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1 List of symbols and functions 

•  
1

M

m m=
=x x : set of the available observation vectors assumed to be independent and 

identically distributed (iid). 

• ( ) ( );X Xp px x τ : true joint probability density function (pdf) possibly parameterized by a 

real (deterministic and unknown) true vector pτ . 

• ( ) ( ) ( );X Xf f f
θ

x x x θ : Assumed joint pdf parameterized by a real (deterministic and 

unknown) vector d θ Θ . 

• ( )θ̂ x : estimator of the deterministic parameter vector θ  based on the data x.  

• ( )1( )
T

du u u     θ θ : gradient (column) vector of the scalar function u. With 

the notation 
0 0( )u
θ

θ , we define the gradient of the function u evaluated at θ0. 

• ( )T=θ θU u θ : Jacobian matrix of the vector function u. With the notation 
0θ

U , we define 

the Jacobian matrix of the function u evaluated at θ0. 

•   ( ) ( )p XE p d= u u x x x : Expectation operator of the (scalar or vector) function u with 

respect to a pdf ( )Xp x . 

• ( )
( )

( ) ln
( )

X
X X X

X

p
D p f p d

f

 
=  

 


x
x x

x
: Kullback-Leibler divergence between ( )Xp   and ( )Xf  . 

• vec(A): The vec-operator transforms a N N  matrix A into a vector by stacking the 

columns of the matrix one underneath the other. 
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• vecs(A): The vecs-operator denotes the ( 1) 2 1N N +   vector that is obtained from vec(A) 

by eliminating all supradiagonal elements of A. For notation simplicity, ( 1) 2N N l+ . 

• DN: Duplication matrix of order N. The duplication matrix is implicitly defined as the unique 

2N l  matrix that satisfies the following equality vecs( ) vec( )N =D A A  for any symmetric 

matrix A.  

•  : Kronecker product. 

•  : Cartesian product. 

• ( )
1

† T T
−

=A A A A  is the Moore-Penrose pseudo-inverse of a matrix A. 

 

2. Introduction 

The problem of estimating a deterministic parameter vector from a set of acquired data is 

ubiquitous in signal processing applications. A fundamental assumption underlying most estimation 

problems is that the true data model and the model adopted to derive an estimation algorithm are the 

same, that is, the model is correctly specified. However, a certain amount of mismatch is often 

inevitable in practice. Among others, the model mismatch can be due to an imperfect knowledge of 

the true data model or to the need to fulfill some operative constraints on the estimation algorithm 

(processing time, simple hardware implementation, and so on).  

The first fundamental result on the general theory of the estimation under misspecification was 

provided by Huber in his seminal paper [1] on the statistical analysis of the Maximum Likelihood 

(ML) estimator under mismatched condition. This work was further developed by White in [2] and 

[3], where the term “Quasi Maximum Likelihood” (QML) estimator was introduced. In particular, 

Huber and White have shown that the asymptotic distribution of the ML estimator under 
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misspecified models is a Gaussian distribution. Further, the mean value of the ML estimator is the 

minimizer (also called pseudo-true parameter vector in [1]) of the Kullback-Leibler (KL) 

divergence between the true and the assumed data distributions, whereas the covariance matrix is 

given by the so-called Huber “sandwich” matrix. For the sake of clarity, in the rest of this chapter, 

we refer to the ML estimator under mismatched conditions as the Mismatched Maximum 

Likelihood (MML) estimator. A milestone on the theoretical misspecification analysis is the book in 

[4] that covers all developments in this field from both the statistical and econometrical points of 

view. This book provides an excellent and insightful discussion about statistical inference in the 

presence of distributional misspecification, with a focus on estimation and hypotheses testing 

problems.  

In conjunction with the asymptotic analysis of the ML estimator, a question that naturally arises 

is whether it is possible to establish a lower bound on the error covariance matrix of a certain class 

of mismatched estimators. When the true parametric model is specified, few of such lower bounds 

exist; one of these is the well-known Cramér-Rao lower Bound (CRB). In a pioneering working 

paper [5], Q. H. Vuong firstly proposed a generalization of the CRB to the estimation problem 

under misspecified models.  

Quite surprisingly and despite of the wide variety of potential applications, these fundamental 

results, disseminated in the statistical and econometrical literature, have remained largely 

unrecognized by the Signal Processing community for many years. Only recently, the findings 

about the estimation theory under misspecification have been rediscovered and applied to different 

signal processing problems. In a recent book [6], the main results on the ML estimator under 

misspecified models have been reported. A different mismodeling related to the dynamic of the 

acquired data has been investigated in [7]. In particular, the asymptotic performance of the ML 

estimator and of the generalized likelihood ratio test (GLRT) is derived under the assumption of 
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independent identically distribution (iid) samples, when these samples are correlated in the actual 

model. Other recent works attempt to generalize the Cramér-Rao inequality in the presence of 

model misspecification. In [8], a Bayesian bound of the Ziv-Zakai type has been derived under 

model mismatch conditions restricted to misparameterized zero mean complex Gaussian 

distributions. On the same line, in [70], [71] and [72], a Ziv-Zakai bound in the presence of model 

misspecification has been discussed and applied to the Time-of-Arrival (TOA) estimation problem. 

Recently, Richmond and Horowitz (first in [9] and then in [10]) derived a covariance inequality for 

deterministic complex parameter vector in the presence of model misspecification and introduced 

the term misspecified Cramér-Rao Bound (MCRB). Moreover, in [10] and in [74], a generalization 

to the mismatched case of the Slepian and Bangs formulae for the evaluation of the bound for 

multivariate complex Gaussian distributed observations is also derived (see Appendices A and B at 

the end of this chapter) and applied to the classical Direction Of Arrival (DOA) estimation problem. 

The application of the MCRB to the DOA estimation problem is also discussed in [11]. To the best 

of our knowledge, [10] represents the first attempt to introduce an organic framework for deriving a 

covariance inequality of the Cramér-Rao type in the presence of model mismatch to the Signal 

Processing Community. More recently, Richmond and Basu have extended the work in [10] to the 

Bayesian estimation framework ([12], [73]). Finally, the recent paper [13] is pertinent to 

misspecified bounds, where the authors adopted a different definition of unbiasedness and a 

different score function than in [5] and [10].      

The aim of this chapter is twofold: in the first part, we provide a comprehensive review of the 

main findings about the MCRB and the MML estimator for deterministic parameter estimation. 

Two toy examples are also provided in order to clarify the main theoretical concepts. In the second 

part, we discuss the application of the MCRB and of the MML estimator to a practical radar signal 

processing problem: the estimation of the disturbance covariance (scatter) matrix for adaptive radar 

detection ([14], [15]). We recast this classical radar problem in the more general context of the 
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estimation of the scatter matrix in the Complex Elliptically Symmetric (CES) distribution family 

[16].  

The rest of the chapter is organized as follows. Section 3 provides the formal description of the 

general deterministic estimation problem under model misspecification. In Section 4, the main 

theoretical results on the MCRB and the MML estimator are reviewed and discussed. In Section 5, 

two simple toy examples are described to better clarify the theoretical findings of Section 4 and how 

they should be applied. Section 6 focuses on the application of the MML estimator and of the 

MCRB to the estimation of the scatter matrix in the CES distribution family, while Section 7 

discusses the application of the MML scatter matrix estimator in adaptive radar detection problems. 

Section 8 summarizes our conclusions. 

3. Problem statement and motivations 

In the following, a formal description of the estimation problem under mismatched conditions is 

provided. Let 
N

m x  be a N-dimensional random vector representing the outcome of a random 

experiment (i.e. the observation vector) with cumulative distribution function (cdf) ( )X mP x . In the 

remainder of the chapter, we assume that ( )X mP x  has a relevant probability density function (pdf) 

( )X mp x , and we use, with a small abuse of definition, the term “distribution” always to indicate the 

relevant pdf. Assume that the true pdf of xm is known to belong to a family P . A structure T is a set 

of hypotheses, which implies a unique pdf in P  for xm. Such pdf is indicated with pX(xm;T) ([17], 

[18]). The set of all the a priori possible structures for pX is called a model. We assume that the pdf 

of the random vector xm has a parametric representation, i.e., we assume that every structure T is 

parameterized by a d-dimensional vector τ and that the model is described by a compact subspace 

p . 
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The common assumption underlying any practical estimation problem is the perfect knowledge 

of the (joint) pdf ( ; )Xp x τ  that characterizes the iid observations,  
1

M

m m=
=x x , except for the value 

of the parameter vector τ . However, a certain amount of mismatch between the true pdf of the 

observations and the pdf assumed to derive an estimator of the parameters of interest is always 

present. Specifically, suppose that the true parametric pdf of the observations, ( ; )Xp x τ , and the 

assumed pdf, ( ; )Xf x θ , with 
dθ , belong to two (generally different) families of pdf’s, P  

and F , that are parameterized by two possibly different parameters spaces T and Θ: 

    ( ; ) is a pdf T , ( ; ) is a pdf .X X X Xp p f f=   =  x τ τ x θ θP F  

It is worth noting that the true parameter space T and the assumed parameter space Θ may be 

completely different and/or have a different dimensions.  

 Since, in practical situations, the true model is unknown, i.e., we have no prior information on 

the particular parameterization of the true distribution, in the following, we refer to ( ; )Xp x τ  only 

as ( )Xp x  in order to highlight the fact the neither the model, nor the true parameter vector τ  is 

accessible by a mismatched estimator ([10], [15]). 

Suppose then that the M (possibly complex) iid measurement vectors are sampled from a 

particular pdf belonging to P , i.e. ( )m X mpx x , for m=1,2,…,M. Due to a lack of knowledge or to 

the need to fulfill some computational requirements, a parametric pdf ( ; )Xf x θ , belonging to the 

family F , is assumed for the dataset x . In this case a possible inference algorithm, e.g., an 

estimation algorithm, may be based on a misspecified data model, i.e., on the assumed pdf ( ; )Xf x θ  

and not on the true pdf ( )Xp x . The question that arises is to how will the statistical properties of an 

estimator (e.g. convergence, consistency, efficiency) defined in the classical estimation framework 

change in this mismatched scenario? This is the main topic of the next section. 



10 

 

 

4 A generalization of the deterministic estimation theory under model 

misspecification 

The aim of this section is to provide an organic view of the findings in [1], [2], [3], [5], [10] and 

[15]. Starting from [5], we first provide a list of regularity conditions that are not only a 

fundamental prerequisite for the derivation of the MCRB but also allow better understanding of the 

nature and the usefulness of this bound. Then, we provide the expression of the MCRB and the 

class of estimators to which it applies (Theorem 4.1 [5]). Finally, we conclude this section by 

introducing the MML estimator, its asymptotic properties and their link with the MCRB. 

4.1 Regular models 

As stated before, let  
1

M

m m=
=x x  be a set of iid N-dimensional random vectors and let ( )Xp x  the 

true pdf of x. Let  ( ; ) is a p.d.f. d

X Xf f=  x θ θF  be a family of parametric pdfs that 

possibly does not contain ( )Xp x . 

Assumption A1: For every θ , the functions ln ( ; )Xf x θ , ln ( ; )X if  x θ  and 

2 ln ( ; )X i jf    x θ , , 1, ,i j p= , are dominated by a function ( )m x  independent of θ  and 

square-integrable with respect to ( )Xp x . 

Assumption A2: (a) The function ( ) ( )  ( )ln ; ln ; ( )p X m X m X m mE f f p d = θ x θ x θ x x  has a 

unique maximum on   at an interior point 0θ . (b) The matrix 
0θ

A  whose entries are 
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 ( )  ( )
0 0 0

0

2

0ln ; ln ;T

p X m p X m
ij ij

i j

E f E f
 

=

 
      =         

θ θ θ

θ θ

A x θ x θ  (1) 

is non-singular.  Note that 
0 0( )u
θ

θ  indicates the gradient (column) vector of the scalar function u 

evaluated in 0θ . This can be recognized also as the identifiability condition (see [17], [18], [19], and 

[20]) for 0θ . The interior point 0θ  can be equivalently seen as the point that minimizes the 

Kullback-Leibler divergence between the true distribution ( )X mp x  and the assumed distribution

( );X mf x θ  [3], [4]: 

 ( )  ( )  0 arg min arg min ln ;X p X mD p f E f
 

= = −
θ

θ θ

θ x θ , (2) 

where 

 ( )
( ) ( )

ln ln ( )
( ; ) ( ; )

X m X m
X p X m m

X m X m

p p
D p f E p d

f f

     
=    

     
θ

x x
x x

x θ x θ
. (3) 

Assumption A3: There exists a neighborhood   of 0θ  such that for every θ  the functions 

1

0( ( ; )) ln ( ; ) , 1, ,X X if f i p−   =x θ x θ , are dominated by a function ( )m x  independent of θ  and 

square-integrable with respect to ( )Xp x . 

Assumptions A1 and A3 essentially allow differentiation under the integral sign of the expectation 

of any random variable or vector with finite variance. Assumption A2 ensures the existence and the 

uniqueness of the so-called pseudo-true parameters vector 0θ . As seen later in the chapter, 0θ  plays 

a key role both in the definition of the MCRB and of the MML.  
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Definition 1 (Regular models) [5]: A parametric model F  is regular with respect to (w.r.t.) the pdf 

( )Xp x  if Assumptions A1-A3 hold. It is regular w.r.t. a family P  if it is regular w.r.t. every pdf in 

P . It is referred as “regular” if the regularity is w.r.t. every pdf in F . 

