[t−T−τ̄ ,t]

|x̃(ℓ)|.

Lemma 1 ensures that the origin of (12) is GUES if[
a bs1

ds2s3τ̄ ds1s2τ̄ + c

]

is Schur stable, which is equivalent to
a + c + ds1s2τ̄

2
+√(

a + c + ds1s2τ̄
2

)2

− ac − ds1s2 (a − bs3) τ̄ < 1 ,

from which we derive the simpler condition (10). □

4. Parameters of the delay bound

In this section, we illustrate a method to determine the con-
stants a, b, c , and d appearing in Assumption 1.

Consider a continuous-time switched linear system

ξ̇ (t) = Ωσ (t)ξ (t) + ϑ(t) , (15)

where ξ ∈ Rdξ , the switching signal σ is associated to a sequence
tk of the type of those introduced in Section 3 and ϑ is a piecewise
continuous function.

Lemma 2. Let the system (15) be such that there are real numbers
d1 > 0, d2 > 0, µ ≥ 1, γ > 0 and symmetric positive definite
matrices Ql, l ∈ Ξ , such that the LMIs

d1I ⪯ Qi ⪯ d2I , (16)

Qi ⪯ µQj , (17)

Ω⊤

i Qi + QiΩi ⪯ −γQi (18)

are satisfied for all i, j ∈ Ξ . Moreover, the constant µ△ = µe−γ δ is
such that

µ△ < 1. (19)

Then, along the trajectory of (15), the inequality

|ξ (t)| ≤

√
d2
d1

µµ
ρ

△
eγ δ|ξ (t − T )| +

√
µ

d2
γ d1

T sup
ℓ∈[t−T ,t]

|ϑ(ℓ)|

holds for all t ≥ T where T > 0 and ρ is a positive integer
depending on the choice of T such that for all t ∈ [tk, tk+1), we have

t − T ∈ [tk−ρ−1, tk−ρ). Moreover, we have
√

d2
d1

µµ
ρ

△
eγ δ < 1 when

ρ > 1
ln(µ∆)

[
ln

(
d1
d2µ

)
− γ δ

]
.

For the proof of Lemma 2, see Appendix B.

Remark 1. 1. Note that (19) holds if and only if δ >
ln(µ)

γ
, which

defines a minimum dwell-time condition.
2. Conditions of Lemma 2 are always satisfied when the matrices
Ωi, ∀ i ∈ Ξ , are Hurwitz; i.e., one can always find symmetric
positive definite matrices Qi, i ∈ Ξ , and real numbers d1 > 0,
d2 > 0, µ ≥ 1, γ > 0 satisfying the LMIs (16), (17), and (18). In
the next section we illustrate an alternative approach for the case
where some of Ωi’s are not Hurwitz.

5. Illustrative example

Consider the continuous-time switched linear system (4) with
x ∈ R2, τ ∈ [0, τ ),

σ (t) =

{
1 if 4ℓκ ≤ t < (4ℓ + 3)κ
2 if (4ℓ + 3)κ ≤ t < 4(ℓ + 1)κ ,

(20)

where κ > 0 is to be determined, ℓ = 0, 1, 2, . . ., and

A1 =

[
0 −1/2

2/5 0

]
, B1 =

[
0 0
0 0

]
, C1 =

[
1 0
0 1

]
,
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A2 =

[
0 −2/5

1/2 0

]
, B2 =

[
1 0
0 1

]
, C2 =

[
0 0
0 0

]
.

Let us observe that the subsystem (A1, B1, C1) is not stabilizable but
it is detectable whereas the subsystem (A2, B2, C2) is stabilizable
but not detectable. Moreover, in the absence of control, no convex
combination of the A1 and A2 is Hurwitz. Furthermore, the subsys-
tems cannot be stabilized by a static output feedback u = Kiy. In
this example, we have δ = κ and δ = 3κ and the switchings are
periodic with a period of 4κ . Wewill determine a set of parameters
for the delay bound depending on κ .

