fr
|
en

Julien BECT

Associate Professor

L2S, CentraleSupélec
3 rue Joliot Curie
91190 Gif-sur-Yvette, France

Publications

PhD students

Publication list(s)

⌘⌘ publicationslist.org | CV HAL | Google Scholar | arXiv ⌘⌘

Some recent articles

Parameter selection in Gaussian process interpolation: an empirical study of selection criteria
w/ Sébastien Petit, Paul Feliot & Emmanuel Vazquez
♣ Preprint [hal-03285513]
♣ Poster presented by S. Petit at MASCOT-NUM 2020 [poster]

♣ Accepted for publication in the SIAM/ASA Journal of Uncertainty Quantification

Bayesian sequential design of computer experiments for quantile set inversion
w/ Romain Ait Abdelmalek-Lomenech, Vincent Chabridon & Emmanuel Vazquez
♣ Preprint [hal-03835704]
♣ Talk given by RAAL at SIAM UQ22 [slides]
♣ Poster presented by RAAL at MASCOT-NUM 2022 [poster]

Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
w/ Sébastien Petit & Emmanuel Vazquez
♣ Preprint [hal-03686949]
♣ Talk given by S. Petit at MASCOT-NUM 2022 [slides]

Integration of bounded monotone functions: Revisiting the nonsequential case, with a focus on unbiased Monte Carlo (randomized) methods
w/ Subhasish Basak & Emmanuel Vazquez
♣ Preprint [hal-03591555]

Bayesian multi-objective optimization for stochastic simulators: an extension of the Pareto Active Learning method
w/ Bruno Barracosa, Héloïse Dutrieux Baraffe, Juliette Morin, Josselin Fournel & Emmanuel Vazquez
♣ Preprint [hal-03714535]
♣ Talk given by B. Barracosa at the SIAM CSE 2021 conference [slides]
♣ Talk given by B. Barracosa at the MASCOT-NUM workshop on Stochastic Simulators [slides]

Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation
w/ Subhasish Basak, Sébastien Petit & Emmanuel Vazquez
♣ Postprint [hal-03119528]
♣ Talk given by S. Basak at the DCE reading group (Alan Turing Institute) [slides]
♣ In: Machine Learning, Optimization, and Data Science. LOD 2021 [DOI:10.1007/978-3-030-95470-3_9]

Sequential design of multi-fidelity computer experiments: Maximizing the rate of stepwise uncertainty reduction
w/ Rémi Stroh, Séverine Demeyer, Nicolas Fischer & Emmanuel Vazquez
♣ Postprint [hal-02902333]
♣ Technometrics, 64(2):199–209, 2022 [DOI:10.1080/00401706.2021.1935324]

Adaptive design of experiments for conservative estimation of excursion sets
w/ Dario Azzimonti, David Ginsbourger, Clément Chevalier & Yann Richet
♣ Postprint [hal-01379642]
♣ Technometrics, 63(1):13–26, 2021 [DOI:10.1080/00401706.2019.1693427]

On the quantification of discretization uncertainty: Comparison of two paradigms
w/ Souleymane Zio, Guillaume Perrin, Claire Cannamela & Emmanuel Vazquez
♣ 14th WCCM-ECCOMAS Congress 2020 [DOI:10.23967/wccm-eccomas.2020.260]

A supermartingale approach to Gaussian process based sequential design of experiments
w/ François Bachoc & David Ginsbourger
♣ Postprint [hal-01351088]
♣ Bernoulli, 25(4A):2883–2919, 2019. [DOI:10.3150/18-BEJ1074]