The following lemma summarizes some useful properties of parametric models that are regular 

w.r.t. the pdf ( )Xp x . For any ( )Xp x  in P , we define the matrix θB  as: 

   ( ) ( ) 
( ) ( )ln ; ln ;

ln ; ln ;
X m X mT

p X m X m pij ij
i j

f f
E f f E

 

      =       
θ θ θ

x θ x θ
B x θ x θ .  (4) 

Lemma 1: Let  ( ; ) is a p.d.f. d

X Xf f=  x θ θF  be a family of parametric pdfs which is 

regular w.r.t. the pdf ( )Xp x . Then: 

i. The function ( ) ( )ln ; ( )X m X m mf p d = θ x θ x x  is finite and twice continuously 

differentiable on Θ, and for every θ : 

 
( ) ( )ln ;

( ) 1, ,
X m

X m m

i i

f
p d i p



 

 
=   =

 
θ x θ

x x , (5) 

 
( )

 
2

, 1, ,
ij

i j

i j p


 


=   =

 
θ

θ
A  (6) 

Moreover,   for , 1, ,
ij

i j p  =θB , and 
0θ

A  is negative definite, where 0θ  is the 

pseudo-true parameters vector defined in eq. (2). 

ii. If ( ) ( ; )X Xp f=x x θ  for some θ , then 
0 =θ θ  and 

 
0 0
+ =θ θA B 0 . (7) 
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The proof of this lemma can be found in [5]. In particular, eq. (7) represents the classical 

equivalence between the two expressions of the Fisher Information Matrix (FIM) under correct 

model specification. 

 

4.2 MS-unbiased estimators and the MCRB 

Upon setting the necessary regularity conditions, a covariance inequality in the presence of 

misspecified regular models can be defined. First, the concept of misspecified unbiasedness, in short 

MS-unbiasedness, has to be briefly introduced. 

 Definition 2 (MS-unbiasedness) [5]: Let P  be a family of pdfs and assume that the (misspecified) 

parametric model F  is regular w.r.t. P . Let ( )g  be a continuously differentiable mapping from Θ 

to s . Let ( )φ x  be a statistic from the iid observations  
1

M

m m=
=x x  that takes its values in Φ. 

Then, ( )φ x  is an MS-unbiased estimator of ( )0g θ , derived under the misspecified model F , iff: 

   ( )0( ) ( ) ( ) , ( )p X XE p d p= =  φ x φ x x x g θ x P . (8) 

As in the classical estimation framework, the function ( )g  is introduced in order to take into 

account all cases in which one can be interested in subsets or, more generally, in a given invertible 

transformation of the (pseudo-true) parameter vector. 

It is easy to show that the above definition is consistent with the classical definition of 

unbiasedness. Without lack of generality, assume that g is an identity mapping, i.e. ( ) =g θ θ . Then, 

the statistic ( )φ x  is exactly an estimator of the pseudo-true parameter vector 0θ ; so, it is reasonable 

to use the standard notation ˆ( ) ( )φ x θ x . When the model F  is correctly specified, there exists a 
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θ  such that ( ) ( ; )X Xp f=x x θ  for every x. Then, from Lemma 1, 0=θ θ  and finally eq. (8) 

reduces to  ˆ ˆ( ) ( ) ( ; )f XE f d= =θ
θ x θ x x θ x θ  that is exactly the standard definition of unbiasedness.  

At this point, a lower bound in the presence of (regular) misspecified models can be introduced. 

Theorem 1 (The Misspecified Cramér-Rao Bound, MCRB) [5], [10]): Let F  be a parametric 

model. Let ( )P F  be the family of all pdfs w.r.t. which F  is regular. Suppose that ( )P F  is not 

empty. Let ( )g  be a continuously differentiable mapping from Θ to s . Let ( )φ x  be an MS-

unbiased estimator derived under the misspecified model F  from the iid observed vectors

 
1

M

m m=
=x x . Then, for every ( )Xp x  in ( )P F : 

 ( )( ) ( )
0 0 0 0 0

1 1

0 0

1
( ), MCRBT

M

− −
θ θ θ θ θ

C φ x g θ G A B A G θ , (9) 

where  

 ( )( ) ( )( ) ( )( ) 0 0 0( ), ( ) ( )
T

p pE − −C φ x g θ φ x g θ φ x g θ  (10) 

is the error covariance matrix of ( )φ x , the matrices 
0θ

A  and 
0θ

B  are defined in eqs.(1) and (4) 

respectively and 
0 0 0( )T= 
θ θ

G g θ  is the Jacobian matrix of g evaluated at 0θ . Following [10], we 

refer to the right side of eq. (9) as the Misspecified Cramér-Rao Bound (MCRB). 

The proof of this theorem can be found in [5]. It can be noted that the hypothesis that ( )P F  is 

not empty is not so strong. In fact, it requires that there exists at least one pdf ( )X mp x  for which, 

from Assumption A2, the point 0θ  exists [5]. In the following, we provide many examples in which 

it is possible to evaluate 0θ  and so the MCRB applies. Other relevant signal processing problems in 

which the pseudo-true vector 0θ  can be evaluated are discussed in [10] and [11]. 
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It is worth noting that the MCRB is consistent with the classical CRB. As for the unbiasedness, 

assuming for simplicity that ( ) =g θ θ , then ˆ( ) ( )φ x θ x , when the model F  is correctly specified, 

( ) ( ; )X Xp f=x x θ  for some θ . Then, from Lemma 1, the matrices −
θ

A  and 
θ

B  are equal and 

correspond to the classical FIM, and finally: 

 
( ) ( ) ( )

( ) ( ) ( )

1
1 1 1

1

1 1 1 1ˆ( ), ln ;

1
ln ; ln ; ,

T

f f X m

T

f X m X m

E f
M M M M

E f f
M

−
− − −

−

 = − = = −  

=  

θ θ

θ

θ θ θ θ θ θ θ

θ θ

C θ x θ A B A A B x θ

x θ x θ

 (11) 

which represents the classical Cramér-Rao inequality for any unbiased estimator.  

Remark 1: The statement and the proof of Theorem 1, given in [5], consider only the case of real 

parameter space, i.e., d . However, as shown in [10], the derivation can be easily extended to 

the complex case, i.e., when d . This is because all the pdfs are real functions of complex 

variables (x and θ), so we do not need sophisticated holomorphic calculus to generalize the 

derivatives w.r.t. a complex parameter vector θ. Insightful procedures, useful to generalize the 

Cramér-Rao inequality in the complex case, are discussed in [21], [22], and [23].  

Remark 2: In order to evaluate the MCRB of (9), the knowledge of the true pdf ( )Xp x  is required. 

However, this should not be seen as a limitation of its applicability. Think for example of the 

common situation in which one knows that the true data distribution is given by an involved 

function that does not admit an easy analytical tractability, e.g. the rendering of the ML estimator is 

difficult or impossible to derive. In these cases, one typically assumes a simpler model, such as a 

Gaussian model, introducing a mismatch. The evaluation of the MCRB would show the potential 

performance loss due to the mismatch between the assumed and the true model. An example of this 

procedure is discussed in this chapter, in the context of the scatter matrix estimation problem for 

radar detection applications. Another useful application of the MCRB is the prediction of possible 
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weaknesses (i.e. breakdown of the estimation performance) of the system under uncommon 

conditions. In particular, given an assumed model for the data, one can be interested in evaluating 

the performance loss in the presence of a certain number of “true” possible data distributions that 

the system can undergo. 

We note, in passing, that in all the situations in which the true pdf is known but it is not possible 

to evaluate, in closed form, the expectation operator involved in the definition of the matrices 
0θ

A  

in eq. (1) and 
0θ

B  in eq. (4), the MCRB can be approximated by means of Monte Carlo simulations. 

Remark 3: Before introducing the MML estimator, we briefly comment on the difference between 

the results obtained in [10] and the general derivation of the MCRB provided in [5]. Even if the 

final mismatched covariance inequality assumes exactly the same expression (at least when g is an 

identity mapping and then ˆ( ) ( )φ x θ x ), the proof in [5] is general, while the one provided in [10] 

relies on first order Taylor expansion of the estimation error (see eq. 41 in [10]). This derivation 

leads to define a restricted class of estimators for which the MCRB of (9) applies which is defined 

by the following two properties: 

1. The expected value w.r.t. the true distribution is the same for all the estimators in the class 

and is equal to  ˆ( )pE =θ x μ , 

2. The correlation matrix θ
Ξ  between the estimation error and the score function ( )

θ
η x , i.e., 

 ( ) ˆ( ) ( )T

pE= −θ θΞ θ x μ η x  (12) 

must be equal to some matrix function ( )M θ , such that ( )= θΞ M θ  for all the estimators in 

the class. The score function used in [10] and in [14] is ( ) ( )( ) ln ;Xf D p f=  +θ θ θ θη x x θ . 

For this function, it turns out that the correlation matrix θ
Ξ  must be equal to 

0 0

1−
θ θ

A B . This 
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particular choice of the score function has been motivated by its “tightness” properties 

discussed in [24]. 

As shown in [10], there is at least an estimator that asymptotically satisfies constraints 1) and 2). 

This estimator is exactly the MML estimator described in the next section. However, in general, it 

would be very difficult to characterize explicitly a class of estimators that satisfy these two 

constraints. The advantage of the proof in [5] is that it shows that inequality (9) holds for all the 

MS-unbiased estimators and not only for those satisfying 1) and 2). 

4.3 The Mismatched Maximum Likelihood (MML) estimator 

In the previous subsection, the MCRB has been introduced. In particular, we showed that it 

represents the counterpart of the classical CRB in the presence of model misspecification. At this 

point, a question that naturally arises is to whether there exists a mismatched estimator whose error 

covariance matrix is equal (at least asymptotically) to the MCRB. As we will see, the answer is 

“yes” and this “misspecified-efficient” estimator is a generalization of the classical Maximum 

Likelihood (ML) estimator, called the Mismatched Maximum Likelihood (MML) estimator or also 

the Quasi Maximum Likelihood (QML) estimator [2]. In the rest of this section, we assume that g is 

an identical mapping so that ( ) ,T   θ θG g θ I θ  where I is the identity matrix. 

The MML estimator has been introduced in [1] and [2] as: 

 ( ) ( ) ( )
1

ˆ arg max ln ; arg max ln ;
M

MML X X mm
f f

=
 

= = 
θ θ

θ x x θ x θ , (13) 

where ( )m X mpx x . It can be shown (see [1] and [1]) that the MML estimator converges almost 

surely (a.s.) to the 0θ  introduced in eq. (2), i.e., the vector that minimizes the KL-divergence 

between ( )X mp x  and ( );X mf x θ : 
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     ( )
. .

0
ˆ

a s

MML
M→
→θ x θ ,      (14) 

Under similar regularity conditions to those given in Sect. 4.1 (Assumptions A1, A2 and A3), the 

asymptotic normality of the MML estimator is proved in [1] and [2]. This result is summarized by 

the following theorem (see [1] or [2] for the proof): 

Theorem 2 ([1], [2]): Under suitable regularity conditions, it can be proved that 

 ( )( ) ( )
0 0 0

.
1 1

0
ˆ , ,

d

MML
M

M − −

→
− θ θ θθ x θ 0 A B AN  (15) 

where 
.d

M →
 indicates the convergence in distribution and the matrices 

0θ
A  and 

0θ
B have been 

defined in eqs. (1) and (4), respectively . The asymptotic covariance matrix 
0 0 0

1 1− −

θ θ θ
A B A  is generally 

called Huber’s “sandwich” covariance. 

Theorem 1 and Theorem 2 highlight an important fact: the MML estimator is asymptotically 

MS-unbiased and its error covariance matrix asymptotically equates the MCRB. The similarity with 

the classical (matched) estimation framework is now clear: the MML estimator is the counterpart of 

the ML estimator in the presence of misspecified models, as the MCRB is the counterpart of the 

classical (matched) CRB. However, it must be noted that while in the classical matched case, the 

convergence and the unbiasedness of the ML estimator is defined w.r.t. the true parameter vector, in 

the mismatched case the convergence and the MS-unbiasedness of the MML estimator is always 

defined w.r.t. the pseudo-true parameter vector 0θ  of eq. (2). The next subsection provides some 

insights about this important fact.  
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4.4 A particular case: the MCRB as a bound on the Mean Square Error (MSE) 

In this section, we focus on a particular mismatched case: the unknown parameter space   of the 

true model is the same of the parameter space   of the assumed model, i.e., 
d    [15]. As 

before, we assume that g is an identical mapping so that ˆ( ) ( )φ x θ x . More formally, assume that 

the true parametric pdf of the observations ( )Xp x  and the assumed pdf ( ; )Xf x θ  belong to two 

(generally different) families of pdf’s, P  and F  that can be parameterized by using the same 

parameter space Θ: 

    ( ; ) is a p.d.f. , ( ; ) is a p.d.f. .X Xp p f f=   =  θ θx θ θ x θ θP F  (16) 

An application in which this particular case arises will be discussed in Section 6.1 of this 

chapter. Even if this is only a particular case of the theory developed in the previous sections, this 

type of mismatch allows us to deeply understand the nature of the MCRB and of the MML 

estimator. In particular, if condition (16) is satisfied, we can directly compare the MCRB and the 

MML estimator with their classical (matched) counterparts, i.e., the CRB and the ML estimator. 