5.1. Preliminary result

First, we provide a preliminary result which shows how As-
sumption 1 can be satisfied in this particular example where some
of the subsystems of the switched systems are not stabilizable and
not detectable.

Lemma 3. Consider the switched linear system

ż(t) = Γσ (t)z(t) + ϱ(t) (21)

with σ defined by (20), and let Γ1 ∈ R2×2, Γ2 ∈ R2×2 and κ > 0
be such that the matrix Sκ := eΓ2κe3Γ1κ is Schur stable. Let Φ⋆ be the
state transition matrix of the system (21) with ϱ = 0:
∂Φ⋆

∂t
(t, s) = Γσ (t)Φ⋆(t, s) , Φ⋆(s, s) = I ,

for all t ∈ R and s ∈ R. Then, for all s ≥ 0, t ≥ s

|Φ⋆(t, s)| ≤ p1e−p2(t−s) (22)

with p1 = e8κ max{|Γ1|,|Γ2|}cκe2dκ and p2 = dκ/4κ , where cκ > 1 and
dκ > 0 are such that for all m ∈ N,

|Smκ | ≤ cκe−dκm. (23)

Moreover, for all T > 0,

|z(t)| ≤ p1e−p2T |z(t − T )|

+
p1

(
1 − e−p2T

)
p2

sup
ℓ∈[t−T ,t]

|ϱ(ℓ)|.
(24)

For the proof of Lemma 3, see Appendix C.

Remark 2. Since p2 > 0, then p1e−p2T < 1 when T >
ln(p1)
p2

, which
determines a lower bound for T .

5.2. Output feedback stabilization

Let us choose the gain matrices as

K2 =

[
−1/2 0
0 −4/7

]
, L1 =

[
−3/5 0
0 −4/5

]
.

Setting Γ1 = M1 = A1 and Γ2 = M2 = A2 + B2K2, one can
easily corroborate that (23) is satisfied with the choice of κ = 0.1,
ck = 1.01, and dk = 0.001 for all m ∈ N. Setting z = α,
Ωi = Γi = Mi for i ∈ {1, 2}, and ϱ = ζ , it can be easily verified that
(22) is satisfied by (5) with p1 = e8κ max{|Γ1|,|Γ2|}cκe2dκ = 1.7142
and p2 = dκ/4κ = 1.0025. Using Lemma 3 with T = 6, one
can observe that the solutions of system (5) satisfy (6) with a =

p1e−p2T = 0.0042, b = (p1/p2)
(
1 − e−p2T

)
= 1.7057. A similar

analysis shows that the solutions of system (7) satisfy (8) with c =

0.0052, d = 2.1156 and T = 6. Therefore, we conclude that the
switched delay system satisfies Assumption 1. Finally, application
of Theorem 1 with s1 = 0.5714, s2 = 0.8, s3 = 0.7611, and with
the preceding choices of the parameters yields τ̄u = 0.4465. Fig. 1

Fig. 1. Simulation results.

shows the simulation of system (12) for this particular example for
a piecewise continuous sawtooth function τ (t) of a fundamental
frequency of 1 Hz described by τ (t) = 0.2(t − ⌊t⌋) where the
switching signal σ (t) is given by (20) with κ = 0.1. The initial
conditions are chosen to be x1(0) = −0.5, x2(0) = −1, x̂1(0) = 0.5,
and x̂2(0) = 1, and the sample rate is 1 kHz.

It is worth emphasizing here that Vu and Morgansen (2010)
assumes that all of the modes of the delayed switched system
are controllable and Sun et al. (2008) requires the derivative of
the delay to be bounded which makes it impossible to apply their
results to this example; and it also seems to us that there is no
direct way to extend them to the output feedback case considered
in this paper.

6. Conclusions

Wepresented dynamic output feedback stabilization results for
systems with switches in the difficult case where a time-varying
pointwise delay in the output is present. The technique of proof
we proposed is based on the recent trajectory based approach.
To solve the conservatism problem we encountered in Mazenc,
Ahmed et al. (2017), we developed an extension of the main result
ofMazenc andMalisoff (2015), which is of interest for its own sake.
Many extensions of the results of the present paper are possible,
pertaining for instance to design of Ki and Li for maximization of
the delay bound, robustness issues with respect to disturbances,
the presence of a delay in the input, the design of reduced order
observers and extensions to families of nonlinear systems.