This can be done since the pseudo-true parameter vector 0θ  belongs to the same parameter space of 

the true parameter vector θ , and as such the difference vector 0−r θ θ  is well-defined. In essence, 

the vector r is in general different from a zero-vector. In particular, vector r indicates the distance 

between the convergence point θ  of the classical ML estimator when the true pdf ( );Xp x θ  is 

perfectly known and the convergence point 0θ  of the MML estimator when the mismatched pdf 

( );Xf x θ  which satisfies the condition in (16) is adopted. Moreover, using r, a bound on the Mean 

Square Error (MSE) of the estimate of θ  in the presence of mismatched models can be easily 

established. To proceed, the error covariance matrix of eq. (10) can be rewritten as: 



20 

 

 

( ) ( )( ) 
( )  ( ) ( )( )

( )

0 0 0 0

0 0 0 0 0

0

ˆ ˆ ˆMSE ( ), ( ) ( )

ˆ ˆ( ), 2 ( )

ˆ( ), ,

T

p p

T T

p p

T

p

E

E

− + − − + −

= − − − + − −

= +

θ x θ θ x θ θ θ θ x θ θ θ

C θ x θ θ x θ θ θ θ θ θ θ

C θ x θ rr

 (17) 

where  0
ˆ( ) 0pE − =θ x θ  due to the MS-unbiasedness assumption. A similar expansion of the MSE 

can be found in [10] (see eq. 70). Finally, by substituting the covariance inequality in (9) in eq. (17), 

we can obtain a misspecified bound on the MSE of θ  as: 

 ( )
0 0 0

1 11ˆMSE ( ), T

p
M

− − +
θ θ θ

θ x θ A B A rr . (18) 

Moreover, if the condition in (16) is satisfied, the concept of consistency can be extended also to 

MS-unbiased mismatched estimators. In particular, we define as consistent an MS-unbiased 

mismatched estimator if, as the number of data vectors M goes to infinity, it converges a.s. to the 

true parameter vector θ , i.e., ( )
. .

0
ˆ

a s

M→
→ =θ x θ θ . 

The mismatched MSE inequality in (18) and the concept of consistency for MS-unbiased 

mismatched estimators can be useful to compare in a very intuitive and self-explicative manner the 

nature of the MCRB and of the MML estimator, discussed in both Section 5 and Section 6. 

4.5 The constrained MCRB: CMCRB 

In some applications, one has to deal with additional constraints on the unknown parameter 

vector that need to be satisfied by an estimation algorithm. To this end, a constrained version of the 

classical (matched) CRB has been proposed in [25]. Successive generalizations can be found in 

[26], [27] and [28]. The aim of this section is to show that a generalization of the results obtained 

for the constrained CRB (CCRB) to the mismatched framework is also possible and a constrained 
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version of the MCRB, i.e., the CMCRB under a set of equality constraints on the parameter vector, 

can be derived. This was accomplished in a recent work [29] by the generalization of the procedure 

described in [28]. A local bijective transformation of the unknown parameter vector in a lower 

dimensional parameter space is exploited to build the constraints in the CRB derivation.  

Let ˆ( )θ x  be a d-dimensional MS-unbiased (in a proper sense discussed below) estimator derived 

under the misspecified model F . Suppose that ˆ( )θ x  is required to satisfy k (with k<d) 

continuously differentiable constraints [27]: 

 ( )ˆ( ) =f θ x 0 . (19) 

The k d  Jacobian matrix of the constraints, ( )T=θ θF f θ  is assumed to have full rank for any 

θ  satisfying (19). Then there exists a matrix 
( )d d k −U  whose columns form an orthonormal 

basis for the null space of 
θF , that is: 

 , T= =θF U 0 U U I . (20) 

The matrix U can be obtained numerically by calculating the d-k orthonormal eigenvectors 

associated with the zero eigenvalue of Fθ.  

Using this framework, Stoica and Ng [27] derived a constrained version of the classical CRB. A 

different, yet equivalent, approach was adopted in [28], where the authors exploited the Implicit 

Function Theorem (see, e.g., [30, Th. 5-2]) to obtain the same CCRB of [27], but from a different 

standpoint. The starting point of the proof in [28] is that the constraint function f restricts θ to a 

manifold  ( ) = =θ f θ 0  of the original vector space d  with dimension d-k (since rank( ) k=
θ

F  

by assumption). Therefore, from the Implicit Function Theorem, there exist two open sets O  and P  
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of   and d k− , respectively, and a local continuously differentiable bijection : P O → h θ  

such that 

 ( )=θ h ξ . (21) 

We denote as ( )T= 
ξ ξ

H h ξ  the ( )d d k −  full rank Jacobian matrix of the transformation h. The 

idea behind the proof in [29] is the same as the one in [28]: given the MCRB, derived for an 

intrinsic parameter vector 0ξ  belonging to the reduced parameter space d k− , we can “project 

back” such bound on the manifold   by exploiting the bijective transformation h. As we will see, 

the final expression of the CMCRB does not involve either the intrinsic parameter vector 0ξ  or h. 

In particular, the explicit knowledge of 0ξ  and h is not required, only their existence (guaranteed by 

the Implicit Function Theorem) is necessary. This is an important fact, since in general, to obtain an 

explicit expression for h is not an easy task.  

It is worth noticing that the constraints in eq. (19) apply to θ , i.e., the parameter vector that 

parameterizes the assumed (and possibly misspecified) pdf ( );Xf x θ . They are not supposed to 

apply to τ T , i.e., the true and inaccessible parameter vector that in general may have, as 

discussed before, a completely different structure. 

4.5.a The MCRB for the intrinsic parameter vector 

As sketched in the previous subsection, the first step to derive the CMCRB is to analyze the 

conditions that guarantee the existence of the intrinsic pseudo-true parameter vector 0ξ . Then an 

explicit expression for the intrinsic MCRB for 0ξ  is obtained by building upon the results discussed 

in Sect. 4.2. 
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Existence of 0ξ  

The assumptions needed to establish the existence of a pseudo-true intrinsic parameter vector 0ξ  

are formally the same as the assumptions A1-A3 given in Sect. 4.1. In order to improve the clarity 

of the presentation, we recall them here by specializing them to the constrained problem at hand. In 

particular, we assume that:  

i. The function ( ) ( ) ln ;p X mE f = θ x θ θ  has a unique maximum on   at an interior 

point 0θ , and hence ( ) ( ) ln ; ( ) d k

p XE f −= ξ x h ξ ξ  has a unique maximum on d k−  at 

a point 0ξ , 

ii. The matrix 
0ξ

A  defined as: 

 ( ) 
0 0 0 0ln ; ( )T

p XE f=  ξ ξ ξA x h ξ  (22) 

is non-singular. This can be recognized also as the identifiability condition (see [17], [18], 

[19] and [20]) for 0ξ . As before, the interior point 
0 0( ) =θ h ξ  can be equivalently seen as 

the point that minimizes the Kullback-Leibler divergence between the true distribution 

( )Xp x  and the assumed distribution ( );Xf x θ  with θ , i.e. ( ) 0 arg min XD p f


=
θ

θ

θ . 

This minimization problem can be rewritten as function of the intrinsic pseudo-true 

parameter vector 0ξ  as: 

 ( )  ( )  0 ( )arg min arg min ln ; ( )
d k d k

X p XD p f E f
− − 

= = −
h ξ

ξ ξ

ξ x h ξ . (23) 

MS-unbiasedness and MCRB in 0ξ  
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Under the two assumptions i) and ii) stated above, the definition of MS-unbiasedness and the 

expression of the MCRB given in (8) and (9) respectively, can be easily exploited to derive the 

MCRB in 0ξ . In particular, let ( )θ̂ x  be a constrained estimator derived under the misspecified 

model F  from the iid observations  
1

M

m m=
=x x  that satisfies the set of equality constraints

( )ˆ( ) =f θ x 0 . Let ( )h  be the continuously differentiable bijective transformation in (21). Then, 

( )θ̂ x  is an MS-unbiased estimator of ( )0h ξ  iff: 

   ( )0 0 0
ˆ ˆ( ) ( ) ( ) , ( ) ,p X XE p d p= = =   θ x θ x x x θ h ξ x θP . (24) 

Moreover, the following inequality holds true: 

 ( ) ( )
0 0 0 0 0

1 1

0 0 0

1ˆ ˆ( ), ( ), ( ) MCRB( )T

p p
M

− −= 
ξ ξ ξ ξ ξ

C θ x θ C θ x h ξ H A B A H ξ  (25) 

where ( ) ( )( ) 0 0 0
ˆ ˆ ˆ( ), ( ) ( ) ( ) ( ) ( )

T

p pE − −C θ x h ξ θ x h ξ θ x h ξ  is the error covariance matrix of ˆ( )θ x , 

the matrix 
0ξ

A is given in (22), 
0ξ

B  is defined as: 

 ( ) ( ) 
0 0 00 0ln ; ( ) ln ; ( )T

p X XE f f ξ ξ ξB x h ξ x h ξ , (26) 

and 
0 0 0( )T=
ξ ξ

H h ξ  is the Jacobian matrix of ( )h  evaluated at 0ξ . The proof of the inequality in 

(25) follows directly by the proof of Theorem 1 by substituting the invertible transformation ( )g  

with ( )h . 

4.5.b The constrained MCRB (CMCRB) 

Finally, from all previous results, an explicit expression for the CMCRB on 0θ  is provided in the 

following Theorem:  
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Theorem 3 [29]: The constrained MCRB (MCRB) is given by: 

 ( ) ( ) ( )
0 0 0

1 1

0 0

1
CMCRB ,T T T T

M

− −

= 
θ θ θ

θ U U A U U B U U A U U θ , (27) 

where the (possibly singular) matrices 
0θ

A  and 
0θ

B  are defined, as in the unconstrained case, in 

eqs. (1) and (4). 

The proof of this theorem is given in [29] and an example of a possible application of the 

CMCRB to the scatter matrix estimation problem is provided in the following.  

Remark 4: It is easy to verify that the CMCRB is consistent with the CCRB in [27]. When the 

model F  is correctly specified, ( ) ( ; )X Xp f=x x θ  for some θ . Then, the matrices −
θ

A  and 

θ
B  are equal and correspond to the classical FIM, and finally: 

 
( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

CMCRB

= = =CCRB ,

T T T T

T T T T

− −

− −

=

−

θ θ θ

θ θ

θ U U A U U B U U A U U

U U A U U U U B U U θ

 (28) 

which represents the constrained CRB obtained in [27]. 

To conclude this section, it is worth noting that the derivation of an efficient constrained 

estimator able to achieve (at least asymptotically) the CMCRB is still an open problem. Moreover, 

the effects of inequality constraints need to be investigated as well. 

5 Two illustrative examples 

In order to clarify the use of the MCRB and the MML estimator, two simple toy examples are 

described in the following. The problem is either to estimate the mean value (Example 1) [14] or the 
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variance (Example 2) of Gaussian data [15]. Assume a set of M iid scalar observations 1{ }M

m mx ==x , 

distributed according to a Gaussian pdf with mean value X  and variance 
2

X , i.e. 

2( ) ( , )X m X Xp x   N . 

 

Example 1: Estimation of the mean value: X =  

It is well known that, given the set of Gaussian observations x, the ML estimator of the mean 

value is given by the sample mean estimator, i.e. 
1

1ˆ M

ML mm
x

M


=
=  . Suppose now that there is a 

mismatch in the assumed data variance. In other words, we assume for the data a Gaussian pdf 

( ) 2; ( , )X mf x   = N  with a variance σ2 that is in general different from 
2

X . It can be noted that 

in this simple example, the true unknown model ( )X mp x  and the assumed model ( ; )X mf x   admit 

the same parameterization, so this example falls in the particular case addressed in Sect. 4.4. 

Following eq. (13), a MML estimator for the mean value of the data is given by:  

 ( ) ( ) ( )
1

ˆ arg max ln ; arg max ln ; ,
M

MML X X mm
f f x

 

  
=

 

= = x x  (29) 

where 

 ( ) ( )
22

2

1 1 1
ln ; ln 2 ln

2 2 2
X m mf x x   


= − − − − . (30) 

It is immediately clear that the MML estimator coincides with the ML estimator, i.e., 

 ( ) ( )
1

1ˆ ˆM

MML m MLm
x

M
 

=
= =x x . (31) 
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Following the theory (see eq. (14)), we know that the MML estimator converges a.s. to that point 

that minimizes the KL divergence between the true pdf ( )X mp x  and the assumed pdf ( );X mf x  . 

The KL divergence between ( )X mp x  and ( );X mf x   is given by [31]: 

 
2 2 2

2 2 2

( ) 1
( ) 1 ln

2 2

X X X
XD p f

   

  

 −
= + − − 

 
θ

. (32) 

By taking the derivative with respect to θ and by setting the result equal to 0, we obtain: 

 

00

2

( )
0

X X
D p f

  

 

  ==

 −
= =


, (33) 

whose solution is 
0 X  = = . Eq. (33) shows that the MML converges a.s. to the true mean value 

and then, according to the definition provided in Sect. 4.4, it is a consistent estimator. From the 

scalar version of eq. (8), the mean value of the MML estimator w.r.t. the true joint pdf ( )Xp x  is: 

 ( )  0
ˆ

p MML XE    = = =x . (34) 

Hence, according to Definition 1 given in Sect. 4.2, the MML estimator is MS-unbiased. The 

MCRB can be evaluated as shown in eq. (18) by evaluating the first and the second derivative of the 

( )ln ;X mf x   as: 

 
( )

( )
( )2

2 2 2

ln ; ln ;1 1
,

X m X m

m

f x f x
x

 


   

 
= − − =

 
. (35) 

In this case, matrices 
0

A of eq. (1) and 
0

B of eq. (4) are scalars and are easily derived to be: 

 
0 2 2

1 1
pA E
 

 
= = 

 
, (36) 
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 ( ) ( ) 
0

2
2 2

04 4 4

1 1
.X

p k p k XB E x E x


 

  

 
= − = − = 

 
 (37) 

Finally, from (18), we have that: 

 ( ) ( )
2 2

2 2

4
MCRB CRLBX X

X X
M M

 
   


= = = . (38) 

Note that, for a consistent estimator r=0. The fact that the MCRB and the CRLB are equal is in 

accordance with the fact that the MML estimator is equal to the ML estimator and it does not 

depend on the misspecified variance σ2. 

Example 2: Estimation of the variance: 2

X =  

In this example we consider the problem of estimating the variance of a Gaussian pdf in the 

presence of misspecified mean value, e.g., we erroneously assume that the mean value is zero when 

it is not. It is easy to show that, given the observation vector x, the ML estimator of the variance is 

given by 
1 2

1

ˆ ( ) ( )
M

ML m Xm
M x −

=
= −x , where, as before, 

2( ) ( , )X m X Xp x   N . Suppose now 

that the assumed Gaussian pdf is ( ; ) ( , )X mf x    N , so we misspecify the mean value. As in 

Example 1, the true unknown model ( )X mp x  and the assumed model ( ; )X mf x   admit the same 

parameterization. Hence, also in this case, we can apply the results of Sect. 4.4. From eq. (13), the 

MML estimator of the variance can be derived as:  

 ( ) ( ) ( )
1

ˆ arg max ln ; arg max ln ;
M

MML X X mm
f f x

 

  
=

 

= = x x , (39) 

where 

 ( ) ( )
21 1 1

ln ; ln 2 ln
2 2 2

X m mf x x   


= − − − − . (40) 
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It is easy to show that the MML estimator is given by: 

 ( ) 2

1

1ˆ ( )
M

MML mm
x

M
 

=
= −x . (41) 

In this case, the KL divergence between ( )X mp x  and ( ; )X mf x   can be expressed as [31]: 

 
2 2 2( ) 1

( ) 1 ln
2 2

X X X
XD p f

   

  

 −
= + − − 

 
θ

. (42) 

By taking the derivative w.r.t. θ and by setting equal to zero the result, we get: 

 

00

2 2

2

( ) ( ) 1
0

2 2

X X
D p f

  

  

   ==

 − − −
= + =


. (43) 

Hence, 
2 2

0 ( )X X    = + −  , i.e., the MML does not converge to the true variance, unless 

X = , i.e., when there is no model mismatch. This means that the MML estimator of this example 

is not consistent. From the scalar version of eq. (8), the mean value of the MML estimator with 

respect to the true distribution ( ; )Xp x  is: 

 ( )  2 2

0
ˆ ( )p MML X XE     = + − =x . (44) 

Hence, the MML estimator is MS-unbiased and the MCRB can be evaluated as shown in (18). By 

evaluating the first and the second derivative of the ln ( ; )X mf x   and after some simple calculation, 

the matrices (that in this case are scalars) 
0

A  of eq. (1) and 
0

B  eq. (4) are obtained: 

 
0 2

0

1

2
A


= − ,  

0

4 2 2 4 2

0

4

0

3 6 ( ) ( )

4

X X X XB

      



+ − + − −
= . (45) 

Finally, from (18), we have that: 
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 ( ) ( )
4 2 2

2 42 4 ( )
MCRB MCRB ( )X X X

X X
M M

   
   

−
= = + + − . (46) 

It is well-known that the CRLB for this estimation problem is given by 
2 4CRB( ) 2X X M = . 

Hence, we obtain 
2 2MCRB( ) CRB( )X X  , i.e., for this estimation problem, the MCRB is always 

greater than or equal to the CRLB. This is an intuitive result, since if we assume a wrong data 

model the best performance that we can achieve are worse than that in the case where we assume a 

correct data model. However, a general proof of an inequality between MCRB and CRB in the 

general case is still an open problem. When X = , i.e. we correctly specify the mean value, then 

2

0 X  = =  and 
2 2MCRB( ) CRB( )X X = .  

In Figs. 1 and 2, we report the behavior of the square root of the MSE (RMSE) of the MML 

estimator in eq. (41), the square root of the MCRB and of the CRLB, as function of the mismatched 

parameter (in this case the mean value μ) and as function of the number M of available data, 

respectively. In our simulation, the true mean value and the true variance are assumed to be μX=3 

and 
2 4X = . As we can see from Fig. 1, the MCRB and the CRB are equal only when the true pdf 

and the assumed pdf are equal, i.e., μ=μX =3 (the number of available data M is equal to 10). In Fig. 

2, the RMSE, the MCRB and the CRB are plotted as a function of the available number of data M. 

In this case, the assumed mean value is μ=0, hence there is some model mismatch. It is evident that 

the MCRB is a tight bound for the MML estimator, whereas the CRB is not. 

Figure 1 – Comparison among the MSE of the MML estimator, the MCRB and the CRB as function of the assumed mean value. 

 

Figure 2 – Comparison among the MSE of the MML estimator, the MCRB and the CRB as function of the available number of data 

M. 

 



31 

 

6. The MCRB for the estimation of the scatter matrix in the family of 

CES distributions 

In this section, we show the application of the MCRB theory to a realistic radar signal processing 

problem: the estimation of the disturbance covariance matrix from a set of acquired data vectors 

[15] (the so-called secondary data in the radar jargon). We recast this specific radar problem in the 

more general problem of estimating the N N scatter matrix of Complex Elliptically Symmetric 

(CES) distributed data, given M iid realizations of the N-dimensional data vector xm, in the presence 

of data mismodelling. CES distributions constitute a wide family of distributions such as the 

complex Gaussian, Cauchy, generalized Gaussian, and compound Gaussian, which in turn includes 

the Gaussian distribution, the K-distribution, and the complex t-distribution [16]. The CES 

distributions, due to their flexibility, are widely applied in many areas, such as radar, sonar, and 

communications (see e.g. [16], [32], [33], [34], [35], [36] and [37]).  

A complex N-dimensional random vector xm is CES distributed, in shorthand notation 

( , , )m NCE hx γ Σ , if its pdf is of the form: 

 ( ) ( ) ( )( )1 1

,

H

X m N h m mp c h
− −= − −x Σ x γ Σ x γ , (47) 

where h is the density generator, cN,h is a normalizing constant, { }p mEγ x  and Σ is the normalized 

(or shape) covariance matrix, also called scatter matrix. It is important to note, that γ, Σ, and ( )h   

do not uniquely identify a CES distribution. In fact, given a CES distributed random vector 

( , , )m NCE hx γ Σ , for any 0  , we may define =Σ Σ  and ( ) ( )h t h t =  so that 

( , , ) ( , , )N NCE h CE hγ Σ γ Σ  [16]. This ambiguity can be avoided by imposing a constraint on the 

scatter matrix Σ, e.g. tr( ) N=Σ , or by restricting the functional form of ( )h   in a suitable way. The 
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difference between these two approaches is clarified in Section 6.1 and Section 6.2. Moreover, by 

imposing the constraint tr( ) N=Σ , if {( )( ) }H

p m mE − −M x γ x γ  is the covariance matrix of the 

vector xm, then ( )tr( )N= Σ Μ M . It is important to observe that, for some CES distributions, the 

covariance matrix M does not exist, but the scatter matrix Σ  is still well defined. Based upon the 

Stochastic Representation Theorem [16], any ( , , )m NCE hx γ Σ  with ( )rank k N= Σ  admits the 

stochastic representation m d R= +x γ Tu , where the notation d=  means “has same distribution as”. 

The non-negative random variable (r.v.) R Q , the so-called modular variate, is a real, non-

negative random variable, u is a k-dimensional vector uniformly distributed on the unit hyper-

sphere with k-1 topological dimensions such that 1H =u u , R and u are independent and H=Σ TT  

is a factorization of Σ , where T is a Nxk matrix and ( )rank k=T . In the following derivations, we 

assume that Σ  is full-rank, i.e., ( ) ( )rank rank N= =T Σ , and that it is real. For the CES 

distributions, the term  2

X E Q N  can be interpreted as the statistical power of the random 

vector xm, i.e., the covariance matrix M and the scatter matrix Σ are related by 
2

X=M Σ . In 

general, the density generator itself depends of some additional parameters. For example, the 

complex t-distribution is completely characterized when its mean vector γ , scatter matrix Σ, shape 

parameter  , and scale parameter   are perfectly known [16]. Since in many scenarios (e.g., radar 

and sonar) the disturbance vectors are zero mean, we set =γ 0  in all the following analyses. 

The application of the mismatched estimation framework to the problem of estimating the scatter 

matrix of a CES distributed random vector is described in two steps. First, we assume that all the 

characteristic parameters of the particular CES distributions at hands are a-priori known, except for 

the elements of the scatter matrix Σ. Since, by definition, the scatter matrix is symmetric and of

N N  dimension, the parameters to be estimated are the ( 1) 2l N N= +  elements of the lower (or 



33 

 

upper) triangular sub-matrix of Σ. Then, the parameter vector that parameterizes a zero-mean CES 

distribution can be defined as vecs( )=θ Σ , where the vecs-operator is the “symmetric” counterpart 

of the standard vec-operator that maps a symmetric N N  matrix Σ to a l -dimensional vector θ  

whose entries are the elements of the lower (or upper) triangular sub-matrix of Σ [38]. In this case, 

the ambiguity between the scatter matrix and the density generator h is removed by the assumption 

of the a-priori knowledge of the extra-parameters, i.e., we assume to know exactly the density 

generator. Consequently, the constraint on the trace of Σ is not required. It is worth noting that this 

is an unrealistic case, since in practical situations the a-priori knowledge of the extra-parameters 

which characterize the CES distributions is generally not available. However, this knowledge 

provides better understanding of how to apply the results on the MCRB and the MML estimator to 

this estimation problem. The more realistic case of unknown extra-parameters is instead 

investigated in Section 6.2, where the problem of the joint estimation of the scatter matrix and of 

the extra-parameters in the presence of misspecification is addressed.  

 

6.1 Misspecified estimation of the scatter matrix with perfectly known extra-

parameters 

In the following, we assume that both the true distribution ( )X mp x  and the assumed distribution 

( );X mf x θ  belong to the zero-mean CES distribution class: 

 ( ) ( ) ( )
1 1

,; H

X m X m N h m mp p c h
− −=x x Σ Σ x Σ x ,   (48)  

 ( ) ( ) ( )
1 1

,; ; H

X m X m N g m mf f c g
− −=x θ x Σ Σ x Σ x , (49) 
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where vecs( )=θ Σ , vecs( )=θ Σ , h is the density generator of the true pdf, and g is the density 

generator of the assumed pdf. We propose three different case studies: 

• Case Study 1. Assumed pdf: complex Normal; true pdf: t-student. 

• Case Study 2. Assumed pdf: complex Normal, true pdf: Generalized Gaussian. 

• Case Study 3. Assumed pdf: Generalized Gaussian; true pdf: t-student. 

It can be noted that the true unknown pdf ( );X mp x Σ  and the assumed pdf ( );X mf x Σ  admit the 

same parameterization, so these examples fall in the particular case addressed in Sect. 4.4. 

Case Study 1 Assumed pdf: complex Normal; true pdf: t-student. 

We assume a complex Normal model for the data, i.e., each iid complex vector of the available 

dataset  
1

M

m m=
=x x  is distributed according to a complex Normal multivariate pdf, which belongs to 

the CES family: 

 ( ) ( )
( )

1

22

1
; ; exp

H

m m
X m X m N

f f


− 
= − 

 

x Σ x
x θ x Σ

Σ
. (50) 

The covariance matrix   2H

m mE = =M x x Σ  in this case exists, provided that 2   . However, 

the true data are distributed according to another CES distribution, the complex t-distribution: 

 ( )
( )

( )

( )
11

; ( ; )

N

H

X m X m m mN

N
p p

 
  

  

− +

−
 +    

= +   
    

x θ x Σ x Σ x
Σ

, (51) 

where   is the shape parameter and   is the scale parameter characterizing the model ([16], [37]). 

The complex t-distribution has tails heavier than the Normal one for every λ(0,∞), while the 

limiting case λ→∞ yields the complex Normal distribution. 
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The assumption of a complex Normal model is motivated by the fact that the MML estimator of 

the scatter matrix can be easily derived to be the well-known Sample Covariance Matrix (SCM),

1

1

ˆ
M

H

MML m m

m

M −

=

= M x x , so [39]: 

 
2 2

1

ˆ 1ˆ
M

HMML
MML m m

mM  =

= = 
M

Σ x x , (52) 

where the power 
2  is assumed to be a priori known.  

As first step, we evaluate the matrix that minimizes the KL divergence between ( )X mp x , 

considered here as a generic element of the CES family, and ( );X mf x Σ  (the complex Normal pdf). 