Appendix A. Technical lemma

Lemma 4. Let R ∈ Rm×m be a nonnegative matrix. Let us consider
functions wj : [0, +∞) → [0, +∞), j = 1, . . . ,m, and a constant
h > 0 such that for all t ≥ h, w = (w1 ... wm)⊤ satisfies

w(t) ≤ Rζ (t) (A.1)

with ζ (t) =
(
supℓ∈[t−h,t]w1(ℓ) . . . supℓ∈[t−h,t]wm(ℓ)

)⊤. Then, for all
integer k larger than 1, and all t ≥ kh, we have w(t) ≤ RkΨk(t) with
Ψk(t) =

(
supℓ∈[t−kh,t]w1(ℓ) . . . supℓ∈[t−kh,t]wm(ℓ)

)⊤.

Proof. We prove the lemma by induction:
Induction Assumption: There is l ∈ N, l > 0 such that the result of
Lemma 4 holds for all k ∈ {1, . . . , l}.
Step 1: The assumption is satisfied at the step 1.
Step l: Let us assume that it is satisfied at the step l ≥ 1. Then the
inequalities

w(t) ≤ RlΨl(t) (A.2)
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hold for all t ≥ lh. From (A.1), we deduce that for all t ≥ (l + 1)h
and ℓ ∈ [t − lh, t], the inequalities⎛⎜⎝w1(ℓ)

...

wm(ℓ)

⎞⎟⎠ ≤ R

⎛⎜⎜⎜⎝
sup

s∈[ℓ−h,ℓ]
w1(s)

...

sup
s∈[ℓ−h,ℓ]

wm(s)

⎞⎟⎟⎟⎠ ≤ RΨl+1(t)

hold. It follows that

Ψl(t) ≤ RΨl+1(t). (A.3)

By combining (A.2) and (A.3), we deduce that

w(t) ≤ Rl+1Ψl+1(t)

for all t ≥ (l + 1)h. Thus the induction assumption is satisfied at
the step l + 1. This concludes the proof. □

Appendix B. Proof of Lemma 2

Let us define Lyapunov functions:

Vi(ξ ) = ξ⊤Qiξ, ∀i ∈ Ξ .

We deduce from (18) that when σ (t) = i, then the derivative of Vi
along the trajectories of (15) satisfies

V̇i(ξ (t)) ≤ −2γVi(ξ (t)) + 2ξ (t)⊤Qiϑ(t)

≤ −γVi(ξ (t)) +
1
γ

ϑ(t)⊤Qiϑ(t)
(B.1)

where the last inequality is deduced from the Young’s inequality.
Now, let us integrate (B.1) between two instants s and t , t ≥ s,
belonging to the same sampling interval where σ (t) = l. Then

Vl(ξ (t)) ≤ eγ (s−t)Vl(ξ (s))

+
1
γ

∫ t

s
eγm−γ tϑ(m)⊤Qlϑ(m)dm

≤ eγ (s−t)Vl(ξ (s)) +
d2
γ

∫ t

s
eγm−γ t

|ϑ(m)|2dm ,

(B.2)

where the last inequality is a consequence of (16). Now, let us
consider T > 0, t ≥ T such that t ∈ [tk, tk+1) for some k ∈ Z≥0
and let ρ ∈ N be such that t − T ∈ [tk−ρ−1, tk−ρ). From (B.2), we
deduce that
Vσ (tk)(ξ (t)) ≤ e−γ (t−tk)Vσ (tk)(ξ (tk))

+
d2
γ

∫ t

tk

eγm−γ t
|ϑ(m)|2dm

≤ µe−γ (t−tk)Vσ (tk−1)(ξ (tk)) +
d2
γ

∫ t

tk

|ϑ(m)|2dm ,

(B.3)

where the last inequality is a consequence of (17). For similar
reasons,

Vσ (tk−1)(ξ (tk)) ≤ µ△Vσ (tk−2)(ξ (tk−1))

+
d2
γ

∫ tk

tk−1

|ϑ(m)|2dm

...