This matrix is the convergence point of the MML estimator in eq. (52). The differential of the KL 

divergence with respect to Σ is given by [40]: 

 

( ) ( )  ( ) 

( )
( )

1 1

1 1 1

ln ; ln ln

ln
tr tr ,

H

X p X m p m m

H

p m m

D p f E f E g

d g Q
E

dQ

− −

− − −

 = −  = −  + 

  
=  +    

  

Σ

Σ

Σ

x Σ Σ x Σ x

Σ Σ Σ x x Σ Σ

 (53) 

where 

 
1H

m mQ −

Σ x Σ x  (54) 

The last equality in eq. (53) follows directly from the same calculus given in [35] and [41]. Since 

the assumed distribution ( );X mf x Σ  is a complex Normal distribution, then 
2( ) exp( )g Q Q = −Σ Σ  

and 2ln ( ) 1d g Q dQ = −Σ Σ
. By substituting this result in eq. (53), we get: 

 ( ) ( )  ( )
2

1 1 1 1 1 1

2 2

1
tr tr =tr ,H X

X p m mD p f E


 

− − − − − −
  

 =  −  −    
  

Σ Σ Σ Σ x x Σ Σ Σ Σ ΣΣ Σ  (55) 
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where we used the property   2H

p m m XE =x x Σ . Then, following the standard rules of matrix 

calculus [40], the derivative of the KL divergence w.r.t. Σ is: 

 ( )
2

1 1 1

2

X
XD p f





− − −
= −


Σ

Σ Σ ΣΣ
Σ

. (56) 

Finally, by setting the derivative in eq. (56) equal to zero, we obtain matrix 0Σ  that minimizes the 

KL divergence as: 

 
2

0 2

X


=Σ Σ . (57) 

Eq. (57) shows that the MML estimator converges a.s. to a scaled version of the true scatter matrix, 

( ) ( )
. .

2 2

0
ˆ

a s

MML X
M

 
→
→ =Σ x Σ Σ , so it is not consistent. It is consistent only when the two powers of 

the assumed and true pdf’s are equal. The mean value of the MML estimator with respect to the true 

distribution is: 

 ( ) 
2

02
ˆ X

p MMLE



= = =μ Σ x Σ Σ . (58) 

Hence, the MML estimator is MS-unbiased. Given the MS-unbiasedness of the proposed MML 

estimator, we can evaluate the MCRB. In [41], the MCRB on the estimation of the scatter matrix 

was evaluated for two CES distributions, the complex-t and the Generalized Gaussian (GG), when 

the assumed misspecified distribution is a complex Normal pdf. In this case study, we assume that 

the true distribution is a complex-t distribution with pdf given in eq. (51). The GG case will be 

discussed in the next case study. 

Before providing the expression of the MCRB, some considerations on a reasonable choice of 

the true distribution parameters,   and  , have to be made. The power  2

X pE Q N
Σ

 is 
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function of these two parameters. By applying the Stochastic Representation Theorem, we have that 

Q
Σ

 has an F-distribution [16] such that  

 
( )

( )
11

( )
,

N

N

Qp q q q
B N

 

 

  

− +

−    
= +   

   
Σ

, (59) 

where ( )
( ) ( )
( )

( ) ( )
( )

1 !
,

N N
B N

N N

 


 

  − 
= =

 +  +
. In this case, we have: 

 
 

( )
2

1

p

X

E Q

N




 
= =

−

Σ , (60) 

  
( )( )

( )
2 4

1 1
, 2

2
p X

N N
E Q


 



+ −
= 

−
Σ

. (61) 

In order to focus on the impact of the mismatch due to the difference between the density generators 

(or, in other words, in order to make the vector r in eq. (18) equals to zero), we assume that 

2 2

X = , so that 0 =Σ Σ . This guarantees that the MML estimator is consistent and   and   are 

chosen accordingly. In essence, we can set 2 2 1X = =  and then, from eq. (60), we chose   and   

to satisfy ( 1)  = − . It is worth noting that in practical situations, we have no control on the 

extra-parameters of the true distribution. However, this analysis is useful to better understand the 

nature of the MCRB and of the MML estimator. The more realistic case in which the power 
2  is 

jointly estimated with Σ is discussed in Section 6.2.   

A compact expression for the MCRB for two distributions in the CES family is given in 

Appendix C. Following the results in [41] and by applying eq. (C.10), the MCRB can be expressed 

as:  
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 ( )
( )

( ) ( )
( )

( )
( )† †

11 1
MCRB vec vec

2 2

TT

N N
M



 

 −
= +  

− − 
θ D Σ Σ Σ Σ D . (62) 

where DN is the so-called Duplication matrix of order N ([38], [42], [43]). The duplication matrix is 

implicitly defined as the unique 
2N l  matrix (where ( 1) 2l N N= + ) that satisfies the following 

equality: vecs( ) vec( )N =D A A  for any symmetric matrix A. The symbol †  denotes the Moore-

Penrose pseudo-inverse. Moreover, using the expression of the FIM for t-distributed data evaluated 

in [35] and the properties of the vec and vecs operators, the duplication matrix DN and of the 

Kronecker product   ([38], [42], [43], [44]), the CRB can be expressed as: 

 ( ) ( ) ( ) ( )† †1 1 1
CRB vec vec

( )

TT

N N

N N

M N N

 

  

 + + + +
= +  

+ + 
θ D Σ Σ Σ Σ D , (63) 

For the sake of comparison, in the following figures we report, along with the MSE of the MML, 

the MCRB and the CRLB, as well as the MSE of the robust (unconstrained) Tyler’s estimator ([45], 

[46], [47], [48]). Tyler’s estimator has been derived in the context of the CES distribution as the 

most robust estimator in min-max sense [48]. In particular, Tyler’s estimator can be obtained as the 

recursive solution of the following (unconstrained) fixed-point (FP) matrix equation: 

 
1

1

HM
m m

H
m m m

N

M −
=

= 
x x

Σ
x Σ x

. (64) 

To solve eq. (64), we use the following iterative approach: 

 

( )

(0)

( 1)

1
( )

1

ˆ ˆ                                              

ˆ , 0, ,
ˆ

T MML

HM
k m m

T
H k

m
m T m

N
k K

M

+

−
=

 =

 = =





Σ Σ

x x
Σ

x Σ x

 (65) 
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It can be noted that, unlike the recursive procedure proposed in [45], in (65) there is not a 

normalization constraint on the trace of ( )ˆ k

TΣ . The MCRB in (9) does not apply to the Tyler’s 

estimator since ( )ˆ k

TΣ  has not been derived under any assumed CES distribution.  

In order to have a global performance index (i.e. an index that is able to take into account the 

errors made in the estimation of all the covariance entries), we define ε as: 

 ( )( ) ˆ ˆ( ) ( )
T

p

F

E − −θ x θ θ x θ , (66) 

where ˆ ˆvecs( )=θ Σ , Σ̂   is an estimate of the true covariance matrix Σ , vecs( )=θ Σ  and 

( )tr T

F
=A A A  is the Frobenius norm of matrix A . Fig. 3 shows the behavior of this global 

performance index for the MML and Tyler’s estimators as a function of the shape parameter λ. As 

performance bounds, the following quantities are plotted: 

 ( )MCRB MCRB
F

 θ ,  ( )CRB CRB
F

 θ  (67) 

The true covariance matrix is assumed to be  
,

i j

i j


−
=Σ  [49], [50]. The value of the one-lag 

correlation coefficient is 0.8 = , the number of (secondary) data vectors is M=3N. To calculate the 

global performance indices MML  and Tyler  of the estimators, we run 105 Monte Carlo trials. As 

expected, for high values of   the MCRB and the CRB tend to be equal, since for  →  the t-

student pdf tends to a complex Gaussian pdf, and the matched and mismatched models tend to 

coincide. Moreover, as  → , the MML estimator converges to the ML estimator, and then it 

attains the CRB. This is not the case for Tyler’s estimator, that suffers from “robustness losses”, i.e. 

it is robust but not optimal when the data tends to be Gaussian distributed ( → ). In Fig. 4, MML

, Tyler , MCRB  and CRB  are compared as a function of the number of available data M, for 3 = . In 
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this case, Tyler’s estimator has better estimation performance than the MML estimator, thanks to its 

robustness ([46], [48]). For completeness, in Fig. 5 we investigate the performance of the MML and 

of Tyler’s estimator as function of ρ for 3 = , N=8 and M=3N. As expected, Tyler’s estimator 

achieves better performance than the MML estimator for all the values of ρ. Finally, it can be noted 

that the MCRB is not applicable to Tyler’s estimator since it is not based on any misspecified data 

distribution. Therefore, its RMSE sometimes falls below the MCRB. On the other hand, since 

Tyler’s estimator is an unbiased estimator of Σ  (at least in its unconstrained version) its RMSE is 

always above the CRB. 

 

Figure 3 – MSE indices, MML  and 
Tyler , and bounds 

MCRB  and 
CRB  as function of the shape parameter of the t-distribution 

(=0.8, N=8, M=3N). 

 

Figure 4 – MSE indices, MML  and 
Tyler , and bounds 

MCRB  and 
CRB  as function of the available data (=0.8, N=8, λ=3). 

 

Figure 5 – MSE indices, MML  and 
Tyler , and bounds MCRB  and CRB  as function of the one-lag correlation coefficient  (λ=3, 

N=8, M=3N). 

 

Case Study 2 Assumed pdf: complex Normal, true pdf: Generalized Gaussian. 

As before, we assume a complex Normal model for the data, while the true data distribution is a 

GG distribution:  

 ( ) ( )
( )

( )

( )1

1
; ; exp

HN
m m

X m X m N

N b
p p

N b




 

−−  
 = −
 
 

x Σ x
x θ x Σ

Σ
, (68)  
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where b is the scale parameter and β is the shape parameter characterizing the model [16], [51]. One 

advantage of the GG distribution with respect to the t-distribution is that it can be used to model 

both the heavy tailed (β<1) and the light tailed (β<1) distributions as compared to the Normal 

distribution (β=1).  

Since we are assuming a complex Normal model for the data, the MML estimator can be derived 

exactly as discussed in the Case Study 1. In particular, the MML scatter matrix estimator for this 

mismatched scenario is still the SCM given in eq. (52). Moreover its convergence point, i.e. the 

point that minimizes the KL divergence between the true GG distribution and the assumed Normal 

distribution, is again the matrix ( )2 2

0 X =Σ Σ  of eq. (57), where 2

X  is the power related to the 

GG distribution in eq. (68). As in the Case Study 1, in order to focus our analysis on the effects of 

the misspecification between the true and the assumed density generators (i.e. in order to make the 

vector r in eq. (18) equal to zero), we choose the shape β and scale b of the GG distribution such 

that 
2 2

X = , i.e. the MML estimator is consistent. The power  2

X pE Q N
Σ

 of the GG 

distribution is function of β and b. In fact, by applying the Stochastic Representation Theorem, it 

can be shown that Q
Σ

 has pdf: 

 
( )

1

1
( )

qN

b
Q N

q
p q e

b N









−
−

−
=

Σ

. (69) 

Hence, we have: 

  2 1 1
X p

N N
E Q N b N

 

   +
= =     

   
Σ , (70) 

  
( ) ( )

( )
2 2 4 2

2

( 2)2

( 1)
p X

N NN N
E Q b N

N

  


  

  +   +
=   =   

 +   
Σ

. (71) 
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As in the Case Study 1, we set 2 2 1X = = , and then, from eq. (70),   and b should be chosen to 

satisfy  ( 1 ) ( )b N N


 =  +  . 

Following the results in [41] and by applying eq. (C.10), the MCRB can be expressed as:  

 ( ) ( ) ( ) ( )† †1
MCRB ( 1)vec vec ,

TT

N N
M

  =  + −
 

θ D Σ Σ Σ Σ D  (72) 

where 

 
( ) ( )

( )
2

( 2)

( 1) ( 1)

N N N

N N

 




  +

+  +
. (73) 

The FIM for GG-distributed data has been evaluated for a single observation vector xm in [35]. 

After some matrix manipulations, the CRB on Σ  is derived to be: 

 ( ) ( ) ( ) ( )† †1 1 1
CRB vec vec

( )

TT

N N

N

M N N



  

 + −
=  + 

+ + 
θ D Σ Σ Σ Σ D . (74) 

As for the Case Study 1, in Fig. 6 we compare the MSE of the MML estimator and of the Tyler’s 

estimator with the MCRB the CRB in terms of the indices MML , Tyler , MCRB  and CRB , as a 

function of the shape parameter β. The value of the one-lag correlation coefficient is 0.8 = , the 

number of data vectors is M=3N. To calculate the MSE of the estimators we run 105 Monte Carlo 

trials. As expected, for β=1 the MCRB and the CRB are equal, since the Generalized Gaussian pdf 

becomes a complex Gaussian pdf, then matched and mismatched cases coincide. In heavy tail 

disturbance (β<1), thanks to its robustness, Tyler’s estimator has better performance than the MML 

estimator. The reverse is true when β>1. 
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In Fig. 7 the indices MML , Tyler , MCRB  and CRB  are compared as function of the number of 

available data M. Finally, in Fig. 8 the performance of the MML and of the Tyler’s estimator are 

plotted as function of ρ for 0.2 =  and N=8. Even in this case, Tyler’s estimator has better 

performance than the MML estimator and is very close to the CRB. 

 

Figure 6 – MSE indices, MML  and 
Tyler , and bounds 

MCRB  and 
CRB  as function of the shape parameter of the GG distribution 

(=0.8, N=8, M=3N). 

 

Figure 7 – MSE indices, MML  and 
Tyler , and bounds MCRB  and CRB  as function of the available data (=0.8, N=8, β=0.2). 

 

Figure 8 – MSE indices, MML  and 
Tyler , and bounds 

MCRB  and 
CRB  as function of the one-lag correlation coefficient   (β=0.2, 

N=8, K=3N). 

 

 

 

Case Study 3 Assumed pdf: Generalized Gaussian; true pdf: t-student.  

In this study case, we want to investigate the scenario where we know that the data are not 

Gaussian, but we do not assume the correct “non-Gaussian” model for our data. As in the Case 

Study 1, we assume that the true distribution is a complex-t distribution, but unlike the previous 

case, we assume a complex GG distribution for modeling our data. The MML estimator, then, is the 

ML estimator for the GG data. Unlike the SCM (i.e. the ML estimator for Normal data), the ML 

estimator for GG data cannot be expressed with an explicit equation but has to be defined through a 
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fixed-point equation. In this subsection, we first discuss some properties of the MML estimator (in 

particular, bias and consistency in the mismatched sense), and then we evaluate the relevant MCRB. 

In this case study, the true distribution has the same pdf given in eq. (51), while the assumed pdf is 

the GG distribution in eq. (68) recalled here for sake of clarity: 

 ( ) ( )
( )

( )

( )1

1
; ; exp

HN
m m

X m X m N

N b
f f

N b




 

−−  
 = −
 
 

x Σ x
x θ x Σ

Σ
, 

where   is the shape parameter and b  is the scale parameter that are again assumed to be known. 

In this case, the MML estimator is the solution of the following fixed-point matrix equation [16], 

[35], [51]: 

 ( ) ( )1

1

1ˆ ˆ ˆ
M

H H

MML m MML m m m M MML

m

H
M

 −

=

= =Σ x Σ x x x Σ , (75) 

where the function   is given by ( ) ( ) 1t b t  −= . Following Theorem 6 in [16], it can be shown 

that, for every (symmetric and positive-definite) starting matrix (0)
Σ , the recursive version of eq. 

(75) converges to ˆ
MMLΣ , i.e. ( )1ˆ ˆ ˆk k

M MML
k

H+

→
= →Σ Σ Σ  iff (0,1)  . For 1  , i.e. when the tails 

of the GG distribution are lighter than those of the Normal distribution, the recursive estimator of 

the scatter matrix is no longer reliable. In fact, when 1  , the conditions on ( )t  that guarantee 

the existence and the uniqueness of the estimator are not satisfied. Theorem 5 in [46] can be used to 

prove that for (0,1)   we have 
. .

0
ˆ

a s

MML
M→
→Σ Σ , i.e. the MML estimator ˆ

MMLΣ  converges with 

probability 1 to 0Σ . From the theory previously discussed, the limiting value 0Σ  must be the 

matrix that minimizes the KL divergence between ( )X mp x  and ( );mf x Σ . In order to calculate 0Σ , 
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we can apply eq. (53), where in this case the density generator is that of the GG distribution, i.e. 

( ) ( )expg t t b= − . After some calculations, we get: 

 ( ) ( ) ( ) ( )1
1 1 1 1tr tr .H H

X p m m m mD p f E
b

 −
− − − − =  − 

Σ
Σ Σ x Σ x Σ x x Σ Σ  (76) 

By applying the Stochastic Representation Theorem, we have 
m d Q=

Σ
x Tu , where 

1HQ −

Σ
z Σ z , 

H=Σ TT  is a factorization of the shape Σ , u is a N-dimensional vector uniformly distributed on the 

unit hyper-sphere with N-1 topological dimensions such that 1H =u u  and   1HE N −=uu I . Then, 

eq. (76) can be rewritten as: 

 ( ) ( )
 

( ) ( )1
1 1 1 1tr tr ,H H H H

X p

E Q
D p f E

b


 −

− − − − =  − 
Σ

Σ
Σ Σ u T Σ Tu Σ Tuu T Σ Σ  (77) 

where  E Q

Σ
 can be evaluated explicitly by using the integral in [52, p. 315, n. 194.3]: 

  
( ) ( )

( ) ( )

N
E Q

N



    

 

   +  −
=  

  
Σ

. (78) 

From eq. (77), setting to zero the derivative of the KL divergence w.r.t. Σ  leads to: 

   ( )  0

1
1 1 1 1 1 .H H H Hb E Q E


−

− − − − −

=− =Σ ΣΣ
Σ u T Σ Tu Σ Tuu T Σ 0  (79) 

Through some standard matrix manipulation, we get: 

   ( ) 
1

1 1 1

0 0

H H H Hb E Q E



−

− − − −=
Σ

T Σ T u T Σ Tu uu . (80) 

Now, assuming that the solution of eq. (80) is a scaled version of the true shape matrix, i.e. 

0 =Σ Σ , we have   1E Q
bN

 
  − +=

Σ
I I , so that 
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1

( ) ( )

( ) ( )

N

bN N



    


 

  +  −
=  

  
. (81) 

Then, the matrix that minimizes the KL divergence is given by: 

 

1

0

( ) ( )

( ) ( )

N

bN N



    


 

  +  −
=  

  
Σ Σ Σ . (82) 

Since 0Σ  is a scaled version of the true scatter matrix, the MML estimator is not consistent in 

general. As shown in [16] and [46], for the estimator in eq. (75), the following asymptotic relation 

holds:  

 ( ) 1

,

H H

p m f MML m m mE  − =x Σ x x x Σ . (83) 

Eq. (83) can be used to evaluate the bias of the MML estimator in the mismatched sense. The mean 

value of the MML estimator with respect to the true distribution pX is: 

  ˆ ( )p MML
M

E 
→

= =μ Σ x Σ , (84) 

where the scalar term   can be evaluated by solving the following integral equation [16]: 

 
Q Q

E N
 

  
=  

  

Σ Σ . (85) 

Given ( ) 1t t b  −=  and by using the integral in eq. (78),   can be evaluated as: 

 

1

( ) ( )

( ) ( )

N

bN N



    
 

 

  +  −
=  = 

  
. (86) 

Hence, the MML estimator is (asymptotically) MS-unbiased, i.e. the mean value μ tends to the 

matrix that minimizes the KL divergence 0= =μ Σ Σ . However, the MML is not consistent since 
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it converges to a scaled version of the true scatter matrix. As before, we select the parameter values 

in such a way that the estimator is consistent and then the vector r in eq. (18) is equal to zero. In 

particular, we choose a set of shape and scale parameters of the assumed and the true distributions 

such that 1 = , and then 0= =μ Σ Σ . To have 1 = , a possible choice of the scale parameter η of 

the t-distribution and the scale parameter b of the GG distribution is: 

1





=

−
   and  

( ) ( )

( ) ( )

N
b

N N


    

 

  +  −
=  

   
. 

Now, we can compare the estimation performance of the MML estimator directly with the MCRB 

in eq. (18). As before, the MCRB can be evaluated using the compact expression for 
1 1− −

θ θ θ
A B A  

derived in Appendix C, eq. (C.10). The density generator for the GG distribution is 

( ) ( )expg t t b= − , hence we have: 

( ) 1ln g Q
Q

Q b

 −
= −



Σ

Σ

Σ

 and  
( )2

2

2

ln ( 1)g Q
Q

Q b

  − −
= −



Σ

Σ

Σ

. 

In order to evaluate the terms B1, B2, A1 and A2 in eqs. (C.2), (C.3), (C.6), and (C.7), respectively, 

the integral in eq. (78) is needed. In particular, we have: 

 
( )ln ( ) ( )

( ) ( )

g Q N
E Q

Q b N



    

 

     +  −
= −   

    
, (87) 

 
( )

2 22
2

2

ln (2 ) ( 2 )

( ) ( )

g Q N
E Q

Q b N



    

 

      +  − 
=    

      

, (88) 

 
( )2

2

2

ln ( 1) ( ) ( )

( ) ( )

g Q N
E Q

Q b N



     

 

   −  +  −
= −   

    
, (89) 
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with 2  . Finally, the MCRB is evaluated using eq. (C.10), while the CRB is given in eq. (63).  

In the following, we compare the MSE of the MML estimator and of Tyler’s estimator given in 

eq. (64) with the MCRB and the CRB by calculating the indices MML , Tyler , MCRB , and CRB  

previously defined. Both the iterations to derive the MML and Tyler’s estimators are initialized 

using the identity matrix I. As before, the value of the one-lag correlation coefficient is 0.8 =  and 

the number of data vectors is M=3N. To calculate the MSE of the estimators, we run 105 Monte 

Carlo trials.  

The simulation results concern two different scenarios: (1) the super-Gaussian scenario, i.e. the 

true t-distribution has heavier tails than a Normal distribution and where λ=3, and (2) the quasi-

Gaussian scenario, where λ=50 (λ is the shape parameter of the t-distribution).  

As shown in Fig. 9, the MML estimator achieves better performance than Tyler’s estimator when 

β<0.6, i.e. when the assumed GG distribution has extremely heavy tails. The MCRB gets close to 

the CRB when β decreases, i.e. the assumed pdf becomes spikier. As expected, in the quasi-

Gaussian case of Fig. 10, the MML estimator and the MCRB have an opposite behavior with 

respect to the choice of the shape parameter of the assumed GG distribution β. In fact, with λ=50, 

the true t-distribution is very close to the Normal distribution, so the performance of the MML 

estimator becomes better as β tends to 1, i.e. the MML estimator tends to the SCM. Also, the 

MCRB gets closer and closer to the CRB when β tends to 1. Clearly, the MSE of Tyler’s estimator 

and the CRB do not depend on the value of the shape parameter β of the assumed pdf. 

 

Figure 9 – MSE indices, MML  and 
Tyler , and bounds MCRB  and CRB   as a function of the shape parameter of the GG distribution 

(=0.8, N=8, M=3N, λ=3). 
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Figure 10 – MSE indices, MML  and 
Tyler , and bounds 

MCRB  and 
CRB  as a function of the shape parameter of the GG distribution 

(=0.8, N=8, M=3N, λ=50). 

 

6.2 Misspecified joint estimation of the scatter matrix and of the extra-

parameters  

In the previous section, we showed how to apply the mismatched estimation framework to the 

problem of estimating the scatter matrix of a CES distributed random vector when all the extra 

parameters are a-priori known. Now, we investigate the more realistic scenario where all these 

parameters are unknown and should be jointly estimated. In this case, the constraint on the trace of 

the scatter matrix must be imposed in order to make the joint estimation problem well-defined [53].  

We investigate the same scenario as in Case Study 1 of Section 6.2: the true data pdf is a 

complex t-distribution, while the joint MML estimator of the scatter matrix and of the data power is 

derived under a Normal model assumption. This is a recurring scenario in adaptive radar 

applications. In fact, the choice of the t-distribution as true data model has been motivated by 

experimental evidence (see e.g. [36] and [37]) that proved its reliability to model spiky clutter data. 

On the other hand, many radar systems exploit the Normal model for data inference due to its 

analytical tractability and the consequent real time implementation of the estimation algorithms 

based on it. 

 More formally, we assume that the M vectors of the available dataset  
1

M

m m=
=x x   are iid and 

each one has a complex Normal multivariate pdf given in eq. (50): 

 ( ) ( )
( )

( )
1

2

22

1
; ; , exp , tr

H

m m
X m X m N

f f N


− 
= − = 

 

x Σ x
x θ x Σ Σ

Σ
. (90) 
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The covariance matrix is   2H

m mE = =M x x Σ , where tr( ) N=Σ  and 
2  is the power. Hence, 

the parameter vector to be estimated can be expressed as 2vecs( )
T

T  =  θ Σ . However, the 

true data are distributed according to the complex t-distribution ( ); ( ; , , )X m X mp p  x τ x Σ  of eq. 

(51):  

 ( )
( )

( )

( )

( )11
; ( ; , , ) , tr

N

H

X m X m m mN

N
p p N

 
  

 
  

− +

−
 +    

= + =   
    

x τ x Σ x Σ x Σ
Σ

, (91) 

where vecs( )
T

T   =  τ Σ  is the true parameter vector and Σ  is the true scatter matrix that 

could be different to the scatter matrix Σ  of the assumed Gaussian distribution.  

It is worth observing that in the mismatched case the parameter space   that parameterizes the 

assumed distribution and the parameter space   that parameterizes the true distribution may be 

different. In the case at hand, for example T (0, ) (0, )l      while (0, )l    where   

indicates the Cartesian product and ( 1) 2l N N= +  as before. Moreover, the constraint on the trace 

of the scatter matrix limits both the true and assumed parameter vector to belong to two lower 

dimensional smooth manifolds T={ T tr ( ) }N =τ Σ   and ={ tr ( ) }N  =θ Σ , respectively.  

The main aspects which differentiate the mismatched estimation problem at hand form the one 

discussed in the Case Study 1 of Section 6.1 are:  

• The assumed and the true parameter spaces,   and T , are different. Consequently, the 

simplified approach discussed in Sect. 4.4 cannot be applied and a consistent MML 

estimator does not exist. 
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• No assumptions are made on the value of 
2 , i.e., the power of the assumed Normal 

distribution. It is considered an additional unknown parameter that needs to be jointly 

estimated with the scatter matrix Σ. 

• To guarantee the identifiability of 
2  and Σ, a constraint on Σ, i.e., tr( ) N=Σ , needs to be 

imposed. This means that we should compare the performance of a constrained MML 

estimator with the CMCRB derived in eq. (27). 