Vσ (tk−ρ )(ξ (tk−ρ+1)) ≤ µ△Vσ (tk−ρ−1)(ξ (tk−ρ))

+
d2
γ

∫ tk−ρ+1

tk−ρ

|ϑ(m)|2dm

(B.4)

Vσ (tk−ρ−1)(ξ (tk−ρ)) ≤ eγ (t−T−tk−ρ )Vσ (tk−ρ−1)(ξ (t − T ))

+
d2
γ

∫ tk−ρ

t−T
|ϑ(m)|2dm.

(B.5)

Combining (B.3), (B.4) and (B.5), and then using the definition
of range dwell-time condition from (3), we get

Vσ (tk)(ξ (t)) ≤ µ µ
ρ

△
eγ δVσ (tk−ρ−1)(ξ (t − T ))

+ µ
d2
γ

∫ t

t−T
|ϑ(m)|2dm .

Using (16) and the inequality
√
p1 + p2 ≤

√
p1+

√
p2 for all p1 ≥ 0,

p2 ≥ 0, we obtain

|ξ (t)| ≤

√
d2
d1

µµ
ρ

△
eγ δ|ξ (t − T )| +

√
µ

d2
γ d1

T sup
ℓ∈[t−T ,t]

|ϑ(ℓ)|.

Since (19) holds and T is arbitrarily large, one can choose T such
that the corresponding ρ is so that

√
d2
d1

µµ
ρ

△
eγ δ < 1. This con-

cludes the proof. □

Appendix C. Proof of Lemma 3

Let us introduce a sequence: gℓ = 4ℓκ . Then for all integer
n > 0, z(gℓ) = Snκ z(gℓ−n). Thus Φ⋆(gℓ, gℓ−n) = Snκ . Let t ∈ R and
s ∈ R be such that t > s ≥ t − 4κ . Then

|Φ⋆(t, s)| ≤ e4κ max{|Γ1|,|Γ2|}. (C.1)

Now, let t ∈ R and s ∈ R be such that t + 4κ > s. Then
there is ℓ such that t ∈ [gℓ, gℓ+1) and r ∈ N, r > 0 such that
s ∈ [gℓ−r−1, gℓ−r ). Then

|Φ⋆(t, s)| ≤ e8κ max{|Γ1|,|Γ2|}
|Φ⋆(gℓ, gℓ−r )| .

It follows that

|Φ⋆(t, s)| ≤ e8κ max{|Γ1|,|Γ2|}
|Srκ |.

Since Sκ is Schur stable, there are cκ > 1 and dκ > 0 such that for
all m ∈ N, |Smκ | ≤ cκe−dκm. Thus |Φ⋆(t, s)| ≤ e8κ max{|Γ1|,|Γ2|}cκe−dκ r .
Now, notice that r ≥

t−s
4κ − 2. Consequently,

|Φ⋆(t, s)| ≤ e8κ max{|Γ1|,|Γ2|}cκe2dκ e−dκ
t−s
4κ . (C.2)

From (C.1) and (C.2), we deduce that for all t ≥ s,

|Φ⋆(t, s)| ≤ e8κ max{|Γ1|,|Γ2|}cκe2dκ e−dκ
t−s
4κ . (C.3)

This allows us to conclude that (22) is satisfied.
Now, by integrating (21), we obtain that for all t ≥ T ,

|z(t)| =

⏐⏐⏐⏐Φ⋆(t, t − T )z(t − T ) +

∫ t

t−T
Φ⋆(t, ℓ)ϱ(ℓ)dℓ

⏐⏐⏐⏐
≤ p1e−p2T |z(t − T )| +

∫ t

t−T
p1e−p2(t−ℓ)dℓ sup

ℓ∈[t−T ,t]
|ϱ(ℓ)|

where the last inequality is a consequence of (22). □
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