In the following, the constrained MML estimator for the estimation of θ is firstly derived and its 

convergence properties investigated. Then, the CMCRB for the joint estimation problem at hand is 

calculated. 

6.2.a Derivation of the constrained MML (CMML) estimator 

In order to obtain an estimation of θ, we apply the MML algorithm in eq. (13). In particular, 

under the assumption of complex Normal data model in eq. (90), the likelihood function can be 

expressed as: 

 ( ) 2 1 2

1 1
( ) ln ; ln ln

M M H

X m m mm m
L f NM M −

= =
= = − − − θ x θ Σ x Σ x . (92) 

Then, the MML estimator can be obtained by maximizing ( )L θ  subject to the linear constraint

( )tr N=Σ . To proceed, we do not rely on the Lagrange multiplier method, but rather we follow a 

different, yet equivalent (at least asymptotically), procedure [54]. We first derive the unconstrained 

MML estimator and then we project it on the lower dimensional manifold   by imposing the 

constraint. Specifically, the MML estimator is the solution of the following problem: 
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Then, we have: 
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Hence, imposing the constraint we get the constrained MML (CMML) estimators of 2 and Σ : 
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 (95) 

Now we need to find the convergence point 0θ  of the CMML estimator (see eq. (14)). As 

discussed in Sect. 4.3, the convergence point 2

0 0 0vecs( )
T

T  =  θ Σ  is the vector that minimizes 

the KL divergence between the true t-distribution ( );X mp x τ  in eq. (91) and ( );X mf x θ  in eq. (90). 

To this end, we have to solve the following system: 
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 
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θ
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x Σ

x Σ
0

Σ Σ

 (96) 
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The first equation immediately provides: 

 
( )  1

2

2 2 2 2 4
ln 0

H
X pm m

p

D p f E QN
E N 

    
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θ Σx Σ x
, (97) 

where 
1H

m mQ −

Σ x Σ x . By solving eq. (97) we get: 
 2

0

pE Q

N
 =

Σ .  

The derivative of the KL divergence with respect to Σ is instead given by: 

 
( )  

( ) ( )1 1 1

2
, tr tr

XD p f E Q
N

N

− − −


= − = = =


θ Σ
Σ Σ ΣΣ 0 Σ Σ

Σ
, (98) 

whose solution is 
 

0

0 2

E Q

N
=

Σ
Σ Σ . Putting together the two solutions, we finally obtain: 
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02
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E Q

N
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Σ
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 
0

0 2

0

E Q

N
= =

Σ
Σ Σ Σ , where ( ) ( )0tr tr N= =Σ Σ , (99) 

and 
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E Q EE Q
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
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Σ Σ
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where 
2  is the true statistical power of the data. Eqs. (99)-(100) show that the CMML estimator 

converges a.s. to the parameter vector ( )
. .

2

0
ˆ vecs( )

a s T
T

CMML
M


→

 → =  θ x θ Σ , i.e. 

 ( ) ( ) ( )
. . . .

2 2 ˆˆ 1 and
a s a s

CMML CMML
M M

    
→ →
→ = − →x Σ x Σ . (101) 

Hence, it provides “consistent” estimates for both the scatter matrix and the power of the true data 

model [53]. From a practical point of view, this means that we can use the simple mismatched 
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estimator based on the Gaussian assumption to estimate the scatter matrix and the average power of 

the (complex t-distributed) data since it converges to the true required quantities. The analysis of the 

performance loss of the mismatched estimator in eq. (95) is reported in the next subsection (see [48] 

for more details). 

6.2.b The CMCRB for the joint estimation of the scatter matrix and the power 

In Section 6.1 (Case Study 1), the MCRB on the estimation of the scatter matrix has been 

evaluated for a complex-t distribution when the assumed misspecified distribution is a complex 

Normal pdf, under the assumption of a-priori known power. Here, we generalize the result for the 

case of unknown power, i.e., when the power σ2 and the scatter matrix Σ are unknown and jointly 

estimated. In this case σ2 and Σ are not identifiable unless a constraint on Σ is imposed, e.g., 

tr( ) N=Σ . In order to incorporate this constraint in the MCRB, we calculate the constrained MCRB 

(CMCRB) of Theorem 3 in Sect 4.5. In the following, we specialize the general expression 

provided in eq. (27) for the case study at hand. 

Evaluation of the matrix 
0θ

A . Matrix 
0θ

A  can be decomposed in the following blocks: 

 
0

2

1 1

cT

T

c A


 
=  

 

Σ

θ

A A
A T T

A
, (102) 

 
N

i

i

 
=  
 

D 0
T

0 I
, (103) 

where Ii is the identity matrix of dimension i i  and DN is the so-called Duplication matrix of order 

N [38]. Following the procedure in [41], we have: 

 
1 1− −= − 

Σ
A Σ Σ . (104) 
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where i i=  A Σ  is a symmetric 0-1 matrix. From (106) we get: ( )1

2

1
vecc



−= −A Σ . 

Evaluation of the matrix 
0θ

B . Matrix 
0θ

B  can be decomposed in the following blocks: 
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1 1
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T

c B


 
=  

 

Σ
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B B
B T T

B
. (107) 

As before, following the procedure in [41], we get: 

 ( ) ( )1 1 1 11 1
vec vec

2 2

T 
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− − − −−
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− −
Σ

B Σ Σ Σ Σ . (108) 
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Hence, we get ( )1

2

1
vec

( 2)
c

N 

 

−+ −
=

−
B Σ .  

Evaluation of the matrix U 

The continuously differentiable constraint tr( ) N=Σ  can be rewritten as: 

 ( ) vecs( ) 0ii I
f N


= − =θ Σ , (111) 

where I is the set of the indices of the diagonal entries of Σ  that can be explicitly described as: 

 
( 1)( 2)

1 ( 1) , 1,...,
2

j j
I i i N j j N

 − − 
= = + − − = 
 

. (112) 

Following [29], we define the (l+1)-dimensional gradient vector as: 
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( ) 0 0
vecs( )

i Ti I
IT T

f
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 
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 Σθ
θ 1

θ Σ
, (113) 

where 
I1  is a l-dimensional column vector defined as: 

  
1

0 otherwise
I i

i I
= 


1 . (114) 
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The gradient ( )f θ  has clearly full row rank and hence there exists a matrix 
( 1)l l+ U  whose 

columns form an orthonormal basis for the null space of ( )f θ , that is ( )f =θ U 0  where UTU=I. 

The matrix U can be obtained numerically by evaluating, e.g. using the Singular Value 

Decomposition (SVD), the l orthonormal eigenvectors associated to the zero eigenvalue of ( )f θ  in 

eq. (113). 

6.2.c Performance analysis 

We now compare the estimation performance of the CMML estimator of eq. (95) [55] with the 

CMCRB. For the sake of comparison, in the following figures, we also report the MSE of the 

constrained Tyler’s estimator (C-Tyler) and the (matched) CCRB for the joint estimation of 

vecs( )
T

T   =  τ Σ  derived in [56] and [57]. In particular, the C-Tyler estimator is the 

constrained version of the robust estimator discussed of eq. (64), that can be evaluated by using the 

following iterative approach proposed in [45]: 
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x x
S

x Σ x

Σ S S

 (115) 

for k=1,…,K , where K is the number of iterations. It can be noted that in (115) there is a 

normalization on the trace of ( )ˆ k

TΣ  at every step of the iterative procedure to impose the constraint 

on the trace. Asymptotic consistency and unbiasedness properties are discussed in [16] and [48]. It 

is worth noting that the performance of the C-Tyler estimator can be assessed by comparing its error 

covariance matrix on the estimation of Σ with the CCRB derived in [56] and [57]. 
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As global MSE index for the scatter matrix estimators, we use the one defined in eq. (66) (e.g. 

CMML  and C Tyler − ), while as performance bounds, the following quantity are plotted: 

 
CMCRB CCRBCMCRB( ) , CCRB( )

F F
 Σ Σ . (116) 

The accuracy on the estimate of average power σ2 in the mismatched case is measured through its 

MSE, which is compared with the CMCRB. To calculate the estimation accuracy, we run 105 Monte 

Carlo trials. The simulation results have been organized as follows: 

1. Estimation accuracy as function of the number M of available data vectors (Figs. 11 and 12). 

Simulation parameters: =0.8, N=16, λ=3, η=1, K=4. 

2. Estimation accuracy as function of the shape parameter λ (Figs. 13 and 14). Simulation 

parameters: =0.8, N=16, M=10N, η=1, K=4. 

3. Estimation accuracy as function of the one-lag correlation coefficient  (Figs. 15 and 16). 

Simulation parameters: N=16, M=10N, λ=3, η=1, K=4. 

Based on the numerical analysis, we observe that: 

• Regarding the CMML estimator, it always achieves the CMCRB, both for the estimation of 

the scatter matrix and for the estimation of the average power. The CMML presents a small 

bias on the estimation of the scatter matrix. Hence, ˆ
CMMLΣ  is not a MS-unbiased estimator (at 

least in the finite sample regime) [53]. For this reason, CMML  can be slightly below the 

CMCRB (we talk about superefficiency in this case). The loss in estimation accuracy due to 

the mismatch is particularly high for extremely heavy tailed data, i.e. when λ is small (see Fig. 

13). When 0 → , the CMCRB rapidly increases while the CCRB is quite independent of λ. 

On the other hand, when  → , the CMCRB and the CCRB tend to coincide, as expected.  
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• Regarding the scatter matrix estimation, the robust C-Tyler estimator is an “almost” efficient 

estimator, even if it is not the most efficient estimator for t-distributed data. The MSE index 

C Tyler −  is close to the CCRB especially for small λ (see Figs. 11, 13, and 15). In particular, its 

performance is robust, i.e., it is not affected by the value of the shape parameter λ (see Fig. 

13), even if it is not efficient for large λ.  

 

Figure 11 – MSE indices, CMML  and 
C Tyler −

, and bounds 
CMCRB  and 

CCRB  as function of the number M of available data vectors  

(=0.8, N=16, λ=3, η=1). 

 

Figure 12 – MSE of the CMML estimator of σ2 and CMCRB as function of the number M of available data vectors (=0.8, N=16, 
λ=3, η=1). 

 

Figure 13 – The MSE indices CMML  and 
C Tyler −

, and bounds 
CMCRB  and 

CCRB  as function of the shape parameter λ (=0.8, 

N=16, M=10N, η=1). 

 

Figure 14 – MSE of the CMML estimator of σ2 and CMCRB as function of the shape parameter λ (=0.8, N=16, M=10N, η=1). 

 

Figure 15 – MSE indices CMML  and 
C Tyler −

, and bounds CMCRB  and CCRB  as function of the one-lag correlation coefficient  

(N=16, M=10N, λ=3, η=1). 

Figure 16 – MSE of the CMML estimator of σ2 and CMCRB as function of the one-lag correlation coefficient  (N=16, M=10N, 

λ=3, η=1). 

 

 

7 Hypothesis testing problem for target detection 

The last section of this chapter focuses on the target detection problem. In particular, this section 

aims at comparing the detection performance of the adaptive normalized matched filter (ANMF) by 

exploiting the CMML and the C-Tyler estimators for the scatter matrix. The NMF has been derived 



60 

 

and analysed by many authors under different names (see e.g. [49], [50], [58], [59], [60], [61], [62], 

[63], [64], [65]) in its adaptive and non-adaptive (i.e. when the disturbance scatter matrix is 

assumed to be known) versions. One of the most remarkable property of the non-adaptive NMF is 

the fact that it is a distribution-free detector under CES distributed clutter, i.e. the pdf of the 

decision statistic is invariant w.r.t. the particular CES distribution followed by the clutter [16]. We 

now summarize briefly the classical radar detection problem.  

The problem is to detect the possible presence of a complex signal vector s in the received data 

z=s+c, where c represents the additive unobserved complex disturbance (noise/clutter) random 

vector. The target signal s is modelled as s= αp where p (generally called target vector response or 

Doppler steering vector) is the transmitted known radar pulse vector and je  =   is an 

unknown signal parameter accounting for both channel propagation effects and the target 

backscattering. α can be modelled as an unknown deterministic parameter or as a random variable 

depending on the application at hand. When modelled as a random quantity, α is assumed to be a 

circular Gaussian random variable ( )20,CN    where the amplitude γ is Rayleigh distributed 

and the phase   is uniformly distributed in [0,2 )  and independent of γ. Regarding the complex 

noise vector c, it has been successfully modelled as a zero-mean CES distributed random vector 

with covariance matrix 
2=M Σ , where Σ and 

2  represent the unknown scatter matrix and the 

unknown statistical noise power. In the following, c is modelled as a complex t-distributed random 

vector.  

The target detection problem can be expressed as a composite binary hypothesis testing problem: 

 0 1: 0 v.s. : 0H H =  , (117) 

or, more explicitly as: 
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where the secondary data  
1

M

m m=
x  are assumed to be iid and can be used to estimate the scatter 

matrix and share the same distribution as the clutter c in the primary data vector under test. 

7.1 The ANMF detector 

The Normalized Matched Filter (NMF) has been proposed, e.g. in [49], [50], [58], [59], [60], 

[61], and can be expressed as: 

 
( )( )

2
1

1 1
( , )

H

NMF NMF H H

−

− −
   =

p Σ z
z Σ

p Σ p z Σ z
, (119) 

where the scatter matrix Σ is assumed to be perfectly known.  

An important feature of the detector in (119) is the invariance under scalar multiplies of x. In 

particular, the distribution of the test statistic NMF  under the hypothesis H0 is independent of the 

unknown average noise power σ2 or the functional form of the particular CES distribution of the 

noise, i.e. the NMF is a distribution-free detector under H0. The proof of this property can be found 

in [16]. Moreover, it can be shown that 0NMF H  follows a Beta distribution: 

 ( )0 Beta 1, 1NMF H N − , (120) 

where ( ) ( )( ) ( )
11Beta ; , 1 B ,x x x

   
−−= − ,  N is the dimension of the data vector and 

B( , ) ( ) ( ) ( )     =   + .  

It is clear that the NMF cannot be used in practical applications where the scatter matrix Σ of the 

data vectors is generally unknown. So, in the following simulations, we aim at investigating the 
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detection performance of the adaptive NMF (ANMF) when Σ is replaced by 1) ˆ
CMMLΣ , i.e. the 

CMML estimator derived in eq. (95) or 2) ˆ
TΣ , i.e., its min-max (over the CES distributions) robust 

C-Tyler estimator. Hence, we get the two adaptive estimators: 

 
( )( )

2
1

1 1

ˆ
ˆ( , )

ˆ ˆ

H

CMML

ANMF CMML ANMF CMML CMML H H

CMML CMML

−

− − − −
   =

p Σ z
z Σ

p Σ p z Σ z
 (121) 

 
( )( )
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1

1 1

ˆ
ˆ( , )

ˆ ˆ

H

T

ANMF C Tyler ANMF C Tyler T H H

T T

−

− − − − − −
   =

p Σ z
z Σ

p Σ p z Σ z
. (122) 

As a consequence of the consistency of both the CMML and Tyler’s estimators, the resulting 

adaptive test statistic ANMF  will have asymptotically (i.e. for large M) a Beta(1,N-1) distribution. 

Hence, for large M, ANMF  is (approximately) CFAR w.r.t. Σ, as desired [16]. Further discussions 

on the asymptotic properties of the ANMF  can be found in [66] and [67]. 

In the following, the performance of the two ANMF  detectors in (121) and (122) are compared 

with that of the clairvoyant linear threshold detector (LTD) [37], i.e., the GLRT (with respect to the 

unknown complex signal amplitude α) for t-distributed data under the assumption of known scatter 

matrix and known shape and scale parameters. In particular, the clairvoyant LTD has been derived 

in [37]: 

 
( )( )

2
1

1 1
( , , , )

H

LTD LTD H H
 

 

−

− −
   =

+

p Σ z
z Σ

p Σ p z Σ z
. (123) 

The detection performance of the LTD  provides a useful upper bound to the performance of any 

adaptive detection algorithms, and in particular to ANMF CMML−  and 
ANMF C Tyler− − . In our simulation, 

the detectors are compared in terms of i) Constant False alarm Rate (CFAR) property w.r.t. the 
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scatter matrix and the extra parameters, ii) Probability of Detection (PD) as function of the Signal-

to-Disturbance power Ratio (SDR), and iii) Receiver Operating Characteristic (ROC) curves. 

7.2 Detection performance 

The detection performance of the NMF detector, which exploits either the CMML estimator or 

the C-Tyler estimator, are investigated by deriving by monte Carlo simulation the following curves: 

1. The probability of false alarm (PFA) as function of the one-lag coefficient ρ (Fig. 17). This 

verifies the CFAR property of the ANMF CMML−  (eq. (121)) and the ANMF C Tyler− −  (eq. (122)) 

w.r.t. the correlation shape. Simulation parameters: N=16, M=3N, λ=3, η=1, K=4. The 

detection thresholds have been set to achieve a nominal PFA of 10-3. The number of Monte 

Carlo runs is 106. 

2. The probability of false alarm (PFA) as function of the shape parameter λ of the true complex 

t-distribution, i.e., for different spikiness levels (Fig. 18). This allows us to investigate the 

CFAR property of the two ANMF’s w.r.t. the spikiness of the data. Simulation parameters: 

N=16, M=3N, ρ=0.8, η=1, K=4. The detection thresholds have been set to achieve a nominal 

PFA of 10-3. The number of Monte Carlo runs is 106. 

3. The probability of detection (PD) as function of the SDR (Fig. 19). We also plot the 

performance of the clairvoyant LTD LTD  in eq. (123), that represent an upper bound to the 

performance achievable by ANMF CMML−  and ANMF C Tyler− − . Simulation parameters: N=16, 

M=3N, ρ=0.8, λ=1, η=1, K=4. The detection thresholds have been set to achieve a nominal 

PFA of 10-3. Moreover, 
2(0, )CN    where 

2

  varies according to the desired value of the 

SDR. The number of Monte Carlo runs is 106. 

4. The Receiver Operating Characteristic (ROC) curves (Fig. 20). The simulation parameters 

are: N=16, M=3N, ρ=0.8, λ=3, η=1, K=4. As before, 
2(0, )CN    where 

2

  is set to have 
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an SDR equal to 3 dB. The number of Monte Carlo runs is 106. Also in this case, as upper 

bound, the performance of LTD  is reported.  

As we can see from Fig. 17, both the ANMF detectors are (approximately) CFAR with respect to 

the disturbance one-lag correlation coefficient ρ. Their PFA curves are almost constant and very 

close to the nominal PFA value of 10-3. A similar behavior can be observed in Fig. 18, where the PFA 

curves have been evaluated as function of λ. It can be noted that both ANMF CMML− and ANMF C Tyler− −  

are CFAR detector w.r.t. the data spikiness, except for very low values λ, where the CMML 

estimator has large estimation losses (see Fig. 13) and the PFA of ANMF CMML−  rapidly increases. 

Finally, in Figs. 19 and 20, the PD vs the SDR and the Receiver Operating Characteristic (ROC) 

curves of ANMF CMML−  and ANMF C Tyler− −  are shown. For the sake of comparison, we also plot the 

detection performance of the clairvoyant GLRT for t-distributed data, i.e. the LTD  of eq. (123) 

where Σ, λ and η are assumed to be a-priori known. The performance of  ANMF CMML−  and 

ANMF C Tyler− − are pretty close to that of the clairvoyant detector ΛLTD. However, the adaptation losses 

increase when PFA gets lower. 

 

Figure 17 – Probability of false alarm vs disturbance one-lag correlation coefficient ρ. 

 

Figure 18 – Probability of false alarm vs λ. 

 

Figure 19 – Probability of detection vs SDR for PFA=10-3. 

 

Figure 20 – Receiver Operating Characteristic (ROC) curves. 
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8. Conclusions 

In practical applications, a certain amount of mismatch between the true and the assumed statistical 

data model is inevitable. Several authors in the statistical literature have shown how the classical 

tools of the estimation theory can be generalized to a mismatched scenario. In the first part of this 

chapter, a comprehensive review of the main contributions to the mismatched maximum likelihood 

theory have been proposed and discussed. A CRB under mismatched condition, i.e., the MCRB, 

was described and the behavior of the mismatched maximum likelihood (MML) estimator was 

investigated. In particular, we showed that the MML estimator is asymptotically MS-unbiased and 

its error covariance matrix asymptotically equates the MCRB.  Moreover, a constrained version of 

MCRB is also described. In the second part of the chapter, we showed how to apply these results to 

a well-known problem in radar signal processing, i.e., the problem of estimating the disturbance 

covariance matrix for adaptive radar target detection. We addressed this problem by putting it in the 

more general context of the scatter matrix estimation of Complex Elliptically Symmetric (CES) 

distributed random vectors under data mismodeling. Two relevant scenarios have been considered. 

In the first one, the extra-parameters of the particular CES distributions at hand are assumed a-

priori known. This allowed us to investigate the performance losses in the scatter matrix estimation 

due to a wrong specification of the functional form of the density generator. In the second scenario, 

we investigated the more realistic case where all the parameters are unknown and should be jointly 

estimated. We finished the chapter with an analysis of an adaptive detection algorithm, i.e., the 

ANMF which exploits either the MML estimator or the robust Tyler’s estimator of the disturbance 

scatter matrix. The respective detection performance was compared with that of the clairvoyant 
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GLRT detector that relies on the correct model assumption and knows a-priori the disturbance 

parameters.  

The mismatched approach to signal processing problem is a relatively new research field and, 

even though it promises huge opportunities for applicability to a plethora of different signal 

processing areas, many aspects still remain unresolved. In [10] for example, a generalization of the 

misspecified approach to the Bhattacharyya bound, to the Barankin bound and to the Bobrovsky-

Mayer-Wolf-Zakai bound has been proposed, but much work remains to be done. More 

importantly, in [12], Richmond posed the bases to apply the mismatched approach to the derivation 

of Bayesian bounds, but the path to reach a complete misspecified Bayesian estimation theory is 

still long.  

 

Appendix A 

A generalization of the Slepian formula under misspecification 

In this appendix, we report the misspecified version of the Slepian formula [68] proposed by 

Richmond and Horowitz in their seminal paper [10]. For the sake of clarity, in the following we use 

the same notation as in [10]. In particular, ( )
H

  and ( )
*

  denote the Hermitian and the complex 

conjugate operators.  

Let the complex data vector Nx  have a true complex Gaussian distribution such that 

( ) ( ),Xp =x x d BCN  where d and B denote the (possibly complex) true mean value vector and 

the true covariance matrix. Let the assumed distribution for the data vector be another complex 

Gaussian distribution such that ( ) ( ); ( ),Xf =x x θ r θ RCN  where the (possibly complex) assumed 

mean value ( )r θ  is parameterized by a parameter vector 
d θ Θ  and R denotes the (possibly 
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complex) assumed covariance matrix generally different from B. For the generalization to complex 

parameter vector we refer the reader to [10]. It can be noted that the assumed mean value ( )r θ  may 

be different from the true one, d, for every θ Θ . Under these assumptions, the matrices 
θA  and 

θB  in eqs. (1) and (4) can be written explicitly through the so-called misspecified Slepian formulae 

[10]. In particular, we have: 
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,

( ) ( ) ( ) ( )H T

i k
i k i k   
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= +
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θ

r θ r θ r θ r θ
B R BR R B R . (A.2) 

These expressions have been used in [10] and in [11] to evaluate the MCRB in eqs. (9) and (18) 

for the DOA estimation problem with array position errors. 

 

Appendix B 

A generalization of the Bangs formula under misspecification 

In this appendix, we provide a misspecifed version of the Bangs [69] formula derived, also in 

this case, by Richmond and Horowitz in [10]. As in Appendix A, let the complex data vector 

Nx  have a true complex Gaussian distribution such that ( ) ( ),Xp =x x d BCN  where d and B 

denote the (possibly complex) true mean value vector and the true covariance matrix. Let the 

assumed distribution for the data vector be another complex Gaussian distribution such that 

( ) ( ); , ( )Xf =x x θ r R θCN  where r is the (possibly complex) assumed mean value, generally 
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different form d, and ( ) θR θ R  denotes the (possibly complex) assumed covariance matrix 

parameterized by a parameter vector 
d θ Θ   and generally different from Bθ . For the 

generalization to complex parameter vector we refer the reader to [10]. Under these assumptions, 

the matrices 
θA  and 

θB  in eqs. (1) and (4) can be written explicitly through the so-called 

misspecified Bangs formulae [10]. In particular, we have: 
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. (B.2) 

where IN is the identity matrix of order N. 

 

Appendix C 

Compact expression for the MCRB in the CES family 

In this appendix, we derive a compact expression useful to evaluate the MCRB for the scatter 

matrix estimation in the family of CES distribution. This expression follows directly from the 

results obtained in [41]. We assume that both the true distribution pX(x) (that implicitly depends on 

the true scatter matrix Σ , then according to the notation used before, vecs( )=θ Σ ) and the assumed 
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distribution ( );Xf x Σ  belong to the zero-mean CES distribution class, as shown in eqs. (48) and 

(49). Moreover, we define 
1HQ −

x Σ x  as in eq. (54). 

Compact expression for the matrix 
θ

B  

In [41] the matrix 
θ

B  has been obtained element-by-element as: 
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where i i=  A Σ  is a symmetric 0-1 matrix. 

For notation simplicity, we define: 
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By using the properties of the vec operator, of the Duplication matrix DN and of the Kronecker 

product [42] [43], we have: 

 ( ) ( )1 1 1 1

1 2vec vec
T

T

N NB B− − − − = + 
  θ

B D Σ Σ Σ Σ D  (C.4) 

Compact expression for the matrix 
θ

A  
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In [41] the matrix 
θ

A  has been obtained element-by-element as: 

 

( )

( )

( )

( )
( )

( )

( )
( ) ( )

2

2

2 1 1

2

2

2 1 1

2

ln ;

ln ln2 1
1 tr

1

ln1
tr tr

1

X

pij
i j

i j

i j

f
E

g Q g Q
E Q E Q

N Q N N Q

g Q
E Q

N N Q

 

− −

− −

  
= =    

   

      
= + + +      +      

  
+  

+   

θ

x θ
A

Σ A Σ A

Σ A Σ A

 (C.5) 

For notation simplicity, we define: 
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Finally, as for the matrix 
θ

B , we have: 

 ( ) ( )1 1 1 1

1 2vec vec
T

T
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By using the Sherman-Morrison formula, we can express the inverse of the matrix A as follows: 
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Compact expression for the MCRB, ( ) 1 1 1MCRB M − − −=
θ θ θ

θ A B A  (with r=0) 